
sktime: A Unified Interface for Machine Learning
with Time Series

Markus Löning
The Alan Turing Institute

Anthony Bagnall
University of East Anglia

Sajaysurya Ganesh
University College London

Viktor Kazakov
University College London

Jason Lines
University of East Anglia

Franz J. Király∗
The Alan Turing Institute

Abstract

We present sktime – a new scikit-learn compatible Python library with a unified
interface for machine learning with time series. Time series data gives rise to
various distinct but closely related learning tasks, such as forecasting and time
series classification, many of which can be solved by reducing them to related
simpler tasks. We discuss the main rationale for creating a unified interface,
including reduction, as well as the design of sktime’s core API, supported by a
clear overview of common time series tasks and reduction approaches.

1 Introduction

Data scientific tasks beyond the standard tabular setting are one of the major challenges of contempo-
rary machine learning. sktime2 is a new open-source Python library for machine learning with time
series. Our goal is to extend existing machine learning capabilities, most notably scikit-learn [16], to
the temporal data setting by providing a unified interface for several time series learning tasks.

Time series data is ubiquitous in many applications. Examples include sensor readings from industrial
processes, spectroscopy wave length data from chemical samples, or bed-side monitor medical data
from patients. There is a broad variety of distinct but closely related learning tasks that arise in such
contexts, including time series classification, forecasting and annotation among others. In section 2,
we give a more detailed overview of time series tasks. The ambition of the project is to design and
implement an API (application programming interface) that unifies these tasks.

A plethora of time series toolboxes exists that provide rich interfaces to specific model classes
(ARIMA/filters [50, 54], neural networks [2]), or framework interfaces to isolated time series
modelling tasks (forecasting [55, 29], feature extraction [36, 53, 19], annotation [17], classification
[17, 53]).3 Nevertheless, open-source machine learning capabilities for time series are still limited
and existing libraries are often incompatible with each other. To the best of our knowledge, we are
the first to present a unified interface that can explicitly represent and link multiple distinct tasks.

The main rationale for creating a unified API, as opposed to separate task-specific interfaces, is as
follows: First, many time series learners are highly composite and often involve reduction from
complex learning task (e.g. time series segmentation) to related simpler tasks (e.g. supervised learning).
We describe exemplar reduction approaches with time series data in greater depth in section 3. A
unified and composable interface for different tasks enables us to encapsulate reduction approaches
as meta-estimators, exposing their implicit modeling choices as tunable hyper-parameters, and thus

∗Corresponding author: fkiraly@turing.ac.uk
2https://github.com/alan-turing-institute/sktime
3For a more extensive and regularly updated overview of Python time series related libraries, see https:

//github.com/alan-turing-institute/sktime/wiki/Related-software.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://github.com/alan-turing-institute/sktime
https://github.com/alan-turing-institute/sktime/wiki/Related-software
https://github.com/alan-turing-institute/sktime/wiki/Related-software


enabling us to easily evaluate and compare them against other strategies. Second, the current lack of a
unified API leads to unnecessary code replications and often error prone and statistically inappropriate
reductions to those tasks that existing off-the-shelf toolboxes can deal with (e.g. reductions to tabular
data supported by scikit-learn). A single API reduces confusion and enables us to focus on providing
advanced time series analysis capabilities for researchers and practitioners. In addition, many tasks
require common functionality such as distance measures and preprocessing routines. Providing them
in a consistent and modular interface allows us to re-utilise them across different settings.

As of now, sktime includes state-of-the-art algorithms for time series classification, additional modular
functionality for reduction, pipelining, ensembling and data transformations, as well as forecasting
methods and benchmarking tools.

We first present in section 2 an overview of the most common time series tasks, and then discuss, in
section 3, reduction as an approach to solving these tasks. Section 4 outlines the key design features
built into the core interface. Section 5 describes the currently available functionality. We conclude by
previewing future work in section 6.

