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The Grammage pillar
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▷ Thermal particles in the average interstellar medium are somehow accelerated to relativistic energies
becoming CRs→ primary

▷ It must exist also a second population which is produced during the propagation by primary spallation
→ secondary
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The Grammage pillar

▷ The grammage χ [m/l2] is the amount of material that the particle go trough along propagation (a
kind of “column density”):

χ =

∫
dlρ(l) l = trajectory

▷ The average grammage can be inferred by the observed secondary-over-primary ratio:
B
C

∼ χ
σC→B

⟨m⟩ISM
∼ 0.3 → χobs ∼ 5 g/cm2

▷ At each crossing of the disk (h ∼ 200 pc) the accumulated grammage amounts roughly to:

χd ∼ mpngash ∼ 10
−3 g/cm2 ≪ χobs

for comparison, in a molecular cloud as Ophiuchus: χc ∼ 0.1 g / cm2

▷ Therefore the particles must cross the disk many times in order to accumulate the grammage
necessary to reproduce composition→ random walk

▷ The minimum time spent in the gas region is:

tprop ∼
χB/C

χd

h

v
∼ 5 × 10

6 years ≫
RG

c

▷ The grammage sets only a lower limit to the mean age of CRs and to the extent of the diffusive region:
Where is χ accumulated?

C. Evoli (GSSI) CR lifetime in the Galaxy 7/7/2020 3 / 25



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The Galactic halo model
Morrison, Olbert and Rossi, Phys. Rev (1954), Ginzburg and Syrovatskii (1964)

2H
Rg

2h

▷ In the standard model for the origin of Galactic CRs, these are accelerated in the disc by blast waves of
SN explosions with a spectrumQs ∝ E−α where α ≳ 2

▷ and propagate diffusively throughout the Galactic halo (∼ 1D) with a diffusion coefficientD ∝ Eδ

where δ ∼ 1/3 − 1/2

▷ Secondary production, e.g. LiBeB, takes place predominantly in the disc where all the gas is confined
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The radio halo as observed in external galaxies
R. Beck, arXiv:0810.2923

NGC 891 NGC 5775

Total radio intensity and B-vectors of edge-on galaxies. Combined from observations at 3.6 cm wavelength
with the VLA and Effelsberg telescopes. [Credit: MPIfR Bonn]
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The propagated spectrum after injection and transport

▷ At the steady-state (and after a number of simplifications) the spectrum Φ of a given CR nuclear
species is

Φi(E) = Injection rate × Escape timescale

▷ where the escape rate is∝ l2 as typical in any “random walk” problem:

Escape timescale → tesc =
H2

D(E)

▷ In fact,H is the diffusive halo size (free escape boundary)

▷ The injection rate is different if we are dealing with a primary or a secondary species.
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The secondary-over-primary ratio as grammage indicator

▷ Let me describe a simplified case with only one secondary species and one parent nucleus: C→B. 1

▷ For Carbon:

QC =
NSN(E)RSN

πR2
dH

⇒ ΦC(E) =
NSN(E)RSN

πR2
dH

H2

D(E)

▷ While for Boron:

QB = vn̄ σC→B ΦC(E) ⇒ ΦB(E) = vn̄ σC→BΦC(E)
H2

D(E)

▷ The ratio between the two becomes:

B
C

∝ n̄
H2

D(E)
∝ E

−δ

Notice however that n̄ = nd
h
H so that B/C is sensitive only to the H/D ratio!

1 In real applications the situation is more complex because the whole chain of spallation reactions and decays of heavier
nuclei must be accounted for.
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The energy dependent secondary-over-primary ratios
PAMELA Collaboration, ApJ 791 (2014), AMS-02 Collaboration, PRL 117 (2016)
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▷ CRs propagate diffusively with an energy-dependent coefficient δ ∼ 0.54 andD0 ∼ 1028 cm2/s,
mainly due to their interaction with the pre-existing or self-generated turbulent magnetic fields.

