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ABSTRACT  

 
Early leakage detection and isolation are of paramount importance to the maintenance and resilience 
of the water distribution system (WDS). Efficient and accurate leakage detection and isolation 
algorithms could support practitioners to optimize WDS design and operation. Modern WDS, as 
equipped with supervisory control and data acquisition (SCADA), could record nodal measurements 
to facilitate training, validation, and selection of both mechanism-based and data-driven models. 
 
In this study for the battle of the leakage detection and isolation methods, a hybrid approach based 
on benchmark simulation and the ensemble multivariate changepoint detection (EMCPD) is proposed 
to detect leakage occurrences. Bilinear bivariate spatial interpolation for irregular spaced data and 
two-sample one-sided Student’s t-test is further invocated to isolate leakage sites. 
 
First, a simulation was performed, assuming no leakage occurred to attain the benchmark working 
condition series of the L-town WDS. The pressure-dependent demand scheme was deployed via the 
toolkit, water network tool for resilience (WNTR), with a simulation time step of five minutes [1]. 
Upon simulation, the residuals of flowrates and pressures were calculated by contrasting the sensor 
measurements and the simulated results. The observed demand data were assimilated as the nodal 
pattern, and therefore the nodal demand residuals were omitted. 
 
Based on the flowrate residuals, the EMCPD was performed to detect the rough time of leak events. 
Since the three flowrate sensors were installed either by the pump or by the reservoirs, the flowrate 
residuals should offer direct evidence of leakage events. At this stage, the flowrate residuals series 
with three variables were averaged to three observations per day in order to denoise short term 
fluctuation, keep diurnal and weekly cycles, and accelerate the computation. 
 
Around each rough candidate, the EMCPDs were performed to distinguish accurate moment 
candidates. At this stage, both the flowrate residuals (three variables) and pressure residuals (34 
variables, tank water level included) series were engaged at five minutes level, from 46 hours before 
the rough timing to 2 hours after the rough timing. With more covariates involved, the multivariate 
residuals time series would shrink the accurate candidates’ pool.  
 
Finally, around each accurate moment candidate, the pressure contours of the L-town were calculated 
by adopting bilinear bivariate spatial interpolation based on the monitored 34 pressure time series [2]. 
To be conservative, only the nodal pressures inside the convex hull of pressure sensors were estimated 
from 25 minutes before each accurate candidate moment to 25 minutes after each accurate candidate 
moment. For each node, its estimated pressures time series were firstly exponentially moving 
averaged and then grouped as before or after the candidate moment. The two-sample one-sided 
Student’s t-tests with unknown variance were performed on the two groups to isolate the most likely 
sites. The sites would be characterized as showing the minimal p-values, or with the most significant 
negative mean pressure shift between two groups. Since all pressures were estimated based on 34 
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sparse sensors, bilinear spatial interpolation without extrapolation, as well as a p-value threshold of 
0.01 were adopted, with the intention to avoid overfitting, to be conservative at un-monitored nodes, 
and to be parsimonious at raising alarms. 
 
The EMCPD was performed by involving the results of six algorithms, including the most recent 
changepoint detection method [3], the non-parametric multiple changepoint analysis methods (with 
the E statistic or the Kolmogorov-Smirnov statistic) [4], the divisive hierarchical estimation algorithm, 
the kernel changepoint analysis, and the Bayesian estimator of abrupt change and trends [5]. The most 
recent changepoint detection method analyzed univariate time-series independently to obtain a 
profile-likelihood measures that summarizes the evidence of changepoints and then pooled 
information across time-series to give an optimal set. The non-parametric MCPD involved dynamic 
programming and pruning without underlying distributional assumptions. The Bayesian method 
quantified the relative usefulness of encompassed individual decomposition models, and then 
leveraged them via Bayesian model averaging. The votes from individual MCPDs were gathered to 
elect the most likely candidate per detection turn. Hyperparameters were tuned according to the 2018 
dataset. 
 