2 Taxonomy of time series learning tasks

sktime provides tooling for learning with time series, i.e. data observed at a finite number of known
time points. More precisely, whenever we refer to time series, we consider them explicitly consisting
of both (i) time points at which they are observed and (ii) observations at those time points. In ad-hoc
short-hand notation, we write, for example, x(t1), x(t2), ..., x(tT ) for observations at time points
t1, t2, ..., tT , and x for the time series object that contains exactly that information.4 An intrinsic
characteristic of time series is that observations within time series are statistically dependent in
assumed generative processes (which we avoid to introduce here to keep notation simple). Due to
this dependency, time series data does not naturally fit into the standard machine learning framework
for tabular (or cross-sectional) data, which implicitly assumes observations to be independent and
identically distributed (i.i.d.). Consequently, many toolboxes for learning on tabular data, such as
scikit-learn, consider learning with time series out of scope [16].

When learning with time series, it is important to understand the different forms such data may
take. The data can come in the form of a single (or univariate) time series; but in many applications,
multiple time series are observed. It is crucial to distinguish the two fundamentally different ways in
which this may happen:

• Multivariate time series data, where two or more variables are observed over time, with vari-
ables representing different kinds of measurements within a single experimental unit;

• Panel data, sometimes also called longitudinal data, where multiple independent instances of
the same kinds of measurements are observed, e.g. time series from multiple industrial processes,
chemical samples or patients.5

In multivariate data, it is implausible to assume the different univariate component time series are
i.i.d. In panel data, the i.i.d. assumption applied to the different instances is plausible, while time
series observations within a given instances may still depend on adjacent observations. In addition,
panel data may be multivariate, which corresponds to i.i.d. instances of multivariate time series. In
this case, the different instances are i.i.d., but the univariate component series within an instance are
not. This richness of generative scenarios is mirrored in a richness of learning tasks applicable to
such data. We later show that these tasks are closely related through reduction, but first highlight
some of the most common ones here:

• Time series regression/classification. We observe N i.i.d. panel data training instances of
feature-label pairs (xi, yi), i = 1 . . . N . Each instance of features is a time series xi =

(xi(t1) . . . xi(tT )). The task is to use the training data to learn a predictor f̂ that can accu-
rately predict a new target value, such that ŷ = f̂(x∗) for a new input time series x∗. For

4Formally, our data model for time series is that of a list of time/value pairs, or equivalently, a time indexed
list or dictionary, with a finite set of indices.

5One complication is that observed time points may vary across variables and/or instances. While time-
heterogeneous settings are not covered by our notation, they are covered by the sktime interface.

2



regression, yi ∈ R. For classification, yi takes a value from a finite set of class values. Addition-
ally, time-invariant features may be present. Compared to the tabular supervised setting, the only
difference is that some features are time series, instead of being only primitives (e.g. numbers,
categories or strings). Important sub-cases are (i) equally spaced observation times and (ii) equal
length time series. For an overview of time series classification, see [3, 25].

• Classical forecasting. Given past observations y = (y(t1) . . . y(tT )) of a single time series,
the task is to learn a forecaster f̂ which can make accurate temporal forward predictions ŷ =

f̂(hj) of observations at given time points h1 . . . hH of the forecasting horizon, where ŷ =
(ŷ(h1) . . . ŷ(hH)) denotes the forecasted series. No i.i.d. assumption is made. Variants may be
distinguished by the following: (i) whether one observes additional related time series (multivariate
data); (ii) for multivariate data, whether one forecasts a single series or multiple series jointly
(exogeneity vs vector forecasting) [45]; (iii) whether the forecasting horizon lies in the observed
time horizon (in-sample predictions), in the future of the observed time series (forecasting), or
for multivariate data, only in the future of the target variable but not the exogenous variables
(nowcasting); (iv) whether there is a single time point to forecast (H = 1) or not (single-step
vs multi-step); (v) whether the forecasting horizon is already known during training or only
during forecasting (functional vs discrete forecast). For an overview of classical forecasting, see
[14, 15, 35, 21].