▷ Consistent fit of secondary over primary ratios [Evoli et al., PRD 99 (2019); Weinrich et al., A&A 639 (2020)]
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Can we hope to measure the escape timescale?
PAMELA Collaboration, ApJ, Vol. 862, 141 (2018)

▷ 10Be is a β− unstable isotope with an half-life of∼ 1.5Myr

▷ Similar production rate σBe9 ∼ σBe10

▷ The observed isotopic ratio hints to an escape timescale ofO(100)Myr at∼ 1 GeV
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The Beryllium-over-Boron ratio and the escape time
Evoli et al., PRD 101 (2020)

▷ Only the total Be is measured by AMS-02, but with extreme precision [AMS-02 Coll., PRL 120 (2018)]

▷ Preference for large halosH ≳ 5 kpc [see also Weinrich et al., A&A (2020)]

▷ Notice thatH and τesc are mutual corresponding, since τesc ≃ H2

D =
(
H
D

)
B/C H
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Nuclei and electron timescales
Evoli, Blasi, Amato & Aloisio, PRL (2020)
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IC + synchroton losses

▷ Leptons lose their energy through e.m. interactions mainly with the interstellar radiation fields (ISRFs)
and the magnetic fields

▷ The Milky Way is a very inefficient calorimeter for nuclei and a perfect calorimeter for leptons

▷ Translate losses into propagation scale: λ ∼
√

4D(E)τloss → horizon

C. Evoli (GSSI) CR lifetime in the Galaxy 7/7/2020 11 / 25



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The CR leptonic counterpart
AMS-02 coll., PRL 122 (2019)

▷ AMS-02 local measurements of e+ and e− compared with protons

▷ It is not compatible with all leptons being secondary: ppISM → e± , then we need a primary component
for electrons.
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Secondary positrons and the positron fraction
P. Serpico, Astroparticle Physics 39 (2012)

▷ The injection rate of secondary positrons (and electrons) is∝ to the proton spectrum:

Qe+ (E) ∼ cn̄gasσppΦp(E) ∝ E
−αp−δ

▷ while primary electrons have the same source term as primary nuclei:

Qe− =
NSN(E)RSN

πR2
dH

∝ E
−αe

▷ The escape time is now set by the energy losses

τ ∝
τloss√

D(E)τloss
∝ E

−1/2−3δ/2

▷ However, their ratio after propagation is independent on τ :

e+

e−
∼

Qe+�τ
Qe−�τ

∼ E
−(αp−αe)−δ

▷ if e+ are secondaries (and αp = αe)→ the positron fraction must be a monotonically decreasing
function of energy

−→
e+

e−
∝ E

−δ
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The positron fraction
PAMELA coll., Nature 458 (2009); FERMI-LAT coll., PRD 95 (2017); AMS-02 coll., PRL 110 (2013)
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Pulsars as positron galactic factories

▷ PWNe pre-dicted as galactic positron factories even before PAMELA [Harding & Ramaty, ICRC 1987;
Boulares, ApJ 342 (1989); Atoyan, Aharonian & Völk, PRD 52 (1995)]

▷ HAWC has detected bright and spatially extended TeV gamma-ray sources surrounding the Geminga
and Monogem pulsars [HAWC coll., Science 358 (2017)]
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The CR positron flux with a primary component by PWNe
Hooper, Blasi & Serpico, JCAP 25 (2009); Grasso et al., APP 32 (2009); Delahaye et al., A&A 524 (2010); Blasi & Amato (2011)
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▷ The e± pairs created in the pulsar magnetosphere become part of the relativistic wind into which
pulsars convert most of their rotational energy

▷ γ/X-ray emissions by these objects are described by a flat spectrum (with 1 < αL < 2) at low
energies, which then steepens to∼ E−2.5 beyond∼ few hundred GeV
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Are positrons truly primary?
Blum et al., PRL 111 (2013); Cowsik & Madziwa-Nussinov ApJ 827 (2016); Lipari, PRD 95 (2019)

▷ Positrons and anti-protons share the same spectrum (likewise electrons)!

