## On the Cosmic-Ray lifetime in the Galaxy

## Carmelo Evoli

### Gran Sasso Science Institute, L'Aquila (Italy) INFN/Laboratori Nazionali del Gran Sasso (LNGS), Assergi (Italy)

### Multimessenger high energy astrophysics in the era of LHAASO July 28, 2020



・ロト ・雪 ・ ・ ヨ ・ ・ ヨ ・

Based on: Evoli, Blasi, Amato and Aloisio, PRL 2020, arXiv:2007.01302 Evoli, Morlino, Blasi and Aloisio, PRD 2020, arXiv:1910.04113

#### The Grammage pillar



- ▷ Thermal particles in the average interstellar medium are somehow accelerated to relativistic energies becoming CRs → primary
- ▷ It must exist also a second population which is produced during the propagation by primary spallation → secondary

#### The Grammage pillar

▷ The grammage  $\chi$  [m/l<sup>2</sup>] is the amount of material that the particle go trough along propagation (a kind of "column density"):

$$\chi = \int dl \rho(l) \qquad l = \text{trajectory}$$

▷ The average grammage can be inferred by the observed secondary-over-primary ratio:

$$\frac{\rm B}{\rm C} \sim \chi \; \frac{\sigma_{C \to B}}{\left< m \right>_{\rm ISM}} \sim 0.3 \to \chi_{\rm obs} \sim 5 \; {\rm g/cm^2}$$

At each crossing of the disk ( $h \sim 200$  pc) the accumulated grammage amounts roughly to:

$$\chi_d \sim m_p n_{\rm gas} h \sim 10^{-3}\,{\rm g/cm^2} \ll \chi_{\rm obs}$$

for comparison, in a molecular cloud as Ophiuchus:  $\chi_c \sim 0.1\,{
m g}\,/\,{
m cm}^2$ 

- ▷ Therefore the particles must cross the disk many times in order to accumulate the grammage necessary to reproduce composition → random walk
- The minimum time spent in the gas region is:

$$t_{
m prop} \sim rac{\chi_{
m B/C}}{\chi_{
m d}} rac{h}{v} \sim 5 imes 10^6 ~
m years \gg rac{R_{
m G}}{c}$$

> The grammage sets only a lower limit to the mean age of CRs and to the extent of the diffusive region: Where is  $\chi$  accumulated?

| Evo | li (C | een) |
|-----|-------|------|
| LVU | ii (G | 331) |

#### The Galactic halo model

Morrison, Olbert and Rossi, Phys. Rev (1954), Ginzburg and Syrovatskii (1964)



- ▷ In the standard model for the origin of Galactic CRs, these are accelerated in the disc by blast waves of SN explosions with a spectrum  $Q_s \propto E^{-\alpha}$  where  $\alpha \gtrsim 2$
- > and propagate diffusively throughout the Galactic halo (~ 1D) with a diffusion coefficient  $D \propto E^{\delta}$ where  $\delta \sim 1/3 - 1/2$
- ▷ Secondary production, e.g. LiBeB, takes place predominantly in the disc where all the gas is confined

#### The radio halo as observed in external galaxies R. Beck, arXiv:0810.2923



NGC 891

NGC 5775

53 58 56 RIGHT ASCENSION (J2000)

NGC5775 8.35GHz

14 54 04

02 00

Total radio intensity and B-vectors of edge-on galaxies. Combined from observations at 3.6 cm wavelength with the VLA and Effelsberg telescopes. [Credit: MPIfR Bonn]

| C Evali (CSSI) | CP lifetime in the Colovy |
|----------------|---------------------------|

#### The propagated spectrum after injection and transport

 $\triangleright\,$  At the steady-state (and after a number of simplifications) the spectrum  $\Phi$  of a given CR nuclear species is

 $\Phi_i(E) =$ Injection rate  $\times$  Escape timescale

 $\triangleright$  where the escape rate is  $\propto l^2$  as typical in any "random walk" problem:

Escape timescale 
$$\rightarrow t_{\rm esc} = \frac{H^2}{D(E)}$$

- ▶ In fact, *H* is the diffusive halo size (free escape boundary)
- The injection rate is different if we are dealing with a primary or a secondary species.