• Supervised/panel forecasting. We observe N i.i.d. panel data training instances (yi), i =
1 . . . N . Each instance is a sequence of past observations yi = (yi(t1) . . . yi(tT )). The task is to
use the training data to learn a supervised forecaster f̂ that can make accurate temporal forward
predictions ŷi = f̂(y∗, hj) for a new instance y∗ at given time points h1 . . . hH of the forecasting
horizon, where ŷi = (ŷi(h1) . . . ŷi(hH)) is the forecasted series. Variants include panel data with
additional time-constant features and the same variants as found in classical forecasting. For an
overview, see [5, 58, 24].

• Time series annotation. For given observations x = (x(t1) . . . x(tT )) of a single time series, the
task is to learn an annotator that accurately predicts a series of annotations ŷ = (ŷ(a1) . . . ŷ(aA))
for the observed series x, where a1 . . . aA denotes the time indices of the annotations. The task
varies by value domain and interpretation of the annotations ŷ in relation to x: (i) in change-point
detection, ŷ contains change points and the type of change point [30]; (ii) in anomaly detection,
the aj are a sub-set of the tj and indicate anomalies, possibly with the anomaly type [14]; (iii) in
segmentation, the aj are interpreted to subdivide the series x into segments, annotated by the type
of segment [39]. Time series annotation is also found in supervised form, with partial annotations
within a single time series, or multiple annotated i.i.d. panel data training instances [23, 28].

3 Reductions with time series

While these tasks define distinct learning settings, they are closely related, which enables us to
solve them via reduction. Reduction essentially decomposes a given task into simpler tasks so that
solutions to the simpler tasks can be composed to give a solution to the original task. A classical
example of reduction in tabular supervised learning is one-vs-all classification, reducing k-way
multi-category classification to k binary classification tasks [11, 10, 9]. For time series, a common
example of reduction is to solve classical forecasting through time series regression via a sliding
window approach and iteration over the forecasting horizon [12]. Many reduction approaches are
possible with time series, we highlight some of the most important ones in figure 1.

Reduction offers several key advantages with regard to API design [8, 11]: First, reductions convert
any algorithm for a particular task into a learning algorithm for the new task. Any progress on the
base algorithm immediately transfers to the new task, saving both research and software development
effort. Second, reductions are modular and composable. Applying some reduction approach to n
base algorithms gives n new algorithms for the new task. Reductions can be composed to solve
more complicated problems, e.g. first reducing forecasting to time series regression which in turn can
be reduced to tabular regression. Finally, reductions also help us better understand the relationship
between tasks and reduce confusion between them.

3



Figure 1: Stylised overview of time series reduction approaches

classical
forecasting

supervised
forecasting

time series
regression

tabular
regression

time series
annotation

supervised
annotation

time series
classification

tabular
classification

b

c

d g

b

c

e g

a a f f

single time series panel data tabular data

Notes: (a) annotate time series with future values, (b) rolling window method to convert single series into panel
data with multiple output time periods [12], (c) ignore training set (e.g. fit forecaster on test set only) or use
training set for model selection, (d) iterate over output periods, optionally time binning/aggregation of output
periods [12], (e) rolling window method to convert single series into panel data with single output period [23],
(f) discretise output into one or more bins, (g) feature extraction [26, 19] or time binning/aggregation of input
time points.

4 API design

The main goal of sktime is to create a unified API for multiple time series tasks, extending the common
scikit-learn interface to the temporal setting, while staying close to its syntax and logic whenever
possible. Following scikit-learn’s API allows us to re-utilise many of the algorithms available in
scikit-learn, which is especially useful because of reduction to tabular tasks and because many
specialised algorithms for time series are composites with tabular supervised learning algorithms as
their components. The key design features of the sktime API are as follows:

4.1 Data representation

Any machine learning library relies fundamentally on some data representation and the lack of
powerful data structures for time series data has arguably been one of the main reasons for the lack
of a unified interface. In order to combine different tasks and data formats, sktime requires a data
container capable of handling multivariate and panel data with additional time-constant features,
including time-heterogeneous time series, where the observed lengths and time points varies across
instances and/or variables. While pandas [48] handles time series data, it is intended to store time
series only in the long format, with rows representing time points and columns representing variables,
precluding time-heterogeneous data. Technically, however, it is possible to store arbitrary types in the
cells of pandas containers. Inspired by xpandas [20], we chose to exploit this feature and represent
time series data in a nested format, with rows representing i.i.d. instances and columns representing
different variables as before, but with cells now no longer representing only primitives but also entire
time series. The reason for this choice is twofold: First, we can still make use of pandas, one of
the most comprehensive and efficient data container in Python, while at the same time having a
consistent data representation across different tasks which is flexible enough to handle multivariate,
panel and time-heterogeneous data. Second, as rows still represent i.i.d. instances, this representation
allows us to reuse many of the existing functionality in scikit-learn. Alternatives we considered but
ultimately set aside include three-dimensional NumPy arrays [56] as used in [53] and xarray [34, 33],
an extension of pandas to panel data, both however only support time-homogeneous data.6

4.2 Task-specific estimators

We follow scikit-learn [57, 49] and Weka [32, 31] in adopting a uniform basic API for estimators,
consisting of a fit method used for learning a model from training data and a predict method used for
making predictions based on the fitted model, as well as a common interface for setting and retrieving
hyper-parameters. Estimators in sktime are task specific, extending scikit-learn’s regressors and
classifiers to their time series counterparts as well as adding new estimators such as forecasters and
supervised forecasters among others, with the same fit and predict methdods, but varying function
signatures and internal behaviour.

6Other pandas-based data containers we considered include entity sets from Featuretools [36] and pysf [29].

4



4.3 Transformers

Similar to estimators, transformers have a uniform API consisting of a fit and a transform method used
to transform input data, and a corresponding method for the inverse transformation if available, in
addition to the common hyper-parameters interface. Since many data transformations are applicable
for different tasks, we develop a unified transformer interface. To reconcile the different settings, we
introduce the following kinds of transformations, distinguishing between fitting over i.i.d. instances
and fitting over time points.

• Tabular. scikit-learn like transformers, which operate over i.i.d. instances and are fitted during
training (e.g. principal component analysis).
• Series-to-primitives. Operates over time points, transforms time series for each instance into a

primitive number (e.g. feature extraction). If the transformer is fittable, it is fitted separately for
each instance during both training and prediction.
• Series-to-series. Like series-to-primitives, but output of transformation is itself a series instead

of a primitive (e.g. Fourier transform or series of fitted auto-regressive coefficients).
• Detrending. Operates over time points and transforms an input time series, returning a detrended

time series in the same domain as the input series (e.g. polynomial or seasonal detrending).
Detrending tranformers keep track of the time index seen in fitting, so that trends are correctly
computed over new time indices when transforming new data. In forecasting, it is fitted only
during training. For panel data, it can be applied like a series-to-series transformation by iterating
over instances. Detrenders are designed to take forecasters as input arguments, so that they
internally first fit the forecaster to the input series and then return the residuals after subtracting
the in-sample forecasts from the input series. For example, to detrend a time series with an
exponential smoothing forecaster in sktime, we can write:

1 t = Detrender(forecaster=ExponentialSmoothingForecaster ())
2 yt = t.fit_transform(y)

where the given input series y is transformed into yt, consisting of the residuals of the exponen-
tially smoothed in-sample forecasts.

4.4 Composition

Many learning strategies are expressible as meta-estimators, including pipelines, ensembles, reduction
approaches and model selection routines like grid-search cross-validation. As in scikit-learn, meta-
estimators wrapping estimators are estimators themselves with the same uniform API, as well as
support for setting and getting hyper-parameters of the wrapped estimators.

sktime is the first toolbox, as far as we know, that provides reduction strategies as composable
meta-estimators with an explicit hyper-parameter interface. Reduction typically introduces implicit
modelling choices (e.g. the window width and step length of the sliding operation when reducing
forecasting to time series regression). Defining reduction approaches as meta-estimators enables us
to expose these modelling choices as hyper-parameters, which allows us not only to easily compose
different reduction strategies with configurable components, but also to optimise these modelling
choices via common model selection techniques. For example, reducing classical forecasting to time
series regression in sktime looks as follows:

1 f = ReducedRegressionForecaster(regressor=RandomForestRegressor (),
2 method=’recursive ’, window_length =2)
3 f.fit(y)
4 y_hat = f.predict(fh=fh)

where y is an input series, fh the forecasting horizon and y_hat the forecasted series.
ReducedRegressionForecaster is a meta-estimators with explicit, tunable hyper-parameters
for determining the window length and the method for iterating over multiple output periods
of the forecasting horizon (here set to the recursive approach as described in [12]). Since
ReducedRegressionForecaster is a forecaster itself, it could be passed into a temporal grid-
search cross-validation routine [7] in order to optimise the hyper-parameters. Through these compo-
sition interfaces for reduction, sktime’s API allows to solve a wide variety of learning tasks with a
small amount of easy-to-read code.

5



In addition, we introduce new modular composition meta-estimators for multivariate time series. This
includes column-wise ensembling, where a different estimator is applied to each time series variable
inspired by scikit-learn’s column transformer, and column concatenation, where multiple time series
columns are concatenated into a single, long time series column.

5 API overview

sktime is in an early stage of development and currently includes the following functionality:

• Time series classification. State-of-the-art algorithms, including
– Interval based. Time series forest [22] and random interval spectral ensemble [43].
– Distance based. Distance measures form a fundamental primitive of many time series tasks.

We have implemented eight distance measures in Cython [6] for enhanced performance and
several classifiers that use them, including the Elastic Ensemble [42], Proximity Forest [44]
and all the kernel methods described in a recent survey paper [1].

– Shapelet based. The shapelet package includes an implementation of the shapelet transform
[13] and prototypes for learning shapelets [27] and Shapelet Forest [37].

– Dictionary based. The symbolic aggregate approximation (SAX) [40] and symbolic Fourier
approximation (SFA) [52] transform and the associated bag of patterns (BOP) [41] and bag of
SFA symbols (BOSS) [51] classifiers.

– Deep learning. A recent review paper described nine deep learning algorithms for time series
classification [25]. With the help of the authors, we have ported these algorithms into sktime
in a deep learning extension package7 based on keras [18].

• Classical forecasting. We have implemented a range of statistical forecasting techniques, inter-
facing statsmodels [50] whenever possible, and reduction strategies to utilise supervised learning
algorithms.
• Transformers. Various transformers have been implemented for segmenting time series, series-

to-primitives and series-to-series feature extraction and detrending. To reduce time series regres-
sion/classification to tabular supervised learning, a transformer for time binning input series is
included.
• Composition. Pipelining for both feature and target variables following scikit-learn’s API and

multivariate composite strategies have been implemented.
• Benchmarking. Inspired by the mlaut package [38], sktime includes tools for automatic orches-

tration of prediction experiments evaluating one or more models on one or more data sets, with
post-hoc statistical methods for comparing predictive performances.

The majority of the implemented algorithms has been tested for correctness against implementations
in other languages and benchmarked on archive data [4]. We have reproduced the results presented in
a comparative benchmarking study [3] and are in the process of recreating results from forecasting
benchmarking studies [47, 46].

6 Conclusion and future directions

We have discussed the main rationale for a unified interface for machine learning with time series
and outlined the key features of sktime’s API, including new meta-estimators for reduction and
multivariate ensembling. For future development, there are several directions the sktime project
aims to focus on and we are actively looking for contributors to implement task-specific interfaces
and reduction approaches. At present, most methods in sktime only support data with equal length
series and no missing values. We aim to extend existing functionality to cover these situations as
well. In addition, the composite structure of many of the implemented time series classifiers allows
us to easily refactor them into their regressor counterparts. Having designed and implemented the
key building blocks of the API for time series classification/regression and classical forecasting, the
next major addition to sktime will be supervised forecasting, based on a modified pysf interface [29].
Finally, many implemented tools in sktime (e.g. distance measures) can be re-utilised for related
unsupervised learning task, including time series clustering and motif discovery.

