
TrustAV: Practical and Privacy-Preserving
Malware Analysis in the Cloud

Dimitris Deyannis∗
FORTH-ICS

Heraklion, Greece
deyannis@ics.forth.gr

Eva Papadogiannaki∗
FORTH-ICS

Heraklion, Greece
epapado@ics.forth.gr

Giorgos Kalivianakis∗
FORTH-ICS

Heraklion, Greece
gkaliv@ics.forth.gr

Giorgos Vasiliadis
FORTH-ICS

Heraklion, Greece
gvasil@ics.forth.gr

Sotiris Ioannidis
FORTH-ICS

Heraklion, Greece
sotiris@ics.forth.gr

ABSTRACT
While the number of connected devices is constantly growing,

we observe an increased incident rate of cyber attacks that target
user data. Typically, personal devices contain the most sensitive
information regarding their users, so there is no doubt that they
can be a very valuable target for adversaries. Typical defense so-
lution to safeguard user devices and data, are based in malware
analysis mechanisms. To amortize the processing and maintenance
overheads, the outsourcing of network inspection mechanisms to
the cloud has become very popular recently. However, the majority
of such cloud-based applications usually offers limited privacy pre-
serving guarantees for data processing in third-party environments.

In this work, we propose TrustAV, a practical cloud-based mal-
ware detection solution destined for a plethora of device types.
TrustAV is able to offload the processing of malware analysis to
a remote server, where it is executed entirely inside, hardware
supported, secure enclaves. By doing so, TrustAV is capable to
shield the transfer and processing of user data even in untrusted
environments with tolerable performance overheads, ensuring that
private user data are never exposed to malicious entities or honest-
but-curious providers. TrustAV also utilizes various techniques in
order to overcome performance overheads, introduced by the In-
tel SGX technology, and reduce the required enclave memory –a
limiting factor for malware analysis executed in secure enclave
environments– offering up to 3x better performance.

CCS CONCEPTS
• Security and privacy → Systems security; Intrusion de-

tection systems; • Networks → Cloud computing.

∗Also with the Department of Computer Science, University of Crete, Greece

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7107-0/20/03. . . $15.00
https://doi.org/10.1145/3374664.3375748

KEYWORDS
Intel SGX, trusted execution environment, antivirus, data pro-

cessing, mobile, privacy
ACM Reference Format:
Dimitris Deyannis, Eva Papadogiannaki, Giorgos Kalivianakis, Giorgos Vasil-
iadis, and Sotiris Ioannidis. 2020. TrustAV: Practical and Privacy-Preserving
Malware Analysis in the Cloud. In Proceedings of the Tenth ACM Confer-
ence on Data and Application Security and Privacy (CODASPY ’20), March
16–18, 2020, New Orleans, LA, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3374664.3375748

1 INTRODUCTION
Malware and cyber threats are continually evolving, urging the

protection of connected machines [40]. More specifically, Cisco’s
forecast predicts that the average number of devices and connec-
tions per capita will grow from 2.4 in 2017 to 3.6 by 2020, globally [3].
In addition, the percentage of usage of mobile devices grows and it
is expected that smartphones will account for 50 percent of total
global Internet traffic by 2022, up from 23 percent in 2017 [3]. In the
meantime, cyber threats are constantly evolving, bypassing state-of-
the-art countermeasures. For instance, Symantec’s monthly threat
report presents a 12% ransomware activity increase only in a month
time period (February to March 2019) [6]. It is obvious that malware
defense software has become one of the most popular tools, since
users need to mitigate any attack that aims to compromise their
personal devices, protecting their transactions and sensitive data.
In this work, we propose TrustAV, a flexible and practical malware
detection solution. TrustAV offloads the processing of malware anal-
ysis to a remote server and it is offered as a cloud-based solution.
Recently, the advent of cloud computing has led to the outsourcing
of many middlebox applications, including deep packet inspec-
tion [12] and virus scanning [23]. The advantages are numerous,
such as lower costs spent on equipment, operation andmaintenance,
better performance and scalability. However, offloading functional-
ity and sensitive personal data (e.g. user network traffic or files) to
a possibly untrusted third-party entity, automatically adds an extra
layer to the attack surface. To tackle with this possibility and limit
the risk, in TrustAV, the remote server is equipped with hardware
assisted enclave support (i.e. the Intel SGX technology). Operating
in a trusted execution environment (such as Intel SGX) shields both
computation and data. The primary aim of our work is to tackle the
problem of poor privacy preserving guarantees in state-of-the-art

Session 1: Trusted Environment  CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

39

https://doi.org/10.1145/3374664.3375748
https://doi.org/10.1145/3374664.3375748


cloud-based malware analysis solutions. In addition, through our
cloud-based implementation, TrustAV can be used on a plethora of
devices, either desktop or mobile, using a thin client application.
With TrustAV, we make the following contributions:

• We propose a practical cloud-based malware detection so-
lution that provides users with strong privacy preserving
guarantees regarding the processing of their personal and
sensitive data remotely by utilizing hardware assisted en-
claves.