#### The secondary-over-primary ratio as grammage indicator

- ▷ Let me describe a simplified case with only one secondary species and one parent nucleus: C→B.<sup>1</sup>
- For Carbon:

$$Q_{\rm C} = \frac{N_{\rm SN}(E)\mathcal{R}_{\rm SN}}{\pi R_d^2 H} \Rightarrow \Phi_{\rm C}(E) = \frac{N_{\rm SN}(E)\mathcal{R}_{\rm SN}}{\pi R_d^2 H} \frac{H^2}{D(E)}$$

While for Boron:

$$Q_{\mathsf{B}} = v\bar{n}\,\sigma_{\mathsf{C}\to\mathsf{B}}\,\Phi_{\mathsf{C}}(E) \ \Rightarrow \ \Phi_{\mathsf{B}}(E) = v\bar{n}\,\sigma_{\mathsf{C}\to\mathsf{B}}\Phi_{\mathsf{C}}(E)\frac{H^2}{D(E)}$$

The ratio between the two becomes:

$$\frac{\rm B}{\rm C}\propto \bar{n}\frac{H^2}{D(E)}\propto E^{-\delta}$$

Notice however that  $\bar{n} = n_d \frac{h}{H}$  so that B/C is sensitive only to the H/D ratio!

<sup>&</sup>lt;sup>1</sup> In real applications the situation is more complex because the whole chain of spallation reactions and decays of heavier nuclei must be accounted for.

#### The energy dependent secondary-over-primary ratios

PAMELA Collaboration, ApJ 791 (2014), AMS-02 Collaboration, PRL 117 (2016)



- ▷ CRs propagate diffusively with an energy-dependent coefficient  $\delta \sim 0.54$  and  $D_0 \sim 10^{28}$  cm<sup>2</sup>/s, mainly due to their interaction with the pre-existing or self-generated turbulent magnetic fields.
- Consistent fit of secondary over primary ratios [Evoli et al., PRD 99 (2019); Weinrich et al., A&A 639 (2020)]

#### Can we hope to measure the escape timescale?

PAMELA Collaboration, ApJ, Vol. 862, 141 (2018)



 $\triangleright$   $^{10}$ Be is a  $\beta^-$  unstable isotope with an half-life of  $\sim 1.5$  Myr

- $\triangleright~$  Similar production rate  $\sigma_{\rm Be^9} \sim \sigma_{\rm Be^{10}}$
- ▷ The observed isotopic ratio hints to an escape timescale of O(100) Myr at ~ 1 GeV

# The Beryllium-over-Boron ratio and the escape time Evoli et al., PRD 101 (2020)



- Only the total Be is measured by AMS-02, but with extreme precision [AMS-02 Coll., PRL 120 (2018)]
- $\triangleright$  Preference for large halos  $H\gtrsim 5~{
  m kpc}$  [see also Weinrich et al., A&A (2020)]
- ▷ Notice that H and  $\tau_{\text{esc}}$  are mutual corresponding, since  $\tau_{\text{esc}} \simeq \frac{H^2}{D} = \left(\frac{H}{D}\right)_{\text{B/C}} H$

#### Nuclei and electron timescales

Evoli, Blasi, Amato & Aloisio, PRL (2020)



- Leptons lose their energy through e.m. interactions mainly with the interstellar radiation fields (ISRFs) and the magnetic fields
- > The Milky Way is a very inefficient calorimeter for nuclei and a perfect calorimeter for leptons
- ▷ Translate losses into propagation scale:  $\lambda \sim \sqrt{4D(E)\tau_{\text{loss}}} \rightarrow \text{horizon}$

#### The CR leptonic counterpart

AMS-02 coll., PRL 122 (2019)