▷ The e+/p̄ ratio is very close (2.04 ± 0.04) to the one expected by pure secondary production

▷ Can it be just a (actually two!) coincidence?
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Are positrons truly primary?
Lipari, PRD, 2019
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IC + synchroton losses

▷ In order to have just secondary positrons however we need to get rid of the energy losses.

▷ The lepton e− + e+ spectrum exhibits a sharp and large (∆γ ∼ 1) break atE ≃ 1 TeV which could
be associated with the onset of energy losses.

▷ Given the systematics, the feature might indicate either a break in the powerlaw spectrum or a kind of
cutoff, see also CALET and DAMPE for direct measurements [CALET coll., PRL 119 (2017); DAMPE coll.,
Nature 552 (2017)].
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A new structure in the cosmic-ray electron spectrum
AMS-02 collaboration, PRL 122, 2019

▷ The question we wanted to adress was if it is possible to identify signatures associated to energy
losses in the electron or positron spectra (below 1 TeV).

▷ The existence of a fine structure at∼ 42 GeV was first noted by the AMS02 collaboration (and
erroneously attributed to more than one CR electron population)
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A closer look at the energy losses
Evoli, Blasi, Amato & Aloisio, PRL (2020)
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▷ b(E) = (4/3)σ(E)cγ2
e → τ = E/b(E)

▷ Thomson regime only valid for γeEph ≲ mec
2 [Klein and Nishina, Zeitschrift für Physik 52, (1929)]

▷ For the UV background, the typical temperature is T ∼ 104K [Moskalenko, Porter and Strong, ApJ 640 (2006),
Popescu et al., MNRAS 470 (2017)] hence the KN effects become important atE ∼ 50 GeV.
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The signature of energy losses on the cosmic ray electron spectrum
Evoli, Blasi, Amato & Aloisio, PRL (2020)
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▷ We proved that the feature in the e− spectrum is the result of KN effects in the ICS on the UV bkg.

▷ Although at different energies, a feature associated with KN has been anticipated in several
works [Aharonian & Ambartsumyan, Astrofizika (1986); van der Walt & Steenkamp, MNRAS 251 (1991); Schlickeiser &
Ruppel, New JoP 12 (2010); Stawarz, Petrosian & Blandford, ApJ 710 (2010)]

▷ We exclude that the feature may reflect the spectral hardening in the diffusion coefficient.

▷ Fluctuations due to source stochasticity (gray band) are not significant where the feature is observed.
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The lepton spectrum
Evoli et al., in preparation
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Conclusions - I

▷ The CR grammage and lifetime provide valuable piece of information to build up a model
of CR propagation in the Galaxy.

▷ We presented two independent evidences that ≳ GeV CRs propagate in a relatively large
haloH ≳ 2 kpc corresponding to an escape time ofO(50)Myr at∼ 10 GeV.

▷ In particular, the change of slope at∼ 40 GeV detected for the first time by AMS-02 in the
electron spectrum could the unambiguous signature of the energy losses experienced by
leptons while propagating in the Milky Way large halo.

▷ In this scenario, the positron excess is easily accounted for in terms of primary positrons
(and electrons) liberated in the ISM by pulsars that abandoned their parent supernova
remnant.
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Conclusions - II

▷ Impressive progress on the experimental side in the GeV-TeV range over the past∼ 20
years, both in direct (AMS-02, CALET, DAMPE, PAMELA) and indirect (HAWC, HESS,
MAGIC, VERITAS) observations [Gabici, Evoli et al., IJMPD (2019)]

▷ The enormous amount of data of unprecedented quality allowed us to study Galactic CRs
in much greater detail, but also revealed a number of “anomalies”

▷ Most of these anomalies could be fully addressed by good quality measurements in the
TeV-PeV range in the next∼ 20 years. Looking forward at LHAASO, HERD, CTA...!
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