• We identify and present the performance constraints that
are introduced by the Intel SGX technology, specifically in
relevant signature-based analysis systems (such as intrusion
detection or malware detection systems).

• We reduce the enclave memory footprint of our implementa-
tion, a limiting parameter for the majority of signature-based
solutions in the state-of-the-art, by developing a caching
scheme that eliminates EPC swapping and offers up to 3x
speedup.

• Our proposed architecture enables the protection of signature-
based automata that exceed the enclave memory limits in
architectures where swapping of protected memory pages is
not supported.

2 BACKGROUND
2.1 Threat model

Today, organizations and enterprises tend to outsource data
processing workloads to cloud providers. Providing applications as-
a-service has become a very convenient trend due to lower cost and
maintenance complexity. Still, these workloads contain important
information about the user. More specifically, a malware detection
tool has privileged access among the user files, e-mails and network
traffic. Processing such sensitive information needs to be taken seri-
ously by complying to security and privacy preserving standards in
order to guarantee confidentiality. Yet, how protected can users feel
regarding the safety of their data, especially when handled by par-
ties other than themselves? We define three different entities: (i) the
TrustAV client, (ii) the TrustAV server and (iii) the cloud provider.
The malware scanning engine lives inside the TrustAV cloud-based
server, which communicates with the clients through a network
connection. We assume that a TrustAV client is installed and ini-
tially executed when the device is in a clean state, so no malicious
executable has taken the control of the client or the device prior to
the execution of our malware detection system. The environment
that hosts the TrustAV server is considered untrusted, since there
is no control over the operating system, the hypervisor, the drivers,
the management stack, the system’s memory, I/O devices, etc. Fur-
thermore, even in a fully healthy environment, there is always the
possibility of an honest-but-curious cloud provider, willing to learn
and extract information regarding the users or the system utiliza-
tion. In this work, we safeguard both users and TrustAV system
from the aforementioned conditions. Obviously, the client and the
server are required to safeguard the transmission and the process-
ing of the user’s data. For the purpose of completeness, we assume
an uncompromised Intel SGX enabled processor hosting the remote
server. Finally, we stress that handling any side-channel attacks
against Intel SGX is out of our scope.

2.2 Secure execution inside Intel SGX enclaves
Intel SGX is a hardware assisted mechanism in the form of an

ISA extension to the Intel architecture. It is designed to allow se-
cure attestation and sealing to application software executing in a
secure environment that is known as enclave. The main purpose
of these extensions is the protection of selected code parts and
data from disclosure or modification in untrusted environments.
The enclaves are protected by the CPU that is in charge of any
access to the enclave memory or other protected areas of execution.
Any instruction that reads or writes to the enclave and is not part
of it, fails. Assuming an untrusted or even a malicious operating
system, hypervisor or firmware, SGX protects the confidentiality
of the enclave pages. An Intel SGX application consists of (i) the
untrusted code and (ii) a trusted enclave that it securely calls into.
The code and data that are part of the enclave are stored in a DRAM
subset, the Processor Reserved Memory (PRM). PRM has a con-
tiguous range and can not be accessed by any system software or
peripherals. Moreover, the contents of the enclaves are stored into
the Enclave Page Cache (EPC), a subset of PRM. Non-enclave soft-
ware is not able to access the EPC [15]. For Intel Skylake CPUs, the
EPC size is between 64 MB and 128 MB and SGX provides a paging
mechanism for swapping pages between the EPC and untrusted
DRAM. The data of the enclave that has to be written to the disk
is encrypted and checked for its integrity. Between enclaves, SGX
enables local attestation. Additionally, in the case of a third party
application or software, SGX allows remote attestation to ensure
that the application is uncompromised, and therefore can be trusted.
SGX enables the remote system to establish a connection with the
enclave, using an end-to-end encrypted channel. In Section 4, we
present the details regarding the development of TrustAV utilizing
the Intel SGX technology.

2.3 Signature-based malware analysis
Signature-based malware analysis is a commonly used technique

in state-of-the-art systems. The data under malware analysis are
processed against a set of malware signatures in order to identify
the presence of malicious software. The Aho-Corasick algorithm
is considered as an efficient option for multiple pattern search-
ing, since it matches all signatures in a rule-set simultaneously.
For this reason, Aho-Corasick is utilised by popular open source
security solutions (e.g. ClamAV antivirus [4], Snort network intru-
sion detection system [30]). The algorithm constructs a finite state
machine that resembles a tree, along with “failure” links between
the nodes. Failure links are followed when there is no matching
transition, allowing fast transitions to other branches of the tree
with a shared prefix and avoiding costly backtracking. To provide
a more efficient approach, a Deterministic Finite Automaton (DFA)
can be built by unrolling the failure links in advance and adding
relevant transitions to map each failure directly to a node without
the need to follow multiple failure links at runtime. In Section 4,
we present the details of our signature-based malware detection
using Aho-Corasick.