7https://github.com/uea-machine-learning/sktime-dl

6

https://github.com/uea-machine-learning/sktime-dl


Authors’ contributions

ML made key contributions to architecture and design, including composition and reduction interfaces.
ML is also one of sktime’s core contributors and maintainers, having implemented, and contributing
to, almost all parts of it, including the overall framework, the forecasting module, and specific
algorithms. ML drafted and wrote most of this manuscript, partly based on sketches and presentation
content by FK.

FK conceived the project and architectural outlines, including task taxonomy, composition and
reduction. FK further made key contributions to architecture and design, and contributed to writing
of this manuscript.

AB implemented time series forest and the random interval spectral ensemble, and contributed design
ideas and to writing of this manuscript.

JL implemented and conceived modularised interfaces of several algorithms: distance based algo-
rithms, including time series k-nearest-neighbours, Cython implementations of time series distance
functions, and the shapelet transform.

SG contributed to the initial design and implementation of the time series classification setting, as
well as implementation of the overall framework.

VK contributed to the design and implementation of the benchmarking module based on the mlaut
package.

All authors reviewed the manuscript and participated in final copy-editing and proof-reading.

Acknowledgements

We would like to thank all participants of the 2019 joint sktime/MLJ development sprint who helped
implement various time series classification algorithms, including Amaia Abanda Elustondo, Aaron
Bostrom, Saurabh Dasgupta, David Guijo-Rubio, James Large, Matthew Middlehurst, George Oastler,
Piotr Oleśkiewicz, Mathew Smith and Jeremy Sellier.

The first phase of development for sktime was done jointly between researchers at the University of
East Anglia (UEA), University College London (UCL) and The Alan Turing Institute as part of a UK
Research and Innovation (UKRI) project to develop tools for data science and artificial intelligence.

Markus Löning’s contribution was supported by the Economic and Social Research Council (ESRC)
[grant: ES/P000592/1], the Consumer Data Research Centre (CDRC) [ESRC grant: ES/L011840/1],
and The Alan Turing Institute (EPSRC grant no. EP/N510129/1).

References
[1] A. Abanda, U. Mori, and J. Lozano. A review on distance based time series classification. Data Mining

and Knowledge Discovery, 33(2):378–412, 2019.

[2] Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan Gasthaus,
Tim Januschowski, Danielle C Maddix, Syama Rangapuram, David Salinas, Jasper Schulz, et al. Gluonts:
Probabilistic time series models in python. arXiv preprint arXiv:1906.05264, 2019.

[3] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. The great time series classification bake
off: a review and experimental evaluation of recent algorithmic advances. Data Mining and Knowledge
Discovery, 31(3):606–660, 2017.

[4] Anthony Bagnall, Markus Löning, Matthew Middlehurst, and George Oastler. A tale of two toolkits, report
the first: benchmarking time series classification algorithms for correctness and efficiency. arXiv preprint
arXiv:1909.05738, 2019.

[5] Badi H. Baltagi. Econometric Analysis of Panel Data. John Wiley & Sons, 4 edition, 2008.

[6] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Seljebotn, and Kurt Smith.
Cython: The best of both worlds. Computing in Science & Engineering, 13(2):31–39, 2011.

7



[7] Christoph Bergmeir, Rob J Hyndman, and Bonsoo Koo. A note on the validity of cross-validation for
evaluating autoregressive time series prediction. Computational Statistics & Data Analysis, 120:70–83,
2018.

[8] Alina Beygelzimer, Varsha Dani, Tom Hayes, John Langford, and Bianca Zadrozny. Error limiting
reductions between classification tasks. In Proceedings of the 22nd international conference on Machine
learning, pages 49–56. ACM, 2005.

[9] Alina Beygelzimer, Hal Daumé, John Langford, and Paul Mineiro. Learning reductions that really work.
Proceedings of the IEEE, 104(1):136–147, 2015.

[10] Alina Beygelzimer, John Langford, and Bianca Zadrozny. Weighted one-against-all. In American
Association for Artificial Intelligence (AAAI), pages 720–725, 2005.

[11] Alina Beygelzimer, John Langford, and Bianca Zadrozny. Machine learning techniques—reductions
between prediction quality metrics. In Performance Modeling and Engineering, pages 3–28. Springer,
2008.

[12] Gianluca Bontempi, Souhaib Ben Taieb, and Yann-Aël Le Borgne. Machine Learning Strategies for Time
Series Forecasting. In Business Intelligence, pages 62–77. Springer, Berlin, Heidelberg, 2013.

[13] A. Bostrom and A. Bagnall. Binary shapelet transform for multiclass time series classification. Transactions
on Large-Scale Data and Knowledge Centered Systems, 32:24–46, 2017.

[14] George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung. Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

[15] Peter J. Brockwell and Richard A. Davis. Introduction to Time Series and Forecasting. Springer Texts in
Statistics. Springer International Publishing, 2016.

[16] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas C Müller, Olivier Grisel, Vlad
Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake Vanderplas, Arnaud
Joly, Brian Holt, and Gaël Varoquaux. API design for machine learning software: experiences from the
scikit-learn project. ArXiv e-prints, 2013.

[17] David M Burns and Cari M Whyne. Seglearn: a python package for learning sequences and time series.
The Journal of Machine Learning Research, 19(1):3238–3244, 2018.

[18] François Chollet et al. Keras. https://keras.io, 2015.

[19] Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W. Kempa-Liehr. Time Series FeatuRe
Extraction on basis of Scalable Hypothesis tests (tsfresh – A Python package). Neurocomputing, 307:72–
77, sep 2018.

[20] Vitaly Davydov and Franz J Király. xpandas: Python data containers for structured types and structured
machine learning tasks. openreview.net, 2018.

[21] Jan G De Gooijer and Rob J Hyndman. 25 years of time series forecasting. International journal of
forecasting, 22(3):443–473, 2006.

[22] Houtao Deng, George Runger, Eugene Tuv, and Martyanov Vladimir. A time series forest for classification
and feature extraction. Information Sciences, 239:142–153, 2013.

[23] Thomas G. Dietterich. Machine Learning for Sequential Data: A Review. In Caelli T., Amin A., Duin
R.P.W., de Ridder D., and Kamel M., editors, Structural, Syntactic, and Statistical Pattern Recognition,
pages 15–30. Springer, Berlin, Heidelberg, 2002.

[24] Peter Diggle, Patrick Heagerty, Kung-Yee Liang, and Scott Zeger. Analysis of longitudinal data. Oxford
University Press, 2nd edition, 2013.

[25] H. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. Muller. Deep learning for time series classification:
a review. Data Mining and Knowledge Discovery, 33(4):917–963, 2019.

[26] Ben D Fulcher and Nick S Jones. hctsa: A Computational Framework for Automated Time-Series
Phenotyping Using Massive Feature Extraction. Cell systems, 5(5):527–531.e3, nov 2017.

[27] J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme. Learning time-series shapelets. In Proc.
20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014.

8

https://keras.io


[28] Alex Graves. Supervised sequence labelling. In Supervised sequence labelling with recurrent neural
networks, pages 5–13. Springer, 2012.

[29] Ahmed Guecioueur. pysf: Supervised forecasting of sequential data in Python, 2018.

[30] Valery Guralnik and Jaideep Srivastava. Event detection from time series data. In Proceedings of the fifth
ACM SIGKDD international conference on Knowledge discovery and data mining, pages 33–42. ACM,
1999.

[31] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Witten. The
WEKA data mining software. ACM SIGKDD Explorations Newsletter, 11(1):10, nov 2009.

[32] G. Holmes, A. Donkin, and I.H. Witten. WEKA: a machine learning workbench. In Proceedings of ANZIIS
’94 - Australian New Zealnd Intelligent Information Systems Conference, pages 357–361. IEEE, 1994.

[33] Stephan Hoyer, Clark Fitzgerald, Joe Hamman, et al. xarray: v0.8.0, August 2016.

[34] Stephan Hoyer and Joseph J. Hamman. xarray: N-D labeled Arrays and Datasets in Python. Journal of
Open Research Software, 5(1), apr 2017.

[35] Rob J Hyndman and George Athanasopoulos. Forecasting: principles and practice. OTexts, 2018.

