periodogram (pyleoclim.utils.periodogram)¶
-
pyleoclim.utils.
periodogram
(ys, ts, window='hann', nfft=None, return_onesided=True, detrend=None, params=['default', 4, 0, 1], gaussianize=False, standardize=False, scaling='density')[source]¶ Estimate power spectral density using a periodogram
Based on the function from scipy: https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.periodogram.html
- Parameters
ys (array) – a time series
ts (array) – time axis of the time series
window (string or tuple) –
- Desired window to use. Possible values:
boxcar (default)
triang
blackman
hamming
hann
bartlett
flattop
parzen
bohman
blackmanharris
nuttail
barthann
kaiser (needs beta)
gaussian (needs standard deviation)
general_gaussian (needs power, width)
slepian (needs width)
dpss (needs normalized half-bandwidth)
chebwin (needs attenuation)
exponential (needs decay scale)
tukey (needs taper fraction)
If the window requires no parameters, then window can be a string. If the window requires parameters, then window must be a tuple with the first argument the string name of the window, and the next arguments the needed parameters. If window is a floating point number, it is interpreted as the beta parameter of the kaiser window.
- nfft: int
Length of the FFT used, if a zero padded FFT is desired. If None, the FFT length is nperseg
- return_onesidedbool
If True, return a one-sided spectrum for real data. If False return a two-sided spectrum. Defaults to True, but for complex data, a two-sided spectrum is always returned.
- detrendstr
- If None, no detrending is applied. Available detrending methods:
None - no detrending will be applied (default);
linear - a linear least-squares fit to ys is subtracted;
constant - the mean of ys is subtracted
savitzy-golay - ys is filtered using the Savitzky-Golay filters and the resulting filtered series is subtracted from y.
emd - Empirical mode decomposition
- paramslist
The paramters for the Savitzky-Golay filters. The first parameter corresponds to the window size (default it set to half of the data) while the second parameter correspond to the order of the filter (default is 4). The third parameter is the order of the derivative (the default is zero, which means only smoothing.)
- gaussianizebool
If True, gaussianizes the timeseries
- standardizebool
If True, standardizes the timeseries
- scaling{“density,”spectrum}
Selects between computing the power spectral density (‘density’) where Pxx has units of V**2/Hz and computing the power spectrum (‘spectrum’) where Pxx has units of V**2, if x is measured in V and fs is measured in Hz. Defaults to ‘density’
- Returns
res_dict – the result dictionary, including - freq (array): the frequency vector - psd (array): the spectral density vector
- Return type
dict
See also
welch()
Estimate power spectral density using the welch method
mtm()
Retuns spectral density using a multi-taper method
lomb_scargle()
Return the computed periodogram using lomb-scargle algorithm
wwz_psd()
Return the psd of a timeseries using wwz method.
Examples
>>> from pyleoclim import utils >>> import matplotlib.pyplot as plt >>> import numpy as np >>> # Create a signal >>> time = np.arange(2001) >>> f = 1/50 >>> signal = np.cos(2*np.pi*f*time) >>> # Spectral Analysis >>> res = utils.periodogram(signal, time) >>> # plot >>> fig = plt.loglog( ... res['freq'], ... res['psd']) >>> plt.xlabel('Frequency') >>> plt.ylabel('PSD') >>> plt.show()
(Source code, png)