3 DESIGN
In this section we describe the design and implementation of

the TrustAV architecture. The overview of TrustAV is presented

Session 1: Trusted Environment  CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

40



in Figure 1. The two entities that compose our system are (i) the
TrustAV client, which transmits the necessary files to the remote
server for scanning, and (ii) the TrustAV server, which is responsi-
ble for performing the malware analysis in a privacy-preserving
way. The entire malware scanning operation is performed in the
cloud-based server, encapsulated inside Intel SGX enclaves. This
encapsulation enables the protection of the data processing algo-
rithms, the signature set and most importantly the privacy of the
user’s data.

3.1 TrustAV Client
The TrustAV client implements three distinct functionalities,

using three different components. The client prompts the users to
select files or file system regions that they wish to scan and pro-
vides a set of actions for each file that is found to be infected. Once
the selection is defined, it gathers the data and periodically checks
their status by comparing their hash values against known hash
values kept in a whitelist. Finally, the client transfers the files whose
hash values did not match with the whitelist to the cloud-based
TrustAV server which performs the malware scanning and reports
the results. The client is required to provide minimum effort and
functionality, while the computationally intensive malware scan-
ning is performed by the TrustAV cloud-based server. In this way,
the server remains independent from the client implementation,
while multiple client versions can be developed to support different
platforms and operating systems.

The hashing component is responsible for retrieving the data
from the client’s file system. The data can be found in the form of
various files present in the file system, such as photos, videos, au-
dio files or applications. The client periodically hashes all selected
files and directories and forwards the hash values to the whitelist
component. The window of the periodic scanning can be defined
by each user depending on the device type and current status of
each device. The client’s whitelist component is responsible for
comparing the hash values obtained by the hash computation mod-
ule against a list of hashes that have been calculated from a known
clean state of each file. If the hash values do not match a given
file, it is marked as suspicious and the client has to forward it to
the cloud-based TrustAV server for malware scanning. Moreover,
the client is responsible for the maintenance of the whitelist by
managing the entries of new or deleted files and updating existing
entries with new benign hash values. The motivation for this pe-
riodic hash-checking functionality is threefold. First, calculating
and comparing hash values against a set of known hashes—which
represent the clean state of files—can be quick and efficient given
the plethora of different hash algorithms available. Second, it is a
fast preliminary way to filter out benign files from possibly infected
ones without having to perform complex malware analysis on every
file and application of a device. This allows the TrustAV client to be
easily implemented for a wide variety of commodity devices (e.g.,
desktop, smartphone). Third, by marking only a limited subset of
files as potentially infected, we minimize the amount of data that
need to be transferred to the remote TrustAV server, improving
the overall performance of our system and minimizing the cost
for users who perform virus scanning using metered connections,
mobile data plans or are connected via a low bandwidth channel.

The most important component of the TrustAV client is the
secure communication with the remote server. This component
ensures that all the potentially infected files are transmitted to the
TrustAV remote server for a thorough malware analysis, in a secure
and privacy-preserving manner. Each file is first encrypted using
a secret cryptographic key, that is pre-established with the server.
After the successful transmission of the marked files, it awaits
for the remote server’s response. This response is received in an
encrypted form, and contains details about the infected files, such
as the risk level and the actions to be taken by the user. According to
the information provided by the TrustAV server, the client prompts
the user with possible actions in order to handle the infected files
in the file-system. Then, the whitelist module updates the list for
every file whose contents changed in a benign way, thus leading to
the generation of a new hash value, and removes the entries of the
deleted files.

3.2 TrustAV Server
The server is able to accept connections from multiple TrustAV

clients and perform malware analysis on the incoming data. The
server maintains an updated signature-set, used for the malware
analysis. By keeping the entire signature-set on the remote server,
the system is able to benefit in two ways. First, the system does
not rely on each user to maintain the latest signature-set locally.
Second, a major benefit of offloading the entire malware analysis on
the cloud-based TrustAV server is the ability to utilize the Intel SGX
enclaves, provided by recent Intel processors. Using SGX enclaves
we are able to execute the entire life-cycle of the virus scanning
process in a trusted environment, ensuring that any sensitive data
obtained by the users, cryptographic keys and signature-sets are
never exposed in the server’s DRAM or file system. This attribute
is crucial for two reasons. First, we can guarantee that users can
securely offload sensitive data to the remote server for malware
analysis without risking leakages. Second, even if malicious actors
manage to compromise the server, they will not be able to iden-
tify the signatures used in the signature-set or tamper it in any
way. Moreover, Intel SGX enclaves ensure the secure code execu-
tion. This makes the virus scanning algorithms immune to attacks
while they are executed, preventing code tampering or data leakage
from variables in use. Finally, since Intel SGX enclaves operate as
a reverse sandbox and the enclave hosting the malware scanning
engine only communicates with the client, user data are not ac-
cessible even by honest-but-curious providers, hosting the server,
ensuring the privacy of the offloaded user data.

