
In-memory hyperdimensional computing
Geethan Karunaratne,1, 2 Manuel Le Gallo,1 Giovanni Cherubini,1 Luca Benini,2 Abbas Rahimi,2, a) and Abu
Sebastian1, b)
1)IBM Research – Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
2)Department of Information Technology and Electrical Engineering, ETH Zürich, Gloriastrasse 35, 8092 Zürich,
Switzerland.

(Dated: 25 March 2020)

Hyperdimensional computing is an emerging computational framework that takes inspiration from attributes of neu-
ronal circuits including hyperdimensionality, fully distributed holographic representation, and (pseudo)randomness.
When employed for machine learning tasks, such as learning and classification, the framework involves manipulation
and comparison of large patterns within memory. A key attribute of hyperdimensional computing is its robustness to
the imperfections associated with the computational substrates on which it is implemented. It is therefore particularly
amenable to emerging non-von Neumann approaches such as in-memory computing, where the physical attributes of
nanoscale memristive devices are exploited to perform computation. Here, we report a complete in-memory hyper-
dimensional computing system in which all operations are implemented on two memristive crossbar engines together
with peripheral digital complementary metal–oxide–semiconductor (CMOS) circuits. Our approach can achieve a near-
optimum trade-off between design complexity and classification accuracy based on three prototypical hyperdimensional
computing related learning tasks: language classification, news classification, and hand gesture recognition from elec-
tromyography signals. Experiments using 760,000 phase-change memory devices performing analogue in-memory
computing achieve comparable accuracies to software implementations.

I. INTRODUCTION

Biological computing systems trade accuracy for efficiency. Thus, one solution to reduce energy consumption in artificial
systems is to adopt computational approaches that are inherently robust to uncertainty. Hyperdimensional computing (HDC)
is one such framework and is based on the observation that key aspects of human memory, perception, and cognition can be
explained by the mathematical properties of hyperdimensional spaces comprising high dimensional binary vectors known as
hypervectors. Hypervectors are defined as d-dimensional (where d ≥ 1000) (pseudo)random vectors with independent and
identically distributed (i.i.d.) components1. When the dimensionality is in the thousands, a large number of quasiorthogonal
hypervectors exist. This allows HDC to combine such hypervectors into new hypervectors using well-defined vector space
operations, defined such that the resulting hypervector is unique, and with the same dimension. A powerful system of computing
can be built on the rich algebra of hypervectors2. Groups, rings, and fields over hypervectors become the underlying computing
structures with permutations, mappings, and inverses as primitive computing operations.

In recent years, HDC has been employed in a range of applications, including machine learning, cognitive computing, robotics
and traditional computing. It has shown significant promise in machine learning applications that involve temporal patterns such
as text classification3, biomedical signal processing4,5, multimodal sensor fusion6 and distributed sensors7,8. A key advantage is
that the training algorithm in HDC works in one or few shots: that is, object categories are learned from one or few examples,
and in a single pass over the training data as opposed to many iterations. In the highlighted machine learning applications,
HDC has achieved similar or higher accuracy with fewer training examples compared to support vector machine (SVM)4,
extreme gradient boosting9, and convolutional neural network (CNN)10, and lower execution energy on embedded CPU/GPU
compared to SVM11, CNN and long short-term memory5. Applications of HDC in cognitive computing include solving Raven’s
progressive matrices12, functional imitation of concept learning in honey bees13 and analogical reasoning14. In the field of
robotics, HDC has been employed for learning sensorimotor control for active perception in robots10. In traditional forms of
computing, HDC has been proposed for efficient representation of structured information15 as well as the synthesis and execution
of finite state automata16 and variants of recurrent neural networks17.

HDC begins by representing symbols with i.i.d. hypervectors that are combined by nearly i.i.d.-preserving operations, namely
binding, bundling, and permutation, and then stored in associative memories to be recalled, matched, decomposed, or reasoned
about. This chain implies that failure in a component of a hypervector is not contagious and forms a computational framework
that is intrinsically robust to defects, variations, and noise18. The manipulation of large patterns stored in memory and the
inherent robustness make HDC particularly well suited to emerging computing paradigms such as in-memory computing or
computational memory based on emerging nanoscale resistive memory or memristive devices19–22. In one such work, 3D

a)Electronic mail: abbas@ee.ethz.ch
b)Electronic mail: ase@zurich.ibm.com

2

vertical resistive random access memory (ReRAM) device was used to perform individual operations for HDC23,24. In another
work, a carbon nanotube field-effect transistor based logic layer was integrated with ReRAMs, improving efficiency further25.
However, these architectures offered only limited applications such as a single language recognition task23,25, or a restricted
binary classification version of the same task25; their evaluation is based on simulations and compact models derived from small
prototypes with only 256 ReRAM cells23, or a small 32-bit datapath for hypervector manipulations that results in three orders of
magnitude higher latency overhead25.

In this Article, we report a complete integrated in-memory HDC system in which all the operations of HDC are implemented
on two planar memristive crossbar engines together with peripheral digital CMOS circuits. We devise a way of performing hy-
pervector binding entirely within a first memristive crossbar using an in-memory read logic operation and hypervector bundling
near the crossbar with CMOS logic. These key operations of HDC co-operatively encode hypervectors with high precision,
while eliminating the need to repeatedly program (write) the memristive devices. In contrast, prior work on HDC using mem-
ristive devices did not employ in-memory logic operations for binding, instead a ReRAM-based XOR lookup table23 or digital
logic25 was used. Moreover, the prior in-memory compute primitives for permutation23 and bundling25 resulted in repeated
programming of the memristive devices, which is prohibitive given the limited cycling endurance.

In our architecture, associative memory search is performed using a second memristive crossbar for in-memory dot product
operations on the encoded output hypervectors from the first crossbar, realizing the full HDC system functionality. Our com-
bination of analogue in-memory computing with CMOS logic allows continual functioning of the memristive crossbars with
desired accuracy for a wide range of multiclass classification tasks. We verify the integrated inference functionality of the
system through large-scale mixed hardware/software experiments in which up to 49 d = 10,000-dimensional hypervectors are
encoded in 760,000 hardware phase-change memory (PCM) devices performing analogue in-memory computing. Our experi-
ments achieve comparable accuracies to the software baselines and surpass those reported in previous work on an emulated small
ReRAM crossbar23. Furthermore, a complete system-level design of the in-memory HDC architecture synthesized using 65 nm
CMOS technology demonstrates > 6× end-to-end reductions in energy compared with a dedicated digital CMOS implementa-
tion. With our approach, we map all operations of HDC either in-memory, or near-memory, and demonstrate their integrated
functionality for three specific machine learning related tasks.

II. THE CONCEPT OF IN-MEMORY HDC

When HDC is used for learning and classification, first, a set of i.i.d., hence quasiorthogonal hypervectors, referred to as
basis hypervectors, are selected to represent each symbol associated with a dataset. For example, if the task is to classify an
unknown text into the corresponding language, the symbols could be the letters of the alphabet. The basis hypervectors stay fixed
throughout the computation. Assuming that there are h symbols, {si}h

1, the set of the h, d-dimensional basis hypervectors {Bi}h
1

is referred to as the item memory (IM) (see Fig. 1). Basis hypervectors serve as the basis from which further representations
are made by applying a well-defined set of component-wise operations: addition of binary hypervectors [+] is defined as the
component-wise majority, multiplication (⊕) is defined as the component-wise exclusive-OR (or equivalently as the component-
wise exclusive-NOR), and finally permutation (ρ) is defined as a pseudo-random shuffling of the coordinates. Applied on dense
binary hypervectors where each component has equal probability of being zero or one26, all these operations produce a d-bit
hypervector resulting in a closed system.