The proposed approach perceived 30 rough candidates and 55 accurate candidate moments, as 
tabulated in Tab.1. The vote counts from EMCPD was relatively scattered for the rough candidates, 
but highly concentrated for the accurate candidates. The flowrate residuals as well as rough candidates 
were delineated in Fig.1. Four instances of pressure changes around an accurate candidate were 
graphed in Fig.2. The Fig.2(a) presented an abrupt pressure drop prior and posterior to an accurate 
moment candidate, which could be due to a pipe burst event. The Fig.2(b) presented a minor pressure 
drop prior and posterior to an accurate moment candidate, which could be due to the downward 
pressure trend drifting lead by the development of a background leakage. The Fig.2(c) presented an 
abrupt pressure rise prior and posterior to an accurate moment candidate, which could be due to the 
repair of an existing pipe burst event. The Fig.2(d) presented a minor pressure rise prior and posterior 
to an accurate moment candidate, which could be due to the upward pressure trend drifting. The 
isolation outcomes together with one-sided Student’s t-test results based on exponentially moving 
averaged short-term pressure time series around accurate moment candidates were listed in Tab. 2. 
 

Table 1. Detected moment candidates. 
Candidate type Detected moment candidates 
Rough candidates  
(30 in total number) 

2019-01-15 23:55:00, 2019-01-24 15:55:00, 2019-01-24 23:55:00, 
2019-02-01 15:55:00, 2019-02-07 15:55:00, 2019-02-15 07:55:00,  
2019-02-26 07:55:00, 2019-03-20 23:55:00, 2019-03-22 07:55:00, 
2019-04-02 15:55:00, 2019-04-19 15:55:00, 2019-05-05 23:55:00, 
2019-05-23 23:55:00, 2019-06-13 07:55:00, 2019-06-13 15:55:00, 
2019-07-01 15:55:00, 2019-07-17 07:55:00, 2019-07-17 15:55:00, 
2019-07-17 23:55:00, 2019-08-22 07:55:00, 2019-08-27 07:55:00, 
2019-08-27 15:55:00, 2019-09-03 15:55:00, 2019-09-16 07:55:00, 
2019-10-01 23:55:00, 2019-10-25 07:55:00, 2019-10-25 15:55:00, 
2019-11-13 23:55:00, 2019-11-27 15:55:00, 2019-12-22 23:55:00. 
 

Accurate candidates 
(55 in total number) 

2019-01-14 17:30:00, 2019-01-15 13:45:00, 2019-01-23 03:40:00,  
2019-01-24 14:20:00, 2019-01-24 12:50:00, 2019-01-25 00:30:00,  
2019-01-31 12:10:00, 2019-01-31 16:50:00, 2019-02-07 03:10:00,  
2019-02-07 15:25:00, 2019-02-13 10:55:00, 2019-02-14 21:55:00,  
2019-02-25 08:10:00, 2019-02-26 09:45:00, 2019-03-19 12:55:00,  
2019-03-20 19:20:00, 2019-03-21 22:20:00, 2019-03-31 18:30:00,  
2019-04-01 19:10:00, 2019-04-19 05:55:00, 2019-04-19 10:45:00,  
2019-05-04 07:15:00, 2019-05-05 23:50:00, 2019-05-23 07:40:00,  
2019-05-23 14:55:00, 2019-06-12 13:25:00, 2019-06-13 09:40:00,  
2019-06-13 16:40:00, 2019-06-29 23:05:00, 2019-07-01 13:45:00,  
2019-07-17 02:40:00, 2019-07-17 09:35:00, 2019-07-17 05:55:00,  
2019-07-16 09:55:00, 2019-08-21 04:50:00, 2019-08-22 07:20:00,  
2019-08-26 06:50:00, 2019-08-26 14:15:00, 2019-08-27 02:30:00,  
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2019-09-02 06:15:00, 2019-09-03 05:35:00, 2019-09-14 14:15:00,  
2019-09-15 04:20:00, 2019-10-01 06:45:00, 2019-10-02 00:40:00,  
2019-10-25 05:00:00, 2019-10-25 09:45:00, 2019-10-24 14:50:00,  
2019-10-25 16:05:00, 2019-11-12 06:50:00, 2019-11-13 06:45:00,  
2019-11-26 08:55:00, 2019-11-27 17:25:00, 2019-12-21 11:10:00,  
2019-12-21 14:10:00 