The user’s data are received in encrypted format by the TrustAV
server and are forwarded inside the Intel SGX enclave hosting the
engine of our system. Once inside the secure enclave, the data are
decrypted and prepared for processing. The cryptographic keys
required for the successful decryption of the client’s data exclusively
reside inside the SGX enclave. In this way, the secret keys and
sensitive data, such as personal documents or photos, are never
present in plain-text format in the server’s file system or DRAM
and they remain inaccessible even by the server’s host/provider.
Moreover, even if the non-SGX part of the TrustAV server or the
hosting infrastructure gets compromised, the keys and the private
user data can not be obtained.

Session 1: Trusted Environment  CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

41



SHA-256
Whitelist

Suspicious
Files

Malware
Engine

3. Data
 Transmission

Report
Generator

4. Malware
Analysis

TrustAV Server

Client
SGX

Report
5. Whitelist

Update

1. Key Exchange

2. Hash
Evaluation

6. Virus
Mitigation

PDF

APK

JPEG
...

MP3

Quarantine

Figure 1: TrustAV design overview.

The malware scanning component constitutes the core of our
system and is responsible for processing the incoming data us-
ing a given malware signature-set. The entire functionality of this
component along with all required data, such as the signature-set,
reside only inside the Intel SGX enclave. Each rule is assigned with
a unique ID and it is consisted of a set of patterns and information
metadata, describing the malware functionality, the risk level and
suggested actions. The virus scanning process is performed inside
the enclave once the data are decrypted using each client’s secret
key. When a rule is successfully triggered by an input file, the cor-
responding metadata along with the file information are processed
in order to be forwarded to the client as a status report.

The report generation is performed by a separate component,
which also resides inside the secure enclave. During this process, the
TrustAV server receives results from the malware scanning engine
and generates a report that will be processed by the TrustAV client.
This report contains information about the malicious files detected,
such as filenames, risk level, scanning date, etc. When the report
is constructed, the server encrypts it, while still inside the enclave,
and then it is forwarded to the corresponding client. Ensuring that
the scanning report never lives outside of the SGX enclaves in plain-
text format is very important for the user’s privacy. By rendering
the report inaccessible outside the user’s device or the server’s SGX
enclave, attackers or honest-but-curious entities, such as the service
provider, can not obtain any information about the user’s private
data. In combination with protecting the signature-set inside the
enclaves, we also eliminate the possibility of malicious entities
injecting custom signatures and observe the generated report in
order to infer information that could threaten the privacy of the
user’s data. Moreover, the report is randomly obfuscated so that its
size can not be used in order to infer information about the number
or type of identified malware.

3.3 Service Registration
The registration process is the first task performed by TrustAV

when the client is initiated on a user’s device. At the first step of
this process, the client communicates with the TrustAV cloud-based
server and exchanges a shared key. During this process, the server
generates a client ID and stores the shared key along with the
corresponding ID inside the SGX enclave. The second step is the
generation of the list containing the hashes of each file at a clean,
uninfected state. For this reason, the client hashes every selected
value and temporarily populates the whitelist. Then, every file is
transmitted to the remote server for malware analysis. Once the
server responds with the report, the hash values of the uninfected
files are considered permanent in the whitelist and all the malicious
files, if any, are handled by the user according to the report. When
the registration process is finished, the TrustAV client prompts
the user for a periodic hashing interval and the system defaults in
automated periodic scanning.

3.4 Remote Attestation
TrustAV can leverage the Remote Attestation services, provided

by Intel in order to further increase the security and level of trust
of the SGX-enabled server. Using remote attestation, the TrustAV
client challenges the server to verify that the core part of the engine
is located inside a signed SGX enclave, executed on an SGX-enabled
processor. In this way, we eliminate the possibility of a malicious
entity posing as an SGX-enabled TrustAV server in order to obtain
access to a user’s private data. Moreover, we prevent entities ex-
ecuting the TrustAV server in SGX-debug mode, trying to obtain
access to the user’s sensitive data and server’s secret keys via the
use of debuggers.

Session 1: Trusted Environment  CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

42



4 IMPLEMENTATION
In this section, we present the implementation of the applica-

tions that compose TrustAV. We provide detailed description of
the malware scanning process as well as the steps required to de-
velop an SGX-enabled malware scanning engine, operating on a
cloud-based server to protect and preserve the privacy of the user’s
data.

4.1 Malware Scanning Inside SGX Enclaves
Our malware scanning engine is based on the Aho-Corasick

pattern matching algorithm, as it is one of the most efficient and
widely used, found in many signature-based solutions, such as the
popular open-source ClamAV. TrustAV performs the entire malware
scanning process inside Intel SGX enclaves in order to preserve the
privacy of the offloaded data, the security of the executed code and
the integrity of the signature-set.

