ISSN 2349-7750

CODEN [USA]: IAJPBB

ISSN: 2349-7750

INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES

SJIF Impact Factor: 7.187

Available online at: <u>http://www.iajps.com</u>

Research Article

A RANDOMIZED CONTROL TRIAL ON THE EFFECT OF PHYSIOLOGIC DOSE OF INTRAVENOUS HYDROCORTISONE IN PATIENTS WITH REFRACTORY SEPTIC SHOCK

¹Dr Aroosa Zafar, ²Dr Zaeem Sohail Jafar, ³Dr Aniqa Nawaz

¹Al Nafees Medical College, Isra University, Islamabad Campus ²Lahore Medical and Dental College, Lahore

³Sahiwal Medical College, Sahiwal

Article Received: June 2020	Accepted: July 2020	Published: August 2020
Article Received: June 2020 Abstract: Objective: Septic shock is a response to therapy and eventually leads to organ dy, supportive measures are the cornerstone adjunctive therapies. Steroids are one of t septic shock. Despite numerous studies on still lots of controversies exist. These conf Place and Duration: This randomized, department of Mayo Hospital Lahore for Methods: This was a prospective, ran- refractory septic shock criteria were rand After obtaining the baseline cortisol le hydrocortisone, and the other group wa. shock duration, and mortality at 28 days the normally distributed variables, a t tess square test or Fisher exact test were appli Results: The return of shock duration and but it was not statistically significant. Conclusion: Despite numerous studies im shock, time of return of shock). These d	o infection and tissue hypoperfusion sfunction. Aggressive treatment of a s of successful treatment. In additing the treatments which have been study in the role of steroids in the mortal flicts are often about the steroid dos double-blind, clinical trial study one-year duration from March 2019 domized-controlled, two-group as lowly divided into two groups: 80 p evel and cosyntropin test, one gr s treated with placebo. The respon- were investigated. The data were a st was used for comparisons. Conce- tied accordingly. I mortality in intervention group par- this field, there are various outcom	on which does not respond to fluid a broad-spectrum antimicrobial and ion to the main treatment, there are died in the management of refractory ity of severe sepsis and septic shock, se and duration of administration. was conducted in the Emergency 9 to March 2020. ssignment study. Patients who had batients were included in each group. roup was treated with intravenous nse to hydrocortisone, the return of analyzed using SPSS version 16. For erning qualitative variables, the chi- atients was more than control group, mes (mortality rate, rate of return of
considering the underlying disease and m <i>Keywords:</i> Hydrocortisone, Septic shock,		e return of shock and mortality rate.
Corresponding author: Dr. Aroosa Zafar, Al Nafees Medical College, Isra Ut	niversity, Islamabad Campus	QR code

Please cite this article in press Aroosa Zafar et al, A Randomized Control Trial On The Effect Of Physiologic Dose Of Intravenous Hydrocortisone In Patients With Refractory Septic Shock., Indo Am. J. P. Sci, 2020; 07(08).

INTRODUCTION:

Septic shock tissue is a systemic response to infection along with hypoperfusion. It does not respond to fluid treatment and ultimately leads to organic dysfunction and death. Septic shock is considered urgent. It should be noted that the tenth cause of death in the United States is septic shock. Many efforts have been made to improve the prognosis and reduce mortality due to septic shock. Antimicrobial drugs are considered the main treatment. In addition, anti-inflammatory drugs. neutralizing gram-negative substances and anticoagulants and supportive therapy are used as additives to prevent damage to other organs. One of the treatments studied is the use of corticosteroids in the treatment of septic shock. Despite numerous studies on steroid use in the treatment of septic shock, discussions still exist. However, there is a lot of discussion about the use of low doses of corticosteroids resistant to septic shock. These discussions are usually about the type of steroid dosage, dosage and duration of use.