- ▷ AMS-02 local measurements of e<sup>+</sup> and e<sup>-</sup> compared with protons
- $\triangleright~$  It is not compatible with all leptons being secondary:  $pp_{\rm ISM} \rightarrow e^{\pm}$ , then we need a primary component for electrons.

| Evo | li (CS | 2en  |
|-----|--------|------|
| LVU | "(0    | رىدد |

#### Secondary positrons and the positron fraction

P. Serpico, Astroparticle Physics 39 (2012)

 $\triangleright$  The injection rate of secondary positrons (and electrons) is  $\propto$  to the proton spectrum:

$$Q_{e+}(E) \sim c\bar{n}_{\rm gas}\sigma_{pp}\Phi_{\rm p}(E) \propto E^{-\alpha_p-\delta}$$

while primary electrons have the same source term as primary nuclei:

$$Q_{e^-} = \frac{N_{\rm SN}(E)\mathcal{R}_{\rm SN}}{\pi R_d^2 H} \propto E^{-\alpha_e}$$

The escape time is now set by the energy losses

$$\tau \propto \frac{\tau_{\rm loss}}{\sqrt{D(E)\tau_{\rm loss}}} \propto E^{-1/2-3\delta/2}$$

 $\triangleright$  However, their ratio after propagation is independent on  $\tau$ :

$$\frac{e^+}{e^-} \sim \frac{Q_e + f}{Q_e - f} \sim E^{-(\alpha_p - \alpha_e) - \delta}$$

▷ if  $e^+$  are secondaries (and  $\alpha_p = \alpha_e$ ) → the positron fraction must be a monotonically decreasing function of energy

$$\longrightarrow \frac{e^+}{e^-} \propto E^{-\delta}$$

|    | <b>–</b> |     | 000 |      |
|----|----------|-----|-----|------|
| C. | EVO      | Ш ( | 688 | SI ) |
|    |          |     |     |      |

#### The positron fraction

PAMELA coll., Nature 458 (2009); FERMI-LAT coll., PRD 95 (2017); AMS-02 coll., PRL 110 (2013)



#### Pulsars as positron galactic factories



PWNe pre-dicted as galactic positron factories even before PAMELA [Harding & Ramaty, ICRC 1987; Boulares, ApJ 342 (1989); Atovan, Aharonian & Völk, PRD 52 (1995)]

 HAWC has detected bright and spatially extended TeV gamma-ray sources surrounding the Geminga and Monogem pulsars [HAWC coll., Science 358 (2017)]

< 日 > < 同 > < 回 > < 回 > < 回 > <

#### The CR positron flux with a primary component by PWNe

Hooper, Blasi & Serpico, JCAP 25 (2009); Grasso et al., APP 32 (2009); Delahaye et al., A&A 524 (2010); Blasi & Amato (2011)



- $\triangleright$  The  $e^{\pm}$  pairs created in the pulsar magnetosphere become part of the relativistic wind into which pulsars convert most of their rotational energy
- ▷  $\gamma$ /X-ray emissions by these objects are described by a flat spectrum (with  $1 < \alpha_L < 2$ ) at low energies, which then steepens to  $\sim E^{-2.5}$  beyond  $\sim$  few hundred GeV

7/7/2020 16/25

#### Are positrons truly primary?

Blum et al., PRL 111 (2013); Cowsik & Madziwa-Nussinov ApJ 827 (2016); Lipari, PRD 95 (2019)



- ▶ Positrons and anti-protons share the same spectrum (likewise electrons)!
- $\triangleright$  The  $e^+/\bar{p}$  ratio is very close (2.04  $\pm$  0.04) to the one expected by pure secondary production
- Can it be just a (actually two!) coincidence?

#### Are positrons truly primary? Lipari, PRD, 2019



▶ In order to have just secondary positrons however we need to get rid of the energy losses.

- ▷ The lepton  $e^- + e^+$  spectrum exhibits a sharp and large ( $\Delta \gamma \sim 1$ ) break at  $E \simeq 1$  TeV which could be associated with the onset of energy losses.
- Given the systematics, the feature might indicate either a break in the powerlaw spectrum or a kind of cutoff, see also CALET and DAMPE for direct measurements [CALET coll., PRL 119 (2017); DAMPE coll., Nature 552 (2017)].

# A new structure in the cosmic-ray electron spectrum AMS-02 collaboration, PRL 122, 2019



- The question we wanted to adress was if it is possible to identify signatures associated to energy losses in the electron or positron spectra (below 1 TeV).
- $\triangleright$  The existence of a fine structure at  $\sim 42$  GeV was first noted by the AMS02 collaboration (and erroneously attributed to more than one CR electron population)

#### A closer look at the energy losses

Evoli, Blasi, Amato & Aloisio, PRL (2020)



 $\triangleright \ b(E) = (4/3)\sigma(E)c\gamma_e^2 \to \tau = E/b(E)$ 

- ho Thomson regime only valid for  $\gamma_e E_{ph} \lesssim m_e c^2$  [Klein and Nishina, Zeitschrift für Physik 52, (1929)]
- $\triangleright$  For the UV background, the typical temperature is  $T \sim 10^4$ K [Moskalenko, Porter and Strong, ApJ 640 (2006), Popescu et al., MNRAS 470 (2017)] hence the KN effects become important at  $E \sim 50$  GeV.

#### The signature of energy losses on the cosmic ray electron spectrum Evoli, Blasi, Amato & Aloisio, PRL (2020)



▶ We proved that the feature in the e<sup>-</sup> spectrum is the result of KN effects in the ICS on the UV bkg.

- Although at different energies, a feature associated with KN has been anticipated in several works [Aharonian & Ambartsumyan, Astrofizika (1986); van der Walt & Steenkamp, MNRAS 251 (1991); Schlickeiser & Ruppel, New JoP 12 (2010); Stawarz, Petrosian & Blandford, ApJ 710 (2010)]
- We exclude that the feature may reflect the spectral hardening in the diffusion coefficient.
- Fluctuations due to source stochasticity (gray band) are not significant where the feature is observed.

C. Evoli (GSSI)

## The lepton spectrum

Evoli et al., in preparation



#### Conclusions - I

- The CR grammage and lifetime provide valuable piece of information to build up a model of CR propagation in the Galaxy.
- ▷ We presented two independent evidences that  $\gtrsim$  GeV CRs propagate in a relatively large halo  $H \gtrsim 2$  kpc corresponding to an escape time of O(50) Myr at  $\sim 10$  GeV.
- $\triangleright$  In particular, the change of slope at  $\sim 40$  GeV detected for the first time by AMS-02 in the electron spectrum could the unambiguous signature of the energy losses experienced by leptons while propagating in the Milky Way large halo.
- In this scenario, the positron excess is easily accounted for in terms of primary positrons (and electrons) liberated in the ISM by pulsars that abandoned their parent supernova remnant.

#### Conclusions - II

- Impressive progress on the experimental side in the GeV-TeV range over the past ~ 20 years, both in direct (AMS-02, CALET, DAMPE, PAMELA) and indirect (HAWC, HESS, MAGIC, VERITAS) observations [Gabici, Evoli et al., IJMPD (2019)]
- The enormous amount of data of unprecedented quality allowed us to study Galactic CRs in much greater detail, but also revealed a number of "anomalies"
- ▷ Most of these anomalies could be fully addressed by good quality measurements in the TeV-PeV range in the next ~ 20 years. Looking forward at LHAASO, HERD, CTA...!

## 谢谢

#### Carmelo Evoli

- ✓ Viale Francesco Crispi, 7, L'Aquila (Italy)
- mailto: carmelo.evoli@gssi.it
- 🥑 @carmeloevoli
- carmeloevoli
- s e.carmelo
- 0000-0002-6023-5253
- slides available at:

https://zenodo.org/communities/carmeloevoli\_talks

↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 <lp>↓
 ↓<