As described in Section 2.3, in most implementations, the pat-
terns are compiled into a state machine (DFA) which is constructed
as a tree with each node containing information about the state it
represents, as well as various metadata. However, this state machine
structure is not optimal in order to be used inside SGX enclaves. The
reason is twofold: (i) the generated tree requires a lot of memory
in order to be represented while the live available memory of SGX
enclaves is quite limited, (ii) traversing the nodes located scattered
in memory during the pattern matching process eliminates pos-
sible caching effects and reduces the sustainable performance. In
order to address these constraints that can play a significant role
in terms of performance, we choose to represent the DFA as a seri-
alization of the state machine tree to a single-dimensional integer
array. First, we compile all the available malware signatures into a
single Aho-Corasick DFA. Next, we serialize the produced tree as a
two-dimensional integer array. This array consists of 256 columns,
which represents the size of the ASCII set (i.e. all the values that a
single input byte can take), and N rows, where N is the number of
the states in the DFA. Each row represents a DFA state and each
cell contains the ID of the next valid transition, corresponding to
the ASCII character that the cell represents. In order to traverse the
serialized DFA tree, the matching process starts from state 0 (row
0) and selects the appropriate column, according to the ASCII value
of the first character of the input. In this cell, it finds the next valid
state, which is located in another row of the array. Then, it fetches
the next character from the input and moves to the cell pointed to
by the row given in the previous step and the column given by the
ASCII value of the current character. The final states in the array are
annotated with a negative sign. When the task hits a negative state,
a match has been successfully found. Then, the search is continued
using its absolute value for the next step. The fail states either point
the matcher to a previous valid state or to the initial state 0. In
practice, as we stated earlier, this array is single-dimensional and
all the rows that we mentioned in our example are concatenated.
Since the size of every row is 256 integers, the matcher traverses
the array as follows: state = dfa[state * 256 + current_input_byte].
For this reason, the serialization of the state machine provides a
second important benefit to our system. The malware scanning
function requires only a few lines of code, rendering it very fast
and efficient but, most importantly, produces a minimal Trusted

Computing Base (TCB) which is very easy to audit and eliminate
any security threatening software bugs.

4.2 SGX Enclave I/O
With the malware scanning process and the signature-set se-

cured inside SGX enclaves, the second –and most important– part
of our implementation is to provide secure and efficient I/O with
the enclave. The only entry point offered by the enclave is utilized
for user-data entry. Since the SGX enclaves do not have access to
system calls, the network sockets, necessary for receiving client
data, are managed by the non-SGX enabled part of the TrustAV
server. The data arrive encrypted via the network while the se-
cret keys required for their decryption exclusively reside inside
the SGX enclave. Entering the enclave is achieved via the use of
an Ecall function. However, multiple consecutive calls to this
function can impose a performance overhead to the system. For
this reason, we bach incoming encrypted client data using a buffer
in the non-SGX enabled part of the application and transfer the
buffer into the enclave once it is full. The size of this buffer can be
optimized dynamically according to the current workload. Once a
batch of user data is gathered, it is forwarded into the enclave for
processing.

Before the malware scan can take place, the matcher decrypts
the user data with the corresponding key, inside the secure enclave.
This ensures that while a compromised server can block the data
forwarding into the enclave, the data and the secret keys never
reside in main memory or the file-system in plain-text format. The
malware analysis results are compiled as a report that can be then
parsed by the client. This report contains information about the
infected files and the identified malware as well as recommended
actions that a user could perform to mitigate each threat. The only
data output point of the enclave is utilized in order to transmit
the report back to the TrustAV client. Once again, the report is
encrypted inside the SGX enclave using the client’s secret key. This
action is performed in order to guarantee that external observers
will not be able to gain any useful information that could disclose
the user’s file contents or types. After its successful encryption,
the report is forwarded to the non-SGX enabled part of TrustAV
server in order to be transmitted the client via the network. As an
extra privacy preserving guarantee, the report is generated each
time with an arbitrary size in order to prevent attackers to infer
information by monitoring the report’s size.

4.3 Performance Optimizations
One of the biggest challenges of modern signature-based solu-

tions (such as Snort, ClamAV, and TrustAV) is the memory footprint
of the signature automata. Usually, the performance of applica-
tions that utilize multi-pattern matching algorithms, such as Aho-
Corasick, is limited by the cache size provided by the CPU. Once
the signature automaton exceeds the cache size, cache misses can
greatly hinder the system’s performance —a problem that only gets
worse as the automaton increases in size when new rules are added.
This challenge reaches a new dimension when such an antivirus
engine is designed to be executed inside secure SGX enclaves. Dur-
ing execution, enclave code and the required data are placed in
a special memory region called Enclave Page Cache (EPC). This

Session 1: Trusted Environment  CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