 

 
Figure 1. Time series of the flowrate residuals. Rough candidates from the ensemble multivariate changepoint detection 

algorithms were marked by red dash lines. 
 

 
(a)                                                  (b) 
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(c)                                                  (d) 

Figure 2. Pressure changes around (a) ‘2019-01-24 12:50:00’, (b) ‘2019-06-13 16:40:00’, (c) ‘2019-07-17 02:40:00’, 
and (d) ‘2019-10-24 14:50:00’. Pipe midpoints were dotted in gray together with pressure sensors emphasized by 
circles. Temporally around the detected accurate moment candidates, bilinear interpolation was applied inside the 

convex hull of sensors. The changes in average levels before and after the changepoints were presented by the scale bar. 
 

Table 2. Isolated leakage pipes. The two-sample one-sided Student’s t-test with unknown variances was 
performed on the exponentially moving averaged short-term pressure time series of each pipe for groups that 
were prior and posterior to the accurate moment candidate. 

Detected  
start time 

Isolated 
pipe 

X. 
Coord 

Y. 
Coord 

One-sided  
t-test  
p-value 

Avg. 
pressure, 
before 

Avg. 
pressure, 
after 

Pressure 
shift 

2019-01-14 17:35:00 p352 884.82 1295.43 0.0019 31.72 31.59 -0.14 
2019-01-15 13:50:00 p346 647.59 1124.08 0.0000 37.01 36.20 -0.80 
2019-01-24 12:55:00 p346 647.59 1124.08 0.0000 36.88 35.90 -0.98 
2019-01-31 12:15:00 p346 647.59 1124.08 0.0002 36.63 35.74 -0.89 
2019-02-25 08:15:00 p6 286.67 1281.28 0.0032 26.13 26.05 -0.08 
2019-02-26 09:50:00 p239 560.92 1142.78 0.0006 5.43 5.40 -0.03 
2019-03-21 22:25:00 p6 286.67 1281.28 0.0023 25.59 25.52 -0.08 
2019-03-31 18:35:00 p239 560.92 1142.78 0.0004 5.37 5.30 -0.07 
2019-04-19 06:00:00 p12 221.58 1318.85 0.0003 31.76 31.47 -0.28 
2019-05-04 07:20:00 p352 884.82 1295.43 0.0001 31.42 31.06 -0.36 
2019-05-05 23:55:00 p346 647.59 1124.08 0.0000 37.07 36.40 -0.67 
2019-05-23 07:45:00 p12 221.58 1318.85 0.0002 31.94 31.69 -0.25 
2019-06-13 09:45:00 p12 221.58 1318.85 0.0012 30.94 30.73 -0.22 
2019-06-29 23:10:00 p346 647.59 1124.08 0.0000 36.43 35.50 -0.93 
2019-07-17 09:40:00 p239 560.92 1142.78 0.0003 4.38 4.27 -0.11 
2019-07-17 06:00:00 p352 884.82 1295.43 0.0021 32.48 32.14 -0.34 
2019-08-21 04:55:00 p7 258.94 1361.98 0.0033 31.99 31.96 -0.04 
2019-08-22 07:25:00 p352 884.82 1295.43 0.0000 30.58 29.98 -0.60 
2019-08-26 06:55:00 p352 884.82 1295.43 0.0002 30.96 30.56 -0.40 
2019-09-02 06:20:00 p352 884.82 1295.43 0.0001 31.38 30.88 -0.50 
2019-09-03 05:40:00 p352 884.82 1295.43 0.0033 32.64 32.45 -0.19 
2019-09-14 14:20:00 p352 884.82 1295.43 0.0083 29.78 29.64 -0.14 
2019-10-01 06:50:00 p352 884.82 1295.43 0.0001 30.97 30.49 -0.47 
2019-10-25 05:05:00 p12 221.58 1318.85 0.0005 31.77 31.53 -0.24 
2019-10-25 09:50:00 p674 1693.87 646.09 0.0061 50.20 50.01 -0.19 
2019-11-12 06:55:00 p352 884.82 1295.43 0.0000 30.56 30.17 -0.38 
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2019-11-13 06:50:00 p352 884.82 1295.43 0.0018 31.65 31.26 -0.39 
2019-11-26 09:00:00 p352 884.82 1295.43 0.0005 30.65 30.31 -0.34 
2019-12-21 14:15:00 p352 884.82 1295.43 0.0013 29.74 29.53 -0.20 