Subsequently, during the learning phase, the basis hypervectors in the IM are combined with the component-wise operations
inside an encoder to compute for instance a quasiorthogonal n-gram hypervector representing an object of interest27; and to
add n-gram hypervectors from the same category of objects to produce a prototype hypervector representing the entire class of
category. In the language example, the encoder would receive input text associated with a known language and would generate
a prototype hypervector corresponding to that language. In this case, n determines the smallest number of symbols (letters in the
example) that are combined while performing an n-gram encoding operation. When the encoder receives n consecutive symbols,
{s[1],s[2], . . . ,s[n]}, it produces an n-gram hypervector through a binding operation given by

G(s[1],s[2], . . . ,s[n]) = B[1]⊕ρ(B[2])⊕ . . .⊕ρ
n−1(B[n]), (1)

where B[k] corresponds to the associated basis hypervector for symbol, s[k]. The operator⊕ denotes the exclusive-NOR (XNOR),
and ρ denotes a pseudo-random permutation operation, e.g., a circular shift by 1 bit. The encoder then bundles several such
n-gram hypervectors from the training data using component-wise addition followed by a binarization (majority function) to
produce a prototype hypervector for the given class. The overall encoding operation results in c, d-dimensional prototype
hypervectors (referred to as associative memory (AM)) assuming there are c classes.

When inference or classification is performed, a query hypervector (e.g. from a text of unknown language) is generated iden-
tical to the way the prototype hypervectors are generated. Subsequently, the query hypervector is compared with the prototype
hypervectors inside the AM to make the appropriate classification. Equation 2 defines how a query hypervector Q is compared
against each of the prototype hypervector Pi out of c classes to find the predicted class with maximum similarity. This AM search

3

operation can for example be performed by calculating the inverse Hamming distance.

ClassPred = argmax
i∈{1,...,c}

d

∑
j=1

Q(j)⊕Pi(j) (2)

One key observation is that the two main operations presented above, namely, the encoding and AM search, are about manip-
ulating and comparing large patterns within the memory. Both IM and AM (after learning) represent permanent hypervectors
stored in the memory. As a lookup operation, different input symbols activate the corresponding stored patterns in the IM that are
then combined inside or around memory with simple local operations to produce another pattern for comparison in AM. These
component-wise arithmetic operations on patterns allow a high degree of parallelism as each hypervector component needs to
communicate with only a local component or its immediate neighbors. This highly memory-centric aspect of HDC is the key
motivation for the in-memory computing implementation proposed in this work.

The essential idea of in-memory HDC is to store the components of both the IM and the AM as the conductance values
of nanoscale memristive devices28,29 organized in crossbar arrays and enable HDC operations in or near to those devices (see
Fig. 1). The IM of h rows and d columns is stored in the first crossbar, where each basis hypervector is stored on a single row. To
perform ⊕ operations between the basis hypervectors for the n-gram encoding, an in-memory read logic primitive is employed.
Unlike the majority of reported in-memory logic operations30–32, the proposed in-memory read logic is non-stateful and this
obviates the need for high write endurance of the memristive devices. Additional peripheral circuitry is used to implement the
remaining permutations and component-wise additions needed in the encoder. The AM of c rows and d columns is implemented
in the second crossbar, where each prototype hypervector is stored on a single row. During supervised learning, each prototype
hypervector output from the first crossbar gets programmed into a certain row of the AM based on the provided label. During
inference, the query hypervector output from the first crossbar is input as voltages on the wordline driver, to perform the AM
search using an in-memory dot product primitive. Since every memristive device in the AM and IM is reprogrammable, the
representation of hypervectors is not hardcoded, as opposed to Refs. 23–25 that used device variability for projection.

This design ideally fits the memory-centric architecture of HDC, because it allows to perform the main computations on the
IM and AM within the memory units with a high degree of parallelism. Furthermore, the IM and AM are only programmed once
while training on a specific dataset, and the two types of in-memory computations that are employed involve just read operations.
Therefore, non-volatile memristive devices are very well suited for implementing the IM and AM, and only binary conductance
states are required. In this work, we used PCM technology33,34, which operates by switching a phase-change material between
amorphous (high resistivity) and crystalline (low resistivity) phases to implement binary data storage (see Methods). PCM
has also been successfully employed in novel computing paradigms such as neuromorphic computing35–38 and computational
memory20,22,39,40, which makes it a good candidate for realizing the in-memory HDC system.

In the remaining part of the paper, we will elaborate the detailed designs of the associative memory, the encoder, and finally
propose a complete in-memory HDC system that achieves a near-optimum trade-off between design complexity and output
accuracy. The functionality of the in-memory HDC system will be validated through experiments using a prototype PCM chip
fabricated in 90 nm CMOS technology (see Methods), and a complete system-level design implemented using 65 nm CMOS
technology will be presented.

III. THE ASSOCIATIVE MEMORY SEARCH MODULE

Classification involves an AM search between the prototype hypervectors and the query hypervector using a suitable simi-
larity metric, such as the inverse Hamming distance (invHamm) computed from Equation (2). Using associativity of addition
operations, the expression in Equation (2) can be decomposed into the addition of two dot product terms as shown in Equation (3)

ClassPred = argmax
i∈{1,...,c}

Q ·Pi +Q ·Pi (3)

w argmax
i∈{1,...,c}

Q ·Pi

where Q denotes the logical complement of Q. Since the operations associated with HDC ensure that both the query and
prototype hypervectors have an almost equal number of zeros and ones, the dot product (dot p) argmaxi∈{1,...,c}Q ·Pi can also
serve as a viable similarity metric.

To compute the invHamm similarity metric, two memristive crossbar arrays of c rows and d columns are required as shown
in Fig. 2a. The prototype hypervectors, Pi, are programmed into one of the crossbar arrays as conductance states. Binary
‘1’ components are programmed as crystalline states and binary ‘0’ components are programmed as amorphous states. The
complementary hypervectors Pi are programmed in a similar manner into the second crossbar array. The query hypervector Q
and its complement Q are applied as voltage values along the wordlines of the respective crossbars. In accordance with the
Kirchoff’s current law, the total current on the ith bitline will be equal to the dot-product between query hypervector and ith

4

prototype hypervector. The results of this in-memory dot-product operations from the two arrays are added in a pairwise manner
using a digital adder circuitry in the periphery and are subsequently input to a winner-take-all (WTA) circuit which outputs a ‘1’
only on the bitline corresponding to the class of maximum similarity value. When dot p similarity metric is considered, only the
crossbar encoding Pi is used and the array of adders in the periphery is eliminated, resulting in reduced hardware complexity.

Experiments were performed using a prototype PCM chip to evaluate the effectiveness of the proposed implementation on
three common HDC benchmarks: language classification, news classification, and hand gesture recognition from electromyo-
graphy (EMG) signals (see Methods). These tasks demand a generic programmable architecture to support different number
of inputs, classes, and data types (see Methods). In those experiments, the prototype hypervectors (and their complements) are
learned beforehand in software, and are then programmed into the PCM devices on the chip. Inference is then performed with a
software encoder and using Equation (3) for the associative memory search, in which all multiplication operations are performed
in the analog domain (by exploiting the Ohm’s law) on-chip and the remaining operations are implemented in software (see
Methods and Supplementary Note I). The software encoder was employed to precisely assess the performance and accuracy of
the associative memory search alone when implemented in hardware. The in-memory encoding scheme and its experimental
validation will be presented in Sections IV and V.