43



region is protected by being encrypted by a dedicated chip called
Memory Encryption Engine (MEE). In this way, memory pages are
only decrypted inside the physical processor core while external
reads on the memory bus can only observe encrypted data. The EPC
size is set by the BIOS and can reach up to 128MB. The SGX driver
for the Linux platform supports page swapping, allowing SGX to
remove pages from the EPC and place them encrypted in unpro-
tected memory as well as restore them when they are referenced.
Pages can not be removed until all cache entries referencing them
have been removed from all processor logical cores. This property
of the SGX driver provided for Linux allows the allocation of the
memory required to store automata exceeding 128MB. However,
the random accesses in the automaton’s states during the matching
process produce a substantial number of accesses to pages stored in
unprotected regions, triggering the expensive process of restoring
such pages —an overhead that is being added to the one already
introduced by the increased number of cache misses as at this point
the automaton size is greater than the cache size by orders of mag-
nitude. During the preliminary testing of our system we discovered
that this issue becomes very prominent when more than 50% of the
input data are infected with malware. Similar behaviour deriving
from EPC size is also observed in the literature [9]. Moreover, the
SGX driver for Windows does not support this swapping function-
ality, meaning that automata greater than 128MB can not be stored
inside enclaves at all. Considering that automata containing 5000
patterns exceed 128MB, even after serialization, EPC size is a strong
limiting factor for porting our application toWindows as well as for
every signature based solution that wishes to utilize SGX enclaves.

In order to address this constraint, we develop two custom
caching systems, aiming to minimise accesses to pages stored out
of EPC as well as enable the protection of big automata for the
Windows platform without sacrificing security. Our first approach
is a simple cache with configurable size that is limited to 90MB,
allowing other data and code to be stored inside the EPC without
triggering swapping. This cache stores the first n automaton states
while the rest are stored in untrusted memory. In order to protect
this part of the automaton, we encrypt each individual transition
separately using AES-GCM as provided by the SGX SDK. This pro-
cess is performed using SGX enclaves for the entire automaton
during its compilation, enabling the reconfiguration of the cache
size, while the keys required for decrypting the transitions are ex-
clusively stored in the enclave. The SGX enclave is able to access
untrusted memory with minimal overhead. During execution, if a
transition is not found in the cache, the matcher fetches a copy of
its encrypted counterpart, decrypts the contents inside the enclave
and proceeds with the malware scanning. In this way, we eliminate
the need of costly secure swapping of EPC pages an enable the
use of big protected signature-sets for Windows. As we describe
in Section 5, this caching system is very efficient due to the fact
that according to our micro-benchmarks, in most cases, caching
25% of the automaton results to an average of 85% cache hit ratio
when the data are 100% infected. Utilizing the same encryption
scheme, we further optimize the caching system by replacing the
simple mechanism with an LRU cache. Our goal at this step is to
further improve the cache hit ratio while decreasing the cache’s
memory footprint in order to minimise CPU cache misses and pos-
sibly enable the simultaneous operation of several caches, serving

different rule-set automata. In order to achieve this, we implement
the LRU as a double-linked list with each node holding information
about the cached transitions. LRU look-ups are performed using
a hash table with each entry being a pointer to a queue node in
order to minimise the memory footprint. Finally, we eliminate con-
stant memory allocations when transitions are inserted or evicted
from the cache by implementing a memory pool that performs the
required allocations during initialization.

4.4 TrustAV Clients
Aiming to cover the vast majority of devices and platforms,

we implement both a desktop and a mobile client. The desktop
version is targeted for traditional desktop/server devices while
the latter is developed as a standard Android APK, that can be
utilized by smartphones, tablets and Android-enabled IoT devices.
Both clients perform the service registration with the server, as
described in Section 3. The hashing of the selected files is performed
using SHA-256, utilizing the appropriate libraries offered by each
platform. Moreover, the clients implement secure persistent storage
of the white-list by exporting it to the file-system encrypted. The
exported white-list is also paired with checksums in order to ensure
its integrity. The main difference between the two clients is the fact
that the desktop implementation is able to utilise remote attestation
in order to further enhance the security of the connection with the
remote server. This functionality is not available for the Android
platform but is not a strong requirement for the execution of our
system. Finally, the mobile client offers several options for the fine
grained configuration of the scanning intervals in order to minimise
network traffic when the device is using a metered connection and
optimise battery consumption. Clients targeting other mobile or
desktop platforms can be easily developed by implemented the
described functionality.

5 EVALUATION
In this section we present the evaluation of TrustAV. First, we

analyze the performance characteristics of our malware scanning
engine and explain the performance overhead introduced by the
usage of hardware assisted enclaves (i.e. Intel SGX enclaves). Then,
we evaluate the performance of our caching systems and present
their effectiveness compared to default SGX page management.

5.1 Evaluation setup
Hardware Setup. The TrustAV server is hosted on an commodity

desktop, based on an eight-core Intel i7-8700K CPU, running at
3.7GHz, providing support for Intel SGX enclaves. The system is
also equipped with 32GB of DDR4 RAM clocked at 2400MHz.