Adrenal insufficiency in septic shock is about 50%. Adrenal insufficiency means that there is no partial or no systemic response to a cortical corticosteroid (corticosteroid deficiency due to a critical disease). Adrenal failure in septic shock means that serum cortisol levels are less than 9 g/dl when serum cortisol levels are applied below 250 g of adrenocorocritropic hormone (ACTH) or 10 g/dl. Cortisol levels have been shown to be associated with response to ACTH stimulation and septic shock survival in patients.

In a randomized controlled trial (RCT), the intervention group took 100 mg of hydrocortisone every 8 hours for 5 days and placebo in the control group. Mortality and the return of shocks in the intervention group were statistically significant. In study there was no treatment this for corticosteroids, serum cortisol response and finally mortality. Another RCT study used 50 mg hydrocortisone followed by 0.18 mg/kg/intervention group. Mortality, shock return and response to the cosyntropin test did not differ in both groups. In a 2008 RCT study, 50 mg of intravenous hydrocortisone was used every 6 hours for 5 days. Within 28 days, there was no significant difference in mortality in the two groups for those who were unable to respond to or respond to the cosyntropin test. Mortality also did not differ in both groups. The return of shock in patients receiving hydrocortisone occurred faster than placebo and was statistically significant, but the return of the shock rate was not significant. Another study showed no significant difference between 28-day mortality and placebo groups. There is still a lot of discussion about the use of low-dose corticosteroid septic shock in the treatment of patients. In order to better treat refractory septic shock, we have developed a study evaluating the effect of low-dose hydrocortisone on septic shock mortality.

METHODS:

This randomized, double-blind, clinical trial study was conducted in the Emergency department of Mayo Hospital Lahore for one-year duration from March 2019 to March 2020. We enrolled (a) Patients >18 years old and (b) patients with septic shock criteria that did not respond to vasopressor therapy for more than 60 minutes. We excluded (a) patients who had documented adrenal insufficiency before admission, (b) patients with tuberculosis, and (c) patients treated with ketoconazole or estrogen. This was a prospective, randomizedcontrolled, two group assignment study. Using concealed envelopes marked in advance, study participants were randomized in a 1:1 ratio by simple method randomization following screening, fulfilling the inclusion criteria, and signing an informed consent form. In total, 160 patients were selected randomly. They were divided into study group (80 patients) and control group (80 patients). First, basal cortisol levels were evaluated in samples of sorry patients. Then 250 mg ACTH was administered intramuscularly. After 30-60 minutes, the level of venous cortisol was checked to assess the response of the ACTH. Adrenal insufficiency means that after applying ACTH 250g, serum cortisol concentrations are less than 9 g/dl or a random serum cortisol level below 10 g/dl.

One group was treated intravenously with 50 mg hydrocortisone every 6 hours, while another group was treated with placebo (salt of the same volume) for 7 days. Then, 28 days of concussion and mortality were determined in both groups. Hydrocortisone response is not required for the treatment of vasopressor for at least 6 hours in patients diagnosed with septic shock.

The data was analyzed using SPSS version 16. The T test is used to compare variables that are typically deployed. In terms of quality variables, a Chi-square test or a Fisher test was conducted. Spearman's correlation was used to compare two abnormal quantitative variables. The P value is considered to be <0.05 statistically significant.

RESULTS:

As shown in figure (Table 1), the distribution of key properties was normal. The most common subsection in the intervention group were lung disease and diabetes in the control group. The less common disease belonged to liver diseases in the control and intervention groups. Diabetes is usually the most common underlying disease (40%). Lung diseases were chronic obstructive pulmonary disease (COPD) and interstitial lung disease (EDE). Neurological diseases include patients with stroke and cerebral palsy and epilepsy treatment.

The results in the intervention and control groups are shown in Table 2. Mortality according to the disease highlighted in the intervention group and the control group is shown in Table 3.