While HDC is remarkably robust to random variability and device failures, deterministic spatial variations in the conductance
values could pose a challenge. Unfortunately, in our prototype PCM chip, the conductance values associated with the crystalline
state do exhibit a deterministic spatial variation (see Supplementary Note II). However, given the holographic nature of the
hypervectors, this can be easily addressed by a random partitioning approach. We employed a coarse grained randomization
strategy where the idea is to segment the prototype hypervector and to place the resulting segments spatially distributed across
the crossbar array (see Fig. 2b). This helps all the components of prototype hypervectors to uniformly mitigate long range
variations. The proposed strategy involves dividing the crossbar array into f equal sized partitions (r1,r2,...,r f) and storing a 1/ f
segment of each of the prototype hypervectors (P1,P2,...,Pc) per partition. Here f is called the ‘partition factor’ and it controls
the granularity associated with the randomization. To match the segments of prototype hypervectors, the query vector is also
split into equal sized subvectors Q1,Q2,...,Q f which are input sequentially to the wordline drivers of the crossbar.

A statistical model that captures the spatio-temporal conductivity variations was used to evaluate the effectiveness of the
coarse-grained randomized partitioning method (see Supplementary Note II). Simulations were carried out for different partition
factors 1, 2 and 10 for the two similarity metrics dotp and invHamm as shown in Fig 2c. These results indicate that the
classification accuracy increases with the number of partitions. For instance, for language classification, the accuracy improves
from 82.5% to 96% with dopt by randomizing with a partition factor of 10 instead of 1. The experimental on-chip accuracy
(performed with a partition factor of 10) is close to the 10-partition simulation result and the software baseline for both similarity
metrics on all three datasets. When the two similarity metrics are compared, invHamm provides slightly better accuracy for the
same partition size, at the expense of almost doubled area and energy consumption. Therefore, for low-power applications, a
good trade-off is the use of dotp similarity metric with a partition factor of 10.

IV. THE N-GRAM ENCODING MODULE

In this section, we will focus on the design of the n-gram encoding module. As described in Section II, one of the key
operations associated with the encoder is the calculation of the n-gram hypervector given by Equation (1). In order to find
in-memory hardware friendly operations, Equation (1) is re-written as the component-wise summation of 2n−1 minterms given
by Equation (4).

G =
2n−1−1∨

j=0

L1, j(B[1])∧ρ(L2, j(B[2]))∧ . . .∧ρ
n−1(Ln, j(B[n])) (4)

The operator Lk, j is given by

Lk, j(B[k]) = B[k] if (−1)Z(k, j) = 1

= B[k] otherwise,

where Z(k, j) = b 1
2k (2 j+2k−1)c, k ∈ {1,2, ...,n} is the item hypervector index within an n-gram and j ∈

{
0,1, ...,2n−1−1

}
is

used to index minterms. The representation given by Equation (4) can be mapped into memristive crossbar arrays where bitwise
AND (∧) function can be realized using an in-memory read logic operation. However the number of minterms (2n−1−1) rises
exponentially with the size n of the n-gram, making the hardware computations costly. Therefore, it is desirable to reduce the
number of minterms and to use a fixed number of minterms independent of n.

Based on Equation (4), we empirically obtained a 2-minterm encoding function for calculating the n-gram hypervector given
by

Ĝ = (B[1]∧ρ(B[2])∧ . . .ρn−1(B[n]))∨ (B[1]∧ρ(B[2])∧ . . .ρn−1(B[n])) (5)

5

Encoding based on Ĝ shows mostly functional equivalence with the ideal XNOR-based encoding scheme in certain key attributes
such as similarity between the basis and prototype hypervectors (see Supplementary Note III). A schematic illustration of the
corresponding n-gram encoding system is presented in Fig. (3a). The basis hypervectors are programmed on one of the cross-
bars and their complement vectors are programmed on the second. The component-wise logical AND operation between two
hypervectors in Equation (5) is realized in-memory by applying one of the hypervectors as the gate control lines of the crossbar,
while selecting the wordline of the second hypervector. The result of the AND function from the crossbar is passed through
an array of sense amplifiers (SA) to convert the analog values to binary values. The binary result is then stored in the minterm
buffer, whose output is fed back as the gate controls by a single component shift to the right (left in the complementary crossbar).
This operation approximates the permutation operation in Equation (5) as a 1-bit right-shift instead of a circular 1-bit shift. By
performing these operations n times, it is possible to generate the n-gram. After n-gram encoding, the generated n-grams are
accumulated and binarized with a threshold that depends on n (the details are presented in the Methods section).

To test the effectiveness of the encoding scheme with in-memory computing, simulations were carried out using the PCM
statistical model. The training was performed in software with the same encoding technique used thereafter for inference, and
both the encoder and AM were implemented with modeled PCM crossbars for inference. The simulations were performed only
on the language and news classification datasets, because for the EMG dataset the hypervectors used for the n-gram encoding
are generated by a spatial encoding process and cannot be mapped entirely into a fixed IM of reasonable size. From the results
presented in Fig. 3b, it is clear that the all-minterm approach to encoding provides the best classification accuracy in most con-
figurations of AM as expected. However, the 2-minterm based encoding method yields a stable and in some cases, particularly
in language dataset, similar accuracy level to that of the all-minterm approach, while significantly reducing the hardware com-
plexity. One of the perceived drawbacks of the 2-minterm approach is the increasing sparsity of the n-gram hypervectors with
n. However, it can be shown that the dot-product similarity between the prototype hypervectors and hence the classification
accuracy remain relatively unchanged due to the thresholding operation that depends on n (see Supplementary Note IV).

V. THE COMPLETE IN-MEMORY HDC SYSTEM

In this section the complete HDC system and the associated experimental results are presented. The proposed architecture
comprises the 2-minterm encoder and dotp similarity metric with a partition factor of 10 as this provides the best trade off
between classification accuracy and hardware complexity (see Supplementary note III). As shown in Fig. 4a, the proposed
architecture has three PCM crossbar arrays—two having h rows and d columns, and one having c · f rows and d/ f columns,
with f = 10.

The system includes several peripheral circuits: an index buffer, a minterm buffer, and a bundler which reside inside the
encoder, whereas the AM search module contains a sum buffer and a comparator circuit. The index buffer is located at the input
of the IM to keep the indices of the symbols in the sequence and to feed them into the crossbar rows. The bundler accumulates
the n-gram hypervectors to produce a sum hypervector. Once the threshold is applied on the sum hypervector, the result is
a prototype hypervector during training or a query hypervector during inference. The controller inside the encoder module
generates control signals according to the n-gram size and the length of the query sequence to allow different configurations of
the encoder. During inference, one segment of the query hypervector at the output buffer of the encoder is fed at a time to the
AM through an array of multiplexers so that only the corresponding partition is activated in the AM. Depending on the partition
that is selected, the relevant gates are activated through a controller sitting inside the AM search module. Finally the results in
the sum buffer are sent through a WTA circuitry to find the maximum index which provides the prediction.

To experimentally validate the functionality of the complete in-memory HDC architecture, we chose to implement the infer-
ence operation which comprises both encoding (to generate the query hypervectors) and associative memory search. For faster
experiments, we trained our HDC model in software using the 2-minterm approximate encoding method described in Section
IV, that could be performed as well with our proposed in-memory HDC architecture. This software generates the hypervec-
tors for AM from a given dataset. Subsequently, the components of all hypervectors of both IM and AM were programmed
on individual hardware PCM devices, and the inference operation was implemented leveraging the two in-memory computing
primitives (for both 2-minterm encoding and AM search) using the prototype PCM chip (see Methods and Supplementary Note
I). Fig. 4b summarizes the accuracy results with software, the PCM statistical model, and on-chip experiment, for the language
and news classification benchmarks. Compared with the previous experiment where only AM was contained on-chip, the full
chip experiment results show a similar accuracy level, indicating the minimal effect on accuracy when porting the IM into PCM
devices with in-memory n-gram encoding. Furthermore, the accuracy level reported in this experiment is close to the accuracy
reported with the software for the same parametric configuration of the HD inference model.

Finally, to benchmark the performance of the system in terms of energy consumption, the digital submodules in the system-
level architecture (marked with dotted boundaries in Fig. 4a) that fall outside the PCM crossbars arrays were synthesized using
65 nm CMOS technology. The synthesis results of these modules were combined with the performance characteristics of PCM
crossbar arrays to evaluate the energy, area and throughput of the full system (see Methods). Furthermore, PCM crossbar sections
were implemented in CMOS distributed standard cell registers with associated multiplier-adder tree logic and binding logic for

6

AM and IM, respectively, to construct a complete CMOS HD processor to compare with the proposed PCM crossbar based
architecture.

A comparison of the performance between all-CMOS approach versus the PCM crossbar based approach is presented in
Table I. A 6.01× improvement in total energy efficiency and 3.74× reduction in area is obtained with the introduction of the
PCM crossbar modules. The encoder’s energy expense for processing a query reduces by a factor of 3.50 with the PCM crossbar
implementation whereas that of the AM search module reduces by a factor of 117.5. However, these efficiency factors are
partially masked by the CMOS peripheral circuitry that is common to both implementations, specifically that in the encoder
module which accounts for the majority of its energy consumption. When peripheral circuits are ignored and only the parts of
the design that are exclusive to each approach are directly compared to each other, 14.4× and 334× energy savings and 24.5×
and 31.9× area savings are obtained for the encoder and AM search module, respectively. It remains part of the future work to
investigate methods in which peripheral modules are designed more energy efficiently so that the overall system efficiency can
be improved further.

VI. CONCLUSIONS

HDC is a brain-inspired computational framework that is particularly well-suited for the emerging computational paradigm of
in-memory computing. We have reported a complete in-memory HDC system whose two main components are an encoder and
an associative memory search engine. The main computations are performed in-memory with logical and dot product operations
on memristive devices. Due to the inherent robustness of HDC to errors, it was possible to approximate the mathematical opera-
tions associated with HDC to make it suitable for hardware implementation, and to use analogue in-memory computing without
significantly degrading the output accuracy. Our architecture is programmable to support different hypervector representations,
dimensionality, number of input symbols and of output classes to accommodate a variety of applications.

Hardware/software experiments using a prototype PCM chip delivered accuracies comparable to software baselines on lan-
guage and news classification benchmarks with 10,000-dimensional hypervectors. These experiments used hardware PCM
devices to implement both in-memory encoding and associative memory search, thus demonstrating the hardware functionality
of all the operations involved in a generic HDC processor for learning and inference. A comparative study performed against
a system-level design implemented using 65 nm CMOS technology showed that the in-memory HDC approach could result in
> 6× end-to-end savings in energy. By designing more energy-efficient peripheral circuits and with the potential of scaling PCM
devices to nanoscale dimensions41, these gains could increase several fold. The in-memory HDC concept is also applicable to
other types of memristive devices based on ionic drift42 and magnetoresistance43. Future work will focus on taking in-memory
HDC beyond learning and classification to perform advanced cognitive tasks alongside with data compression and retrieval on
dense storage devices, as well as building more power efficient peripheral hardware to harness the best of in-memory computing.

7

METHODS

PCM-based hardware platform

The experimental hardware platform is built around a prototype phase-change memory (PCM) chip that contains PCM cells that are based
on doped-Ge2Sb2Te5 (d-GST) and are integrated into the prototype chip in 90 nm CMOS baseline technology. In addition to the PCM cells,
the prototype chip integrates the circuitry for cell addressing, on-chip ADC for cell readout, and voltage- or current-mode cell programming.
The experimental platform comprises the following main units:

• a high-performance analog-front-end (AFE) board that contains the digital-to-analog converters (DACs) along with discrete electronics,
such as power supplies, voltage, and current reference sources,

• an FPGA board that implements the data acquisition and the digital logic to interface with the PCM device under test and with all the
electronics of the AFE board, and

• a second FPGA board with an embedded processor and Ethernet connection that implements the overall system control and data
management as well as the interface with the host computer.

The prototype chip44 contains 3 million PCM cells, and the CMOS circuitry to address, program and readout any of these 3 million cells. In
the PCM devices used for experimentation, two 240 nm-wide access transistors are used in parallel per PCM element (cell size is 50 F2). The
PCM array is organized as a matrix of 512 word lines (WL) and 2048 bit lines (BL). The PCM cells were integrated into the chip in 90 nm
CMOS technology using the key-hole process 45. The bottom electrode has a radius of ∼ 20 nm and a length of ∼ 65 nm. The phase change
material is ∼ 100 nm thick and extends to the top electrode, whose radius is ∼ 100 nm. The selection of one PCM cell is done by serially
addressing a WL and a BL. The addresses are decoded and they then drive the WL driver and the BL multiplexer. The single selected cell can
be programmed by forcing a current through the BL with a voltage-controlled current source. It can also be read by an 8-bit on-chip ADC.
For reading a PCM cell, the selected BL is biased to a constant voltage of 300 mV by a voltage regulator via a voltage Vread generated via an
off-chip DAC. The sensed current, Iread, is integrated by a capacitor, and the resulting voltage is then digitized by the on-chip 8-bit cyclic ADC.
The total time of one read is 1 µs. For programming a PCM cell, a voltage Vprog generated off-chip is converted on-chip into a programming
current, Iprog. This current is then mirrored into the selected BL for the desired duration of the programming pulse. The pulse used to program
the PCM to the amorphous state (RESET) is a box-type rectangular pulse with duration of 400 ns and amplitude of 450 µA. The pulse used
to program the PCM to the crystalline state (SET) is a ramp-down pulse with total duration of approximately 12 µs. The access-device gate
voltage (WL voltage) is kept high at 2.75 V during the programming pulses. These programming conditions were optimized in order to have
the highest on/off ratio and to minimize device-to-device variability for binary storage.

Datasets to evaluate in-memory HDC

We target three highly relevant learning and classification tasks to evaluate the proposed in-memory HDC architecture. These tasks demand
a generic programmable architecture to support different number of inputs, classes, and data types as shown in Extended Data Table I. In the
following, we describe these tasks that are used to benchmark the performance of in-memory HDC in terms of classification accuracy.

1. Language classification: In this task, HDC is applied to classify raw text composed of Latin characters into their respective language46.
The training texts are taken from the Wortschatz Corpora47 where large numbers of sentences (about a million bytes of text) are available
for 22 European languages. Another independent dataset, Europarl Parallel Corpus48, with 1,000 sentences per language is used as the
test dataset for the classification. The former database is used for training 22 prototype hypervectors for each of the languages while
the latter is used to run inference on the trained HDC model. For the subsequent simulations and experiments with the language dataset
we use dimensionality d= 10,000 and n-gram size n= 4. We use an item memory (IM) of 27 symbols, representing the 26 letters
of the Latin alphabet plus whitespace character. Training is performed using the entire training dataset, containing a labeled text of
120,000–240,000 words per language. For inference, a query is composed of a single sentence of the test dataset, hence in total 1,000
queries per language are used.

2. News classification: The news dataset comprises a database of Reuters news articles, subjected to a light weight pre-processing step,
covering 8 different news genres49. The pre-processing step removes frequent “stop” words and words with less than 3 letters. The
training set has 5400+ documents while the testing set contains 2100+ documents. For the subsequent simulations and experiments
with news dataset we use dimensionality d= 10,000 and n-gram size n= 5, as suggested in Ref. 18. Similar to the language task, we
use an IM of 27 symbols, representing the 26 letters of the Latin alphabet plus whitespace character. Training is performed using the
entire training dataset, where all labeled documents pertaining to the same class are merged into a single text. This merged text contains
8,000–200,000 words per class. For inference, a query is composed of a single document of the test dataset.

3. Hand gesture recognition from Electromyography (EMG) signals: In this task, we focus on use of HDC in a smart prosthetic
application, namely hand gesture recognition from a stream of EMG signals. A database50 that provides EMG samples recorded from
four channels covering the forearm muscles is used for this benchmark. Each channel data is quantized into 22 intensity levels of
electric potential. The sampling frequency of the EMG signal is 500 Hz.
A label is provided for each time sample. The label varies from 1 to 5 corresponding to five classes of performed gestures. This dataset
is used to train an HDC model to detect hand gestures of a single subject. For training on EMG dataset, a spatial encoding scheme is
first employed to fuse data from the four channels so the IM has four discrete symbols, and it is paired with a continuous item memory
to jointly map the 22 intensity levels per channel (the details on encoding procedure for EMG dataset are explained in Supplementary

8

Note V). The pairing of IM and CIM allows a combination of orthogonal mapping with distance proportionality mapping. The spatial
encoding creates one hypervector per time sample.

Then, a temporal encoding step is performed, whereby n consecutive spatially encoded hypervectors are combined into an n-gram. For
the subsequent simulations and experiments with EMG dataset we use dimensionality d= 10,000 and n-gram size n= 5. Training and
inference are performed using the same EMG channel signals from the same subject, but on non-overlapping sections of recording. The
recording used for training contains 1280 time samples after down-sampling by a factor of 175. For inference, 780 queries are generated
from the rest of recording, where each query contains 5 time samples captured with the same down-sampling factor.

For the different tasks, Extended Data Table I provides details on the desired hypervector representations, and different hyperparameters
including the dimension of hypervectors, the alphabet size, the n-gram size, and the number of classes. For EMG dataset, the hypervectors for
the encoding operation are drawn by binding items from a pair of IM and continuous IM (Supplementary Note V). In hardware implementation
of in-memory HDC, the IM and AM may be distributed into multiple narrower crossbars in case electrical/physical limitations arise.

Coarse grained randomization

The programming methodology followed to achieve the coarse grained randomized partitioning in memristive crossbar for AM search
is explained in the following steps. First, we split all prototype hypervectors (P1,P2,...,Pc) into f subvectors of equal length where f is the
partition factor. For example, subvectors from the prototype hypervector of the first class are denoted as: (P1

1,P2
1,...,P f

1). Then the crossbar
array is divided into f equal sized partitions (r1,r2,...,r f). Each partition must contain d/f rows and c columns. A random permutation e of
numbers 1 to c is then selected. Next, the first subvector from each class (P1

1,P1
2,...,P1

c) is programmed into the first partition r1 such that each
subvector fits to a column in the crossbar partition. The order of programming of subvectors into the columns in the partition is determined by
the previously selected random permutation e. The above steps must be repeated to program all the remaining partitions (r2,r3,...,r f).

The methodology followed in feeding query vectors during inference is detailed in the following steps. First, we split query hypervector Q
into f subvectors Q1,Q2,...,Q f of equal length. Then, we translate Qi component values into voltage levels and apply onto the wordline drivers
in the crossbar array. Bitlines corresponding to the partition ri are enabled. Depending on the belonging class, the partial dot products are then
collected onto respective destination in sum buffer through the AD converters at the end of ri partition of the array. The above procedure is
repeated for each partition ri. Class-wise partial dot products are accumulated together in each iteration and updated in the sum buffer. After
the f -th iteration, full dot product values are ready in the sum buffer. The results are then compared against each other using a WTA circuit to
find the maximum value to assign its index as the predicted class.

Experiments on associative memory search

In order to obtain the prototype hypervectors used for AM search, training with HDC is first performed in software on the three datasets
described in the Methods section “Datasets to evaluate in-memory HDC”. For the language and news datasets, XOR-based encoding (see Sec-
tion II) is used with n-gram size of n = 4 and n = 5, respectively. For the EMG dataset, an initial spatial encoding step creates one hypervector
per time sample. Then, a temporal encoding step is performed, whereby n consecutive spatially encoded hypervectors are combined into an
n-gram with XOR-based encoding and n = 5. The detailed encoding procedure for EMG dataset is explained in Supplementary Note V.

Once training is performed, the prototype hypervectors are programmed on the prototype PCM chip. In the experiment conducted with
invHamm as the similarity metric, d×c×2 devices on the PCM prototype chip are allocated. Each device in the first half of the address range
(from 1 to d× c) is programmed with a component of a prototype hypervector Pi, where i = 1, ...,c. Devices in the second half of the array
are programmed with components of the complementary prototype hypervectors. The exact programming order is determined by the partition
factor (f) employed in the coarse grained randomized partitioning scheme. For f = 10 used in the experiment, devices from first address up to
1000× c-th address are programmed with content of the first partition, i.e., the first segment of each of the prototype hypervector. The second
set of 1000× c addresses is programmed with content of the second partition and so on. As the hypervector components are binary, devices
mapped to the logical 1 components and devices mapped to logical 0 components are programmed to the maximum (approximately 20 µS) and
minimum conductance (approximately 0 µS) levels respectively. The devices are programmed in a single-shot (no iterative program-and-verify
algorithm is used) with a single RESET/SET pulse for minimum/maximum conductance devices.

Once the programming phase is completed, the queries from the testing set of a given task are encoded. Only for the experiments of Section
III, the query hypervectors are generated using the same software HD encoder used for training. In the experiments of Section V, the query
hypervectors are generated with in-memory encoding using the prototype PCM chip as described in the Methods section “Experiments on the
complete in-memory HDC system”.

The associative memory search on a given query hypervector is performed using the prototype PCM chip as follows. The components of the
query hypervector carrying a value 1 trigger a read (300 mV applied voltage) on the devices storing the corresponding components of prototype
hypervectors, thus realizing the analog multiplications through Ohm’s law of the in-memory dot-product operation. The same procedure is
performed with the complementary query hypervector on the devices storing complementary prototype hypervectors. The resulting current
values are digitized via the on-chip ADC, transferred to the host computer and class-wise summed up in software according to the predeter-
mined partition order to obtain class-wise similarity values (see Supplementary Note I). The class with the highest similarity is assigned as
the predicted class for the given query. For experiments with dot p as the similarity metric, the devices attributed to complementary prototype
hypervectors are not read when forming the class-wise aggregate.

9

More details on the 2-minterm encoder

In order to generate a n-gram hypervector in n cycles, the crossbar is operated using the following procedure. During the first cycle, n-gram
encoding is initiated by asserting the ‘start’ signal while choosing the index of n-th symbol s[n]. This enables all the gate lines in both crossbar
arrays and the wordline corresponding to s[n] to be activated. The current released onto the bitlines passed through the sense amplifiers should
ideally match the logic levels of B[n] in first array and B[n] in the second array. The two ’minterm buffers’ downstream of the sense amplifier
arrays register the two hypervectors by the end of the first cycle. During subsequent j-th (1 < j ≤ n) cycles, the gate lines are driven by
the right shifted version of the incumbent values on the minterm buffers–effectively implementing permutation–while row decoders are fed
with symbol s[n− j+ 1]; the left shift is used for the second crossbar. This ensures that the output currents on the bitlines correspond to the
component-wise logical AND between the permuted minterm buffer values and the next basis hypervector B[n− j] (complement for the second
array). The expression for the value stored on the left-side minterm buffers at the end of j-th cycle is given by ∏

j
k=1 ρ j−k B[n− k+1]. The

product of the complementary hypervectors ∏
j
k=1 ρ j−k B[n− k+1] is stored in the right-side minterm buffers. At the end of the n-th cycle,

the two minterms are available in the minterm buffers. The elements in the minterm buffers are passed onto the OR gate array following the
minterm buffers (shown in Fig. 3a), such that inputs to the array have matching indices from the two minterm vectors. At this point, the output
of the OR gate array reflects the desired n-gram hypervector from 2-minterm n-gram encoding. After n-gram encoding, the generated n-grams
are accumulated and binarized. In the hardware implementation, this step is realized inside the bundler module shown in Fig. 4a. The threshold
applied to binarize the sum hypervector components is given by:

l ·
(

1
2n−log(m)

)
where l is the length of the sequence, n is the n-gram size, and m is the number of minterms used for the binding operation in the encoder (e.g.,
m = 2 for 2-minterm encoder).

Experiments on the complete in-memory HDC system

For the experiments concerning the complete in-memory HDC system, training with HDC is first performed in software on the language
and news datasets. 2-minterm encoding (Equation (5)) is used with n-gram size of n = 4 and n = 5, respectively.

After training is performed, h×d×2 devices are allocated on the PCM chip for storing IM and the complementary IM in addition to d× c
devices allocated for AM. The IM and complementary IM hypervectors are programmed on PCM devices in a single-shot with RESET/SET
pulses for logical 0/1 components. The prototype hypervectors of the AM are programmed as described in the Methods section “Experiments
on associative memory search”, with the exception that the complementary prototype hypervectors are not programmed since dot p is used as
the similarity metric.

During inference, for every query to be encoded, the IM and complementary IM are read from the prototype PCM chip. In-memory read
logic (AND) is performed by thresholding the read current values from the on-chip ADC in software to emulate the sense amplifiers of the
eventual proposed hardware at each step of the 2-minterm n-gram encoding process (see Supplementary Note I). The other operations involved
in the encoder that are not supported by the prototype PCM chip such as the 1-bit right-shift permutation, storing of the intermediate results
in the minterm buffers, ORing the results of the original and complementary minterm buffers, and the bundling of n-gram hypervectors, are
implemented in software. Once the encoding of the query hypervector is completed, the associative memory search is carried out on that query
hypervector as specified in the Methods section “Experiments on associative memory search” with dot p as the similarity metric.

Performance, energy estimation and comparison

In order to evaluate and benchmark energy efficiency of the proposed architecture, a cycle-accurate register transfer level (RTL) model
of a complete CMOS design that has equivalent throughput to that of the proposed in-memory HDC system architecture is developed (see
Supplementary Note VI). A testbench infrastructure is then built to verify the correct behavior of the model. Once the behavior is verified,
the RTL model is synthesized in UMC 65 nm technology node using Synopsys Design Compiler. Due to limitations in EDA tools used for
synthesizing the CMOS-based HDC, dimensionality d had to be limited to 2,000. The post-synthesis netlist is then verified using the same
stimulus vectors applied during behavioral simulation. During post-synthesis netlist simulation, the design is clocked at 440 MHz frequency
to create a switching activity file in value change dump (VCD) format for inference of 100 language classification queries. Then, the energy
estimation for the CMOS modules is performed by converting average power values reported by Synopsys Primetime which takes the netlist
and the activity file from the previous steps as the inputs. A typical operating condition with voltage 1.2 V and temperature 25 C is set as the
corner for the energy estimation of the CMOS system. Further energy and area results were obtained for d values 100, 500, 1000 in addition
to 2000. Then the results were extrapolated to derive the energy and area estimates for dimensionality d = 10,000 to have a fair comparison
with in-memory HDC system.

The energy/area of the proposed in-memory HDC system architecture is obtained by adding the energy/area of the modules that are common
with the full CMOS design described above, together with the energy of PCM crossbars and the analog/digital peripheral circuits exclusive to
the in-memory HDC architecture. Parameters based on the prototype PCM chip in 90 nm technology used in the experiments are taken as the
basis for the PCM-exclusive energy/area estimation. The parameters of the sense amplifiers (SAs) which are not present in the PCM hardware
platform but present in the proposed in-memory HD encoder are taken from the 65 nm current latched SA presented by Chandoke et al.51. The

10

area of the current latched SA was estimated by scaling the area of the 6-transistor SRAM cell in IBM 65 nm technology (0.54 µm2) according
to the number of transistors present in the SA (19). The parameters used for the PCM crossbars energy estimation are shown in Extended Data
Table II.

DATA AVAILABILITY

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable
request.

REFERENCES

1Kanerva, P. Sparse Distributed Memory (The MIT Press, Cambridge, MA, USA, 1988).
2Kanerva, P. Hyperdimensional computing: An introduction to computing in distributed representation with high-dimensional random vectors. Cognitive
Computation 1, 139–159 (2009).

3Kanerva, P., Kristoferson, J. & Holst, A. Random indexing of text samples for latent semantic analysis. In Proceedings of the Annual Meeting of the Cognitive
Science Society, vol. 22 (2000).

4Rahimi, A., Kanerva, P., Benini, L. & Rabaey, J. M. Efficient biosignal processing using hyperdimensional computing: Network templates for combined
learning and classification of ExG signals. Proceedings of the IEEE 107, 123–143 (2019).

5Burrello, A., Cavigelli, L., Schindler, K., Benini, L. & Rahimi, A. Laelaps: An energy-efficient seizure detection algorithm from long-term human ieeg
recordings without false alarms. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), 752–757 (IEEE, 2019).

6Räsänen, O. J. & Saarinen, J. P. Sequence prediction with sparse distributed hyperdimensional coding applied to the analysis of mobile phone use patterns.
IEEE transactions on neural networks and learning systems 27, 1878–1889 (2015).

7Kleyko, D. & Osipov, E. Brain-like classifier of temporal patterns. In Proceedings of the International Conference on Computer and Information Sciences
(ICCOINS), 1–6 (IEEE, 2014).

8Kleyko, D., Osipov, E., Papakonstantinou, N. & Vyatkin, V. Hyperdimensional computing in industrial systems: the use-case of distributed fault isolation in
a power plant. IEEE Access 6, 30766–30777 (2018).

9Chang, E., Rahimi, A., Benini, L. & Wu, A. A. Hyperdimensional computing-based multimodality emotion recognition with physiological signals. In IEEE
International Conference on Artificial Intelligence Circuits and Systems (AICAS), 137–141 (2019).

10Mitrokhin, A., Sutor, P., Fermüller, C. & Aloimonos, Y. Learning sensorimotor control with neuromorphic sensors: Toward hyperdimensional active percep-
tion. Science Robotics 4, eaaw6736 (2019).

11Montagna, F., Rahimi, A., Benatti, S., Rossi, D. & Benini, L. PULP-HD: Accelerating brain-inspired high-dimensional computing on a parallel ultra-low
power platform. In Proceedings of the 55th Annual Design Automation Conference, DAC ’18, 111:1–111:6 (ACM, New York, NY, USA, 2018).

12Emruli, B., Gayler, R. W. & Sandin, F. Analogical mapping and inference with binary spatter codes and sparse distributed memory. In Proceedings of the
International joint conference on neural networks (IJCNN), 1–8 (IEEE, 2013).