[36] James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data science
endeavors. In 2015 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2015,
Paris, France, October 19-21, 2015, pages 1–10. IEEE, 2015.

[37] I. Karlsson, Papapetrou P, and H. Boström. Forests of randomized shapelet trees. In International
Symposium on Statistical Learning and Data Sciences, pages 126–136. Springer, 2015.

[38] Viktor Kazakov and Franz J Király. Machine learning automation toolbox (mlaut). arXiv preprint
arXiv:1901.03678, 2019.

[39] Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. Segmenting time series: A survey and
novel approach. In Data mining in time series databases, pages 1–21. World Scientific, 2004.

[40] J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing SAX: a novel symbolic representation of time
series. Data Mining and Knowledge Discovery, 15(2), 2007.

[41] J. Lin, R. Khade, and Y. Li. Rotation-invariant similarity in time series using bag-of-patterns representation.
Journal of Intelligent Information Systems, 39(2):287–315, 2012.

[42] J. Lines and A. Bagnall. Time series classification with ensembles of elastic distance measures. Data
Mining and Knowledge Discovery, 29:565–592, 2015.

[43] J. Lines, S. Taylor, and A. Bagnall. Time series classification with HIVE-COTE: The hierarchical vote
collective of transformation-based ensembles. ACM Trans. Knowledge Discovery from Data, 12(5), 2018.

[44] B. Lucas, A. Shifaz, C. Pelletier, L. O’Neill, N. Zaidi, B. Goethals, F. Petitjean, and G. Webb. Proximity
forest: an effective and scalable distance-based classifier for time series. Data Mining and Knowledge
Discovery, 33(3):607–635, 2019.

[45] Helmut Lütkepohl. New introduction to multiple time series analysis. Springer Science & Business Media,
2005.

[46] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. Statistical and machine learning
forecasting methods: Concerns and ways forward. PloS one, 13(3):e0194889, 2018.

[47] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The m4 competition: 100,000
time series and 61 forecasting methods. International Journal of Forecasting, 2019.

[48] Wes McKinney. pandas: a Foundational Python Library for Data Analysis and Statistics. In Python for
High Performance and Scientific Computing, 2011.

[49] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine
Learning in Python. The Journal of Machine Learning Research, 12:2825–2830, 2011.

9



[50] Josef Perktold and Skipper Seabold. Statsmodels: Econometric and Statistical Modeling with Python
Quantitative histology of aorta View project Statsmodels: Econometric and Statistical Modeling with
Python. In Proceedings of the 9th Python in Science Conference, 2010.

[51] P. Schäfer. The BOSS is concerned with time series classification in the presence of noise. Data Mining
and Knowledge Discovery, 29(6):1505–1530, 2015.

[52] P. Schäfer and M. Högqvist. SFA: a symbolic Fourier approximation and index for similarity search in
high dimensional datasets. In Proceedings of the 15th International Conference on Extending Database
Technology, pages 516–527, 2012.

[53] Romain Tavenard. tslearn: A machine learning toolkit dedicated to time-series data, 2017.

[54] R Taylor. Pyflux: An open source time series library for python, 2016.

[55] Sean J Taylor and Benjamin Letham. Forecasting at scale. The American Statistician, 72(1):37–45, 2018.

[56] Stéfan van der Walt, S Chris Colbert, and Gaël Varoquaux. The NumPy Array: A Structure for Efficient
Numerical Computation. Computing in Science & Engineering, 13(2):22–30, mar 2011.

[57] Gaël Varoquaux, L. Buitinck, Gilles Louppe, Olivier Grisel, F. Pedregosa, and A. Mueller. Scikit-learn:
Machine Learning Without Learning the Machinery. GetMobile: Mobile Computing and Communications,
19(1):29–33, jun 2015.

[58] Jeffrey M Wooldridge. Econometric analysis of cross section and panel data. MIT Press, 2010.

10


	Introduction
	Taxonomy of time series learning tasks
	Reductions with time series
	API design
	Data representation
	Task-specific estimators
	Transformers
	Composition

	API overview
	Conclusion and future directions