Basic characteristic	Intervention group	Control group	Р
Gender, No. (%)			0.749
Male	47 (58.8)	33 (41.3)	
Female	45 (56.3)	35 (43.8)	
Mean age	67.13±10.92	66.93 ±11.24	0.909
Response to cosyntropin test, No. (%)	44 (55)	42 (52.5)	0.751
Underline disease, No. (%)			
Pulmonary disease	33 (41.33)	28 (35)	0.416
Hypertension	22 (27.5)	18 (22.5)	0.465
Diabetes	32 (40)	32 (40)	>0.99
Renal failure	17 (21.3)	16 (20)	0.845
Malignancy	24 (30)	28 (35)	0.500
Heart failure	26 (32.5)	24 (30)	0.733
Neurologic disease	10 (12.5)	10 (12.5)	>0.99
Liver failure	7 (8.8)	9 (11.3)	0.598

 Table 2. Outcome in intervention and control groups

Int Outcome	Intervention groupControl group		Р
outcome	No. (%)	No. (%)	-
Return of shock	27 (33.8)	20 (25)	0.224
Mortality	54 (67.5)	58 (72.5)	0.490

Table 3. Mortality according to underline disease in intervention group and control group

		Intervention group No. (%)	P value	Control group No. (%)	P value
Pulmonary	Patients with disease 23 (69.7)	0.752	24 (87.5)	0.052	
disease	Patients without disease	31 (66)	0.752	34 (65.4)	0.032
Unpertonsion	Patients with disease	15 (68.2)	0.936	12 (66.7)	0.529
Hypertension	Patients without disease	39 (67.2)	0.930	46 (74.2)	
Diabetes	Patients with disease	28 (87.5)	0.002	30 (93.8)	0.001
Diabetes	Patients without disease	26 (54.2)		28 (58.3)	
Renal failure	Patients with disease	15 (88.2)	0.04	14 (87.5)	0.133
	Patients without disease	39 (61.9)		44 (68.8)	
Malignanov	Patients with disease	19 (66.7)	0.917	19 (67.9)	0.495
Malignancy	Patients without disease	38 (67.9)		39 (75)	
Heart failure	Patients with disease	14 (53.8)	0.07	19 (79.2)	0.382
	Patients without disease	40 (74.1)	0.07	39 (69.6)	
Neurologic	Patients with disease	8 (80)	0.367	7 (70)	0.850
disease	Patients without disease	46 (65.7)		51 (72.9)	
Liver failure	Patients with disease	7 (100)	0.055	8 (88.9)	0.242
Liver failure	Patients without disease	47 (64.4)		50 (70.4)	

Overall, significant differences in mortality were detected in patients with diabetes mellitus and diabetes mellitus (P 0.001), renal insufficiency (P - 0.012) and hepatic impairment (P - 0.029) (Table 4).

	able 4. Monanty according to undernice	Total patients	Р	
Pulmonary disease	Patients with disease	47 (77)	0.127	
	Patients without disease	65 (65.7)		
	Patients with disease	27 (67.5)	0.000	
Hypertension	Patients without disease	85 (70.8)	0.690	
Dishatas	Patients with disease	58 (90.6)	0.000	
Diabetes	Patients without disease	54 (56.3)	0.000	
Renal failure	Patients with disease	29 (87.9)	0.012	
	Patients without disease	83 (65.4)	0.012	
Malignancy	Patients with disease	35 (67.3)	0.606	
	Patients without disease	77 (71.3)		
Heart failure	Patients with disease	33 (66)	0.457	
	Patients without disease	79 (71.8)		
Neurologic disease	Patients with disease	15 (75)	0.602	
	Patients without disease	97 (69.3)		
Liver failure	Patients with disease	15 (93.8)	0.029	
Liver failure	Patients without disease	97 (67.4)		

Table 4. Mortality according to underline disease in total patients

Both groups found a statistically significant difference in patients with diabetes and diabetes. There was also a significant difference in the intervention group with renal insufficiency (P-0.04). Significant mortality was higher in patients with renal insufficiency in the hydrocortisone area (Table 3).

DISCUSSION:

In this study, we found no significant difference in 28-day mortality and 7-day shock return in the intervention and control groups. In a 2014 metaanalyze in China, 28 days of mortality was not significantly different from hydrocortisone. In both groups, the return of the shock within 7 days was significant (P <0.0001). This meta-analysis also looked at secondary infection caused by hydrocortisone. In this study, hyperglycemia was significant in two groups. In the 2012 system review, a statistically significant reduction in mortality in the intervention group was observed. The return of the concussion rate had no significant difference. However, the recovery time was much different (3.3 to 5.8 days). In these articles the patient received a hydrocortisone point was a new septic shock. In 2008, 50 mg of hydrocortisone was used every 6 hours in RCT. Mortality was 3% higher in the hydrocortisone group, but there was no significant difference. In response to the cosyntropin test, the mortality rate in unanswered subgroups was no different. The rate of shock return in both groups did not differ significantly. But in the hydrocortisone group, the return of the shock occurred faster. Mortality varied significantly in patients with refractory septic shock and low doses of hydrocortisone. A retrospective septic shock-resistant study found that basal cortisol levels were associated with higher mortality rates of 55 to 28% of the day's mortality, and that the response to the cosyntropin test was not related to the outcome. In the latest version of the international guidelines for severe sepsis and

septic shock management, there is no suggestion of the use of septic shock hydrocortisone. Vasopressors are recommended only for hydrocortisone when resistant (level 2c).

In previous studies, the type of steroid (methylprednisolone and hydrocortisone) and the method of use (infusion against split dose) did not alter prognosis and mortality. In a study conducted China, slow intravenous infusion in of hydrocortisone was compared with continuous intravenous infusion. Continuous intravenous infusion has been shown to maintain metabolic balance and blood sugar levels. But there was no significant difference in 28-day mortality. Recent studies show that low doses of hydrocortisone can reduce good response and morbidity in patients with acute respiratory distress syndrome or community-acquired pneumonia or pneumonia. Some studies have considered the source of infection and achieved mortality according to the source. Low-dose corticosteroid treatment was associated with reduced mortality in patients with refractory septic shock after sudden laparotomy with lower intestinal perforation. In patients with severe pneumonia born in the community, the use of methylsolone decreased compared to the placebo group. Perhaps the classification of septic shock depending on the source of infection and steroid use may have better consequences.

In our study, mortality was 70%. Mortality in the hydrocortisone group was slightly lower, but was not significant (compared to 67.5%). The rate of

return was higher in the venture group (compared from 33.8% to 25%). This difference did not matter. In patients receiving hydrocortisone, the response rate to the cosyntropin test was higher, but it made no sense.

studies have Some taken into account complications of hydrocortisone, such as gastrointestinal bleeding, a new infection, hyperglycemia and hypernatremia. In our study, we investigated underlying diseases (Table 3). Lung disease is the most common infrastructure disease in the intervention group, and diabetes in the control group. The least common liver disorder in both groups was. Few studies have considered their relationship to disease and death. A total of 35 articles were evaluated in 2015 as part of a systemic study and meta-investigation. It included 4,682 patients and had no link between steroid dosages and mortality. Death in patients with diabetes and diabetes has changed significantly. It can be concluded that patients with septic shock had the worst prognosis. Mortality was significant in patients with renal insufficiency and without renal failure. A statistically significant difference in mortality was detected in patients with renal insufficiency in the intervention group. In a patient with impaired renal function with this septic shock, it can be concluded that hydrocortisone is not enough. More work is needed to determine the role of the disease, which highlights the prognosis of septic shocks.

CONCLUSION:

Despite numerous studies conducted in different parts of the world, different results were achieved (mortality, return of the shock rate and shock time). This diversity can be attributed to high heterogeneity groups. It is recommended that future studies consider the source of the disease or infection and evaluate the indicators in different groups.

REFERENCES:

- 1. Irene, Coloretti, Biagioni Emanuela, Venturelli Sophie, Munari Elena, Martina Tosi, Roat Erika, Brugioni Lucio, Gelmini Roberta, Venturelli Claudia, and Girardis Massimo. "Adjunctive therapy with vitamin c and thiamine in patients treated with steroids for refractory septic shock: A propensity matched before-after, case-control study." *Journal of Critical Care* (2020).
- Pourmand, Ali, Tess Whiteside, David Yamane, Amir Rashed, and Maryann Mazer-Amirshahi. "The controversial role of corticosteroids in septic shock." *The American journal of emergency medicine* 37, no. 7 (2019): 1353-1361.

- 3. Wu, Jing, Man Huang, QianWen Wang, Yuefeng Ma, and Libing Jiang. "Effects and safety of separate low-dose hydrocortisone use in patients with septic shock: A metaanalysis." *Hong Kong Journal of Emergency Medicine* 27, no. 1 (2020): 39-50.
- 4. Tilouche, Nejla, Oussama Jaoued, Habiba Ben Sik Ali, Rim Gharbi, Mohamed Fekih Hassen, and Souheil Elatrous. "Comparison between continuous and intermittent administration of hydrocortisone during septic shock: a randomized controlled clinical trial." *Shock* 52, no. 5 (2019): 481-486.
- Long, Miccth T., Mark A. Frommelt, Michael P. Ries, Melissa Murray, Fauzia Osman, Bryan M. Krause, and Pierre Korv. "Early hydrocortisone, ascorbate and thiamine therapy for severe septic shock." *Critical Care & Shock* 23, no. 1 (2020).
- Lian, X-J., D-Z. Huang, Y-S. Cao, Y-X. Wei, Z-Z. Lian, T-H. Qin, P-C. He, Y-H. Liu, and S-H. Wang. "Reevaluating the role of corticosteroids in septic shock: an updated meta-analysis of randomized controlled trials." *BioMed research international* 2019 (2019).
- Siddiqui, Waqas J., Praneet Iyer, Ghulam Aftab, Fnu Zafrullah, Muhammad A. Zain, Kadambari Jethwani, Rabia Mazhar et al. "Hydrocortisone Reduces 28-day Mortality in Septic Patients: A Systemic Review and Metaanalysis." *Cureus* 11, no. 6 (2019).
- 8. Henriques, Anthony. "The Impact of Corticosteroids on Mortality in Adult Patients with Septic Shock." (2019).
- Haddadi, Ahmed, Mohamed Lemdani, and Karim Laribi. "Efficacy of corticosteroids for the treatment of septic shock." *Anaesthesia*, *Pain & Intensive Care* (2019): 488-502.
- Annane, Djillali. "Why my steroid trials in septic shock were "Positive"." *Read Online: Critical Care Medicine/ Society of Critical Care Medicine* 47, no. 12 (2019): 1789-1793.
- 11. Yerke, Jason, Kyle Strnad, and Seth R. Bauer. "Corticosteroids for Septic Shock: Another Chapter in the Saga." *Hospital Pharmacy* 55, no. 2 (2020): 135-142.
- 12. Rashed, Amir, and Maryann Mazer-Amirshahi. "The controversial role of corticosteroids in septic shock." (2019).
- Vu, Trenton, Meghna Vallabh, and Greg Laine. "Adrenal Insufficiency and Response to Stress Dose Hydrocortisone in Patients With Cirrhosis and Vasopressor Dependency Using Cirrhosis-Specific Cortisol Thresholds." Annals of Pharmacotherapy (2020): 1060028019900266.
- 14. Shin, Tae Gun, Youn-Jung Kim, Seung Mok Ryoo, Sung Yeon Hwang, Ik Joon Jo, Sung Phil Chung, Sung-Hyuk Choi, Gil Joon Suh,

and Won Young Kim. "Early vitamin C and thiamine administration to patients with septic shock in emergency departments: Propensity score-based analysis of a before-and-after cohort study." *Journal of clinical medicine* 8, no. 1 (2019): 102.

15. Sacha, Gretchen L., Seth R. Bauer, and Ishaq Lat. "Vasoactive Agent Use in Septic Shock: Beyond First-Line Recommendations." *Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy* 39, no. 3 (2019): 369-381.