13Kleyko, D., Osipov, E., Gayler, R. W., Khan, A. I. & Dyer, A. G. Imitation of honey bees’ concept learning processes using vector symbolic architectures.
Biologically Inspired Cognitive Architectures 14, 57–72 (2015).

14Slipchenko, S. V. & Rachkovskij, D. A. Analogical mapping using similarity of binary distributed representations. Information Theories and Applications 16,
269–290 (2009).

15Bandaragoda, T. et al. Trajectory clustering of road traffic in urban environments using incremental machine learning in combination with hyperdimensional
computing. In IEEE Intelligent Transportation Systems Conference (ITSC), 1664–1670 (2019).

16Osipov, E., Kleyko, D. & Legalov, A. Associative synthesis of finite state automata model of a controlled object with hyperdimensional computing. In
Proceedings of the Annual Conference of the IEEE Industrial Electronics Society, 3276–3281 (IEEE, 2017).

17Kleyko, D., Frady, E. P. & Osipov, E. Integer echo state networks: Hyperdimensional reservoir computing. arXiv preprint arXiv:1706.00280 (2017).
18Rahimi, A. et al. High-dimensional computing as a nanoscalable paradigm. IEEE Transactions on Circuits and Systems I: Regular Papers 64, 2508–2521

(2017).
19Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nature nanotechnology 8, 13 (2013).
20Sebastian, A. et al. Temporal correlation detection using computational phase-change memory. Nature Communications 8, 1115 (2017).
21Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nature Electronics 1, 22 (2018).
22Ielmini, D. & Wong, H.-S. P. In-memory computing with resistive switching devices. Nature Electronics 1, 333 (2018).
23Li, H. et al. Hyperdimensional computing with 3D VRRAM in-memory kernels: Device-architecture co-design for energy-efficient, error-resilient language

recognition. In IEEE International Electron Devices Meeting (IEDM), 16.1.1–16.1.4 (2016).
24Li, H., Wu, T. F., Mitra, S. & Wong, H. S. P. Device-architecture co-design for hyperdimensional computing with 3D vertical resistive switching random

access memory (3D VRRAM). In Proceedings of the International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), 1–2 (2017).
25Wu, T. F. et al. Brain-inspired computing exploiting carbon nanotube FETs and resistive RAM: Hyperdimensional computing case study. In Proceedings of

the International Solid State Circuits Conference (ISSCC), 492–494 (2018).
26Kanerva, P. Binary spatter-coding of ordered k-tuples. In Proceedings of the International Conference on Artificial Neural Networks (ICANN), vol. 1112 of

Lecture Notes in Computer Science, 869–873 (Springer, 1996).
27Joshi, A., Halseth, J. T. & Kanerva, P. Language geometry using random indexing. In International Symposium on Quantum Interaction, 265–274 (Springer,

2016).
28Chua, L. Resistance switching memories are memristors. Applied Physics A 102, 765–783 (2011).
29Wong, H.-S. P. & Salahuddin, S. Memory leads the way to better computing. Nature nanotechnology 10, 191 (2015).
30Borghetti, J. et al. ’memristive’ switches enable ’stateful’ logic operations via material implication. Nature 464, 873 (2010).
31Kvatinsky, S. et al. Magic–memristor-aided logic. IEEE Transactions on Circuits and Systems II: Express Briefs 61, 895–899 (2014).
32Shen, W. et al. Stateful logic operations in one-transistor-one-resistor resistive random access memory array. Electron Device Letters 40, 1538–1541 (2019).
33Wong, H.-S. P. et al. Phase change memory. Proceedings of the IEEE 98, 2201–2227 (2010).

11

34Burr, G. W. et al. Recent progress in phase-change memory technology. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 6, 146–162
(2016).

35Kuzum, D., Jeyasingh, R. G., Lee, B. & Wong, H.-S. P. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing.
Nano letters 12, 2179–2186 (2011).

36Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E. Stochastic phase-change neurons. Nature Nanotechnology 11, 693 (2016).
37Boybat, I. et al. Neuromorphic computing with multi-memristive synapses. Nature communications 9, 2514 (2018).
38Sebastian, A. et al. Tutorial: Brain-inspired computing using phase-change memory devices. Journal of Applied Physics 124, 111101 (2018).
39Hosseini, P., Sebastian, A., Papandreou, N., Wright, C. D. & Bhaskaran, H. Accumulation-based computing using phase-change memories with FET access

devices. Electron Device Letters 36, 975–977 (2015).
40Le Gallo, M. et al. Mixed-precision in-memory computing. Nature Electronics 1, 246 (2018).
41Xiong, F., Liao, A. D., Estrada, D. & Pop, E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332, 568–570 (2011).
42Waser, R. & Aono, M. Nanoionics-based resistive switching memories. In Nanoscience And Technology: A Collection of Reviews from Nature Journals,

158–165 (World Scientific, 2010).
43Kent, A. D. & Worledge, D. C. A new spin on magnetic memories. Nature Nanotechnology 10, 187 (2015).
44Close, G. et al. Device, circuit and system-level analysis of noise in multi-bit phase-change memory. In Proceedings of the International Electron Devices

Meeting (IEDM), 29.5.1–29.5.4 (2010).
45Breitwisch, M. et al. Novel lithography-independent pore phase change memory. In Proceedings of the Symposium on VLSI Technology, 100–101 (IEEE,

2007).
46Rahimi, A., Kanerva, P. & Rabaey, J. M. A robust and energy-efficient classifier using brain-inspired hyperdimensional computing. In Proceedings of the

2016 International Symposium on Low Power Electronics and Design, ISLPED ’16, 64–69 (2016).
47Quasthoff, U., Richter, M. & Biemann, C. Corpus portal for search in monolingual corpora. In Proceedings of the International Conference on Language

Resources and Evaluation (LREC), 1799–1802 (2006).
48Koehn, P. Europarl: A parallel corpus for statistical machine translation. In MT summit, vol. 5, 79–86 (Citeseer, 2005).
49Mimaroglu, D. S. Some Text Datasets. https://www.cs.umb.edu/˜smimarog/textmining/datasets/ (2018). [Online; accessed 9-March-

2018].
50Rahimi, A., Benatti, S., Kanerva, P., Benini, L. & Rabaey, J. M. Hyperdimensional biosignal processing: A case study for emg-based hand gesture recognition.

In 2016 IEEE International Conference on Rebooting Computing (ICRC), 1–8 (2016).
51Chandoke, N., Chitkara, N. & Grover, A. Comparative analysis of sense amplifiers for SRAM in 65nm CMOS technology. In Proceedings of the International

Conference on Electrical, Computer and Communication Technologies (ICECCT), 1–7 (2015).

ACKNOWLEDGMENTS

This work was supported in part by the European Research Council through the European Union’s Horizon 2020 Research and Innovation
Program under Grant 682675 and in part by the European Union’s Horizon 2020 Research and Innovation Program through the project
MNEMOSENE under Grant 780215.

AUTHOR CONTRIBUTIONS

All authors collectively conceived the idea of in-memory hyperdimensional computing. G.K. performed the experiments and analyzed the
results under the supervision of M.L.G, A.R., and A.S. G.K., M.L.G., A.R., and A.S. wrote the manuscript with input from all authors.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

12

Item Memory

symbol (s[k])
symbol (s[k])

item hypervector (B[k])

n-gram hyper-
vector (G)

query hypervector (Q)

prototype hypervector (P)

d bits

Encoder

n-gram
encoding

d bits

bundler

Distance Computation

Associative Memory

predicted class

predicted class

query hypervector (Q) /
prototype hypervector (P)

d bits

d bits

d bits

Common datapaths

Inference-only datapaths
Training-only datapaths

s1 → B1

sh → Bh

class1 → P1

classc → Pc

s[k]s[k-1] s[k+1] s[k+2]

P1

P2

Pc

B1

B2

Bh

(1) (2) (d)

(1) (2) (d)

peripheral

pe
rip

he
ra

l

A
D

 c
on

ve
rt

er
s

In-memory computing unit

Memory unit
Computing unit

FIG. 1: The concept of in-memory HDC A schematic illustration of the concept of in-memory HDC shows the essential steps
associated with HDC (left) and how they are realized using in-memory computing (right). An item memory (IM) stores h,
d-dimensional basis hypervectors that correspond to the symbols associated with a classification problem. During learning,

based on a labelled training dataset, an encoder performs dimensionality preserving mathematical manipulations on the basis
hypervectors to produce c, d-dimensional prototype hypervectors that are stored in an associative memory (AM). During

classification, the same encoder generates a query hypervector based on a test example. Subsequently, an associative memory
search is performed between the query hypervector and the hypervectors stored in the AM to determine the class to which the
test example belongs. In in-memory HDC, both the IM and AM are mapped onto crossbar arrays of memristive devices. The

mathematical operations associated with encoding and associative memory search are performed in-place by exploiting
in-memory read logic and dot product operations, respectively. A dimensionality of d = 10,000 is used. SA: sense amplifier;

AD converters: analog-to-digital converters.

13

a
Q

+
+

+

la
be

l

A
D

 c
on

ve
rt

er
s

A
D

 c
on

ve
rt

er
s

W
TA

 c
irc

ui
t

to
 W

TA
 c

irc
ui

t

P
2

P
3

P
1

+
+

+
+

+
+

+
+

+
+

+

r
2

r
1

r
3

P2
1

P1
1

P3
1

P2
2

P1
2

P3
2

P2
3

P1
3

P3
3

Q

Q2 Q1Q3

+

b

c

ga
te

 e
na

bl
e

ga
te

 e
na

bl
e

dotp only paths

P
2

P
1

P
c

P
2

P
1

P
c

(1) (2) (d)

(1) (2) (d)

Q

(1)

(2)

(c)

(1)

(2)

(c)

82.9

91.4

95.5 94.9
96.2

82.0

93.9

96.9 96.6 97.0

91.3
92.6 93.6 92.7 93.6 92.7 92.5 93.0 92.5 93.0

97.6 97.7 98.0 98.0 98.0 98.3 98.5 98.5 98.4 98.5

dotp invHamm dotp invHamm dotp invHamm

Language News EMG

80

84

88

92

96

100

A
cc

ur
ac

y
(%

)

Sim., f = 1 Sim., f = 2 Sim., f = 10 PCM chip, f = 10 Software

FIG. 2: Associative memory search. a Schematic illustration of the AM search architecture to compute the invHamm
similarity metric. Two PCM crossbar arrays of c rows and d columns are employed. b Schematic illustration of the coarse

grained randomization strategy employed to counter the variations associated with the crystalline PCM state. c Results of the
classification task show that the experimental on-chip accuracy results compare favorably with the 10-partition simulation

results and software baseline for both similarity metrics on the three datasets.

14

a

b

SASASASA SA SA

n-gram hypervector

Original IM crossbar

s[k]

B1

B2

Bh

B1

B2

Bh

Complementary IM crossbar

s[k]

(1) (2) (d) (1)(2)(d)

(1) (2) (d)

G(1) G(2) G(d)

(1)(2)(d)

start

Minterm Buffers

94.96 95.15 95.94 95.97
94.9 95.16

96.96 96.99

87.11 87.84

93.6 93.6

88.03 87.84

93.01 93.01

invHamm invHamm

2-minterm all-minterm 2-minterm all-minterm 2-minterm all-minterm 2-minterm all-minterm

dotp dotp

Language News

80

84

88

92

96

100

A
cc

ur
ac

y
(%

)

Sim., f = 10 Software

FIG. 3: In-memory n-gram encoding based on 2-minterm. a The basis hypervectors and their complements are mapped onto
two crossbar arrays. Through a sequence of in-memory logical operations the approximated n-gram G as in Equation (5) is

generated. b Classification results on the language (using n = 4) and news (using n = 5) datasets show the performance of the
2-minterm approximation compared with the all-minterm approach.

15

a

b

+

<

+

<

+

<

+

<

ngram_shift

ngram_start

ngram_end

query_end

query_valid

A
D

C
A

D
C

Common
CMOS modules

Original IM
crossbar

Complementary
IM crossbar

AM search
crossbar

AM search
partitions

Digital datapath
partition_select

AD interfaces

s[k]s[k]

n-gram hypervector

sum hypervector

query hypervector

symbol

configure
interface

class
index

Encoder

AM
Search

Index
Buffer

Controller I

Minterm
Buffers

Controller
II

S
um

 B
uf

fe
r

W
TA

Bundler

(1) (2) (3) (d)

(1) (2) (d) (1)(2)(d)

(1) (2) (3) (d)

partition r1

partition rf

(1)

(2)

(c)

(1)

(2)

(c)

(1)

(2)

(c)

(1) (2) (3) (d/f)

Control path

95.16 94.94
92.83 92.81

87.85 87.17 87.57 87.3

Simulation SimulationSoftware Software

Language News

80

84

88

92

96

100

A
cc

ur
ac

y
(%

)

AM on
PCM chip

AM+IM on
PCM chip

AM on
PCM chip

AM+IM on
PCM chip

SA SA SA SA SA SA

FIG. 4: The complete in-memory HDC system. a The schematic of architecture showing the 2-minterm encoder and
associative memory search engine employing dot p metric. b The classification accuracy results on the news and language

datasets where both the encoding and associative memory search are performed in software, simulated using PCM model and
are experimentally realized on the chip.

16

TABLE I: Performance comparison between a dedicated all-CMOS implementation and in-memory HDC with PCM crossbars

All-CMOS PCM crossbar based
Encoder AM search Total Encoder AM search Total

Energy
Average energy per query (nJ) 1470 1110 2580 420.8 9.44 430.8
Improvement 3.50x 117.5x 6.01x
Exclusive modules avg. energy per query (nJ) 1130 1100 2240 78.60 3.30 81.90
Improvement 14.40x 334.62x 27.30x
Area
Total area (mm2) 4.77 2.99 7.76 1.39 0.68 2.07
Improvement 3.43x 4.38x 3.74x
Exclusive modules area (mm2) 3.53 2.38 5.91 0.14 0.075 0.21
Improvement 24.57x 31.94x 27.09x

17

EXTENDED DATA

Extended Data Table I: Architecture configurations and hyperparameters used for the tree different tasks

Dataset Input type n-gram size # of channels Item Memory (IM) Associative Memory (AM)
Symbols h Dimensionality d Dimensionality d # Classes c

Language Categorical 4 1 27 10,000 10,000 22
News Categorical 5 1 27 10,000 10,000 8
EMG Numerical 5 4 4 10,000 10,000 5

18

Extended Data Table II: Parameters for PCM crossbars energy and area estimation

Common parameters
Parameter Value
Read voltage 0.1 V
Current on conducting devices 1 µA
Unit device area 0.2 µm2

Module-specific parameters
Parameter Encoder AM
Readout time 2.8 ns 100 ns
Active devices per query 145,000 66,000
Energy per SA read 9.8 fJ -
Energy per ADC read - 12 pJ
Total SA area 0.034 mm2 -
Total ADC area - 0.03 mm2