Malware Signatures andWorkloads. We evaluate the performance
of our system using malware signatures utilised by ClamAV. Specif-
ically, we generate sets that contain a varying number of randomly
selected signatures (i.e. 10, 100, 1000, 10000, 20000 and 30000), ex-
tracted by ClamAV’s malware signature database. Each set is com-
piled into a separate automaton, as described in Section 4. In addi-
tion, we generate four different input streams for each signature-set,
containing 512MB of data. These streams are composed by various
files, injected with signatures so that they report 0%, 10%, 50% and
100% matches. In order to stress the limits of TrustAV, all input

Session 1: Trusted Environment  CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

44



 0

 1

 2

 3

 4

 5

10 100 1000 10000 20000 30000
 0

 0.5

 1

 1.5

 2

 2.5

T
h

ro
u

g
h

p
u

t 
(G

b
p

s
)

Signatures per Rule-Set

            Malware
0%

10%
50%

100%
DFA size

(a) Vanilla

 0

 1

 2

 3

 4

 5

10 100 1000 10000 20000 30000
 0

 0.5

 1

 1.5

 2

 2.5

A
u

to
m

a
to

n
 S

iz
e

 (
G

B
)

Signatures per Rule-Set

            Malware
0%

10%
50%

100%
DFA size

(b) SGX Enabled

Figure 2: Throughput evaluation of our malware scanning engine when executed with and without Intel SGX enclaves. Six
different signature sets are tested against custom input infected by 0%, 10%, 50% and 100%.

streams that contain matches are crafted so that every signature of
each corresponding set is present in the data and every automaton
state is accessed.

5.2 Malware Analysis
Figure 2(a) illustrates the sustained throughput achieved by our

malware analysis system when executed without using Intel SGX
enclaves, while Figure 2(b) presents the performance, when TrustAV
is entirely executed within secure enclaves. In addition, each au-
tomaton used in each execution is located inside the enclave mem-
ory space. Comparing the results, we can see that securing the
execution within SGX enclaves adds no more than 19% overhead
in execution time when the signature set is able to entirely fit in
EPC. This overhead occurs due to (i) the execution of the added
CPU instructions, (ii) the accesses inside the enclave’s encrypted
memory and (iii) the time required to enter and exit an enclave. On
the other hand, we can see that the overall execution throughput
is reduced for automata exceeding the EPC size when the input
streams are infected by 50% or more. In such cases, the multiple
frequent random accesses to every automaton state produce a high
number of accesses to EPC pages stored in untrusted memory. This
behaviour triggers the costly process of restoring them in EPC and
evicting others that might be shortly needed after processing only
a few bytes from the input. Despite the fact that this issue is not ob-
served with low input stream infection rates, it should be addressed
as it severely affects highly infected input data streams by reducing
the overall performance by an order of magnitude.

In order to identify the performance penalty introduced by pro-
tecting the signature automata, storing them inside the SGX enclave,
we re-evaluate the throughput of ourmalware scanning engine with
a different setup. In this case we execute TrustAV server with SGX
support but we store the automata in unprotected memory in plain-
text format. Since SGX enclaves have full access to unprotected
memory with minimal overhead, our engine is still able to process
the input streams without exposing the user’s data which are still

secured and processed inside the enclave. The results of this analy-
sis are presented in Figure 3. Comparing the sustained throughput
achieved with automata that exceed EPC size against the perfor-
mance reported in Figure 2(b), we notice that with this setup the
overall performance is significantly increased. This benchmark also
provides us with useful information for the implementation and
evaluation of the caching systems, described in Section 4.3, as this
is the maximum performance that could theoretically be achieved
if the EPC page swapping is minimized by 100%. If the TrustAV
hosting facility can be completely trusted and the integrity of the
signature-sets can be guaranteed or in cases where system perfor-
mance is a strong requirement, this setup can still be utilized as user
data are still never exposed out of the secure enclaves. However, it
is not the optimal scenario as potential tampering of the signature
set is possible and in such cases frequent integrity checking of the
automata should be performed as a minimum countermeasure.

5.3 Performance Optimizations
In this section, we evaluate the performance of the two caching

systems that we implement in order to address the performance
penalty introduced by severe EPC page swapping, discussed in
Section 5.2. By analysing our system’s performance with the au-
tomaton protected inside the secure enclaves as well as stored in
untrusted memory in plain-text format, we are able to identify the
introduced overhead for protecting the automaton and the possible
maximum performance.

Aiming to preserve TrustAV’s security and privacy guarantees,
we explore the possibility of encrypting each automaton state using
AES-GCM, provided by the Intel SGX SDK, and storing the automa-
ton in unprotected memory in cypher-text format. In this setup,
every referenced state is only decrypted inside the SGX enclave
during processing and remains protected but without being allo-
cated in EPC pages. We evaluate this setup for automata exceeding
EPC capacity using input streams containing only infected files and
present the results in Figure 4. While this setup eliminates the need

Session 1: Trusted Environment  CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

45



 0

 1

 2

 3

 4

 5

10 100 1000 10000 20000 30000

T
h

ro
u

g
h

p
u

t 
(G

b
p

s
)

Signatures per Rule-Set

      Malware
0%

10%
50%

100%

Figure 3: Performance evaluation of TrustAVwhen executed
within SGX enclaves but the automata are stored in un-
trusted memory in plain-text format.