 
The proposed hybrid approach employed both mechanistic model-based WNTR simulation and data-
driven two-step EMCPD methods for leakage detection. Demand records data were assimilated to 
match the mechanistic WNTR model with the observations, and output residuals for detection. To 
decrease computation costs, the EMCPD was applied in two steps with different temporal resolutions, 
which avoided iteratively solving hydraulic simulations. During the isolation step, to be conservative 
and parsimonious at triggering alarms among the sparse sensor network, lower-order interpolation 
from observed pressure data with no extrapolation, as well as a low p-value threshold were adopted. 
The overall approach with limited assumptions on the distribution of the underlying dataset was both 
computationally efficient and conveniently transferable to other spatial-temporal datasets and 
mechanistic models. Future research could adopt spatial kriging methods to explore leakage isolation 
via interpolation among sparse sensors. 
 
Keywords: Leakage detection and isolation; hybrid modeling; ensemble multivariate changepoint 
detection; bilinear spatial interpolation; hypothesis testing 
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SUMMARY 
 
A hybrid approach based on benchmark simulation and the ensemble multivariate changepoint 
detection (EMCPD) is proposed to detect leakage occurrences. Bilinear bivariate spatial interpolation 
and Student’s t-test is further invocated to isolate leakage sites. 
 
First, a simulation was performed, assuming no leakage occurred to attain the benchmark working 
condition series of the L-town WDS. The pressure-dependent demand scheme was deployed with a 
simulation time step of five minutes. Upon simulation, the residuals of flowrates and pressures were 
calculated by contrasting the sensor measurements and the simulated results. The observed demand 
data were assimilated as the nodal pattern, and therefore the nodal demand residuals were omitted. 
 
Based on the flowrate residuals, the EMCPD was performed to detect the rough time of leak events. 
At this stage, the flowrate residuals series were averaged to three observations per day to denoise 
short term fluctuation, keep diurnal and weekly cycles, and accelerate the computation. 
 
Around each rough candidate, the EMCPDs were performed to distinguish accurate candidates. At 
this stage, both the flowrate residuals and pressure residuals series were engaged at five minutes level. 
 
Finally, around each accurate candidate, the nodal pressures were calculated by using bilinear spatial 
interpolation based on monitored pressure time series. The two-sample one-sided Student’s t-tests 
were performed to isolate the most likely sites. Since all pressures were estimated based on 34 sparse 
sensors, bilinear bivariate interpolation without extrapolation, as well as a p-value threshold of 0.01 
were adopted, with the intention to avoid overfitting, to be conservative at un-monitored nodes, and 
to be parsimonious at raising alarms. 
 
The overall approach with limited assumptions on the underlying dataset distribution was both 
computationally efficient and conveniently transferable to other spatial-temporal datasets and 
mechanistic models. Future research could adopt spatial kriging to explore leakage isolation via water 
pressure interpolation among sparse sensors. 