 0

 50

 100

 150

 200

 250

10000 20000 30000

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

Signatures per Rule-Set

EPC + swapping
no EPC + AES-GCM

Simple Cache
LRU

Figure 4: Performance comparison of the four ruleset protec-
tion schemes when the automaton size exceeds ECP capacity
and the dataset is infected at 100%.

for EPC page swapping, we notice that the performance is lower
compared to storing the automaton inside the enclave and letting
the SGX driver perform EPC page swapping. The main reason for
this is that the decryption of each state using AES-GCM is slower
than EPC page swapping, which is backed by the MEE implemented
in hardware. Moreover, we notice that this is also the worst case
performance for a cache implementation with minimum complex-
ity, operating at 100% cache misses. After exploring the theoretical
maximum and minimum performance boundaries of our system,
we implement the two caching systems described in Section 4.3 and
present their performance evaluation in Figure 4. For this evaluation
we use the three signature automata that exceed the EPC memory
limits, processing the input streams containing only infected files
that produce the worst memory access patterns in the automata. In
the simple cache setup, we store up to 90MB of each automaton in
EPC, leaving enough memory for the application code, the batches

of input data and the malware report generation process. The rest
of the automaton is stored in cypher-text format in unprotected
memory. Upon a cache miss, the state is fetched from the untrusted
memory, decrypted inside the enclave and discarded after usage.
We notice that this setup eliminates EPC page swapping while at
the same time reduces the accesses to encrypted states in untrusted
memory as it offers high cache hit rate, especially for the automata
containing 10000 and 20000 patterns. More specifically, we notice
that for the used rule-sets, caching 25% of the automaton yields
85% cache hit ratio, meaning that performance can be significantly
improved by caching only a small portion of the automaton, as
shown in Figure 4. However, this performance benefit gradually
decreases as the automaton increases in size and lower percentages
of its states can be stored without violating EPC memory limits.

We conclude our evaluation by presenting the sustained through-
put achieved by replacing the simple caching system with an LRU
cache and executing TrustAV with the same automata and input
streams as described above. As we can see in Figure 4, the LRU
cache yields the best results for the automata containing 10000 and
20000 patterns by further increasing the cache hit rate, efficiently
utilising the available EPC space. However, we notice that it can
not outperform the simple cache when processing the input stream
using the automaton containing 30000 patterns. The reason for this
behavior is that with the given EPC memory limit, the LRU can not
store enough states in order to provide substantial cache hit rate
increase, compared to the simple cache, while LRU cache misses are
more expensive since at each cache miss a state has to be evicted
and a new one has to be stored, constantly updating the LRU data
structures.

6 RELATEDWORK
As expected, the research community in the area of security

focuses on malware detection to protect users and organizations
from cyber threats that are continually evolving. ClamAV is the
most popular open-source anti-malware solution that speeds up
scanning and matching [4]. CloudAV was one of the first works to
put forward the notion of cloud-based malware scanning while [25]
extends CloudAV to the mobile environment. Although CloudAV
achieves high detection rate, it exposes sensitive information with-
out preserving the users privacy [24]. SplitScreen implements a
distributed anti-malware system to speed up the malware scanning
using bloomfilters [13]. RScam is another cloud-based anti-malware
system which provides efficient security service and data privacy
protection for resource-constrained devices [38]. Still, RScam as-
sumes a trusted server environment. In this work, we propose a
practical cloud-based malware detection engine using hardware
assisted enclaves to shield user data and preserve their privacy.
CloudNet is a GPU-accelerated anti-malware engine for cloud ser-
vices [18]. While some works focus on improving the performance
of malware detection systems (e.g. [44]), in this paper we tackle the
urge for strong privacy preserving guarantees when it comes to
computational offloading to untrusted environments, where users
have no control over the manipulation of their personal data. Hand-
held devices contain a large percentage of personal data, as for
instance pictures or transcripts, making them a promising target

Session 1: Trusted Environment  CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

46



for frauds [31, 37]. Some of the most popular commercial appli-
cations on mobile malware detection are the AVG Antivirus [1]
and Avira mobile security [2] solutions. Google provides its own
solution, namely Google Play Protect, as a built-in application that
automatically scans and verifies Android applications installed [5].
Unlike TrustAV, this solution is destined only for Android applica-
tions retrieved from Google’s Play Store. Similar research works
based on signature scanning, propose solutions that aim for low
power consumption [19, 21]. Other techniques for malware detec-
tion are code and API call analysis, like in ScanMe Mobile [48]
and [7], respectively. In Paranoid Android [28], security checks are
applied on remote security servers that host exact virtual replicas
of devices, applying multiple detection techniques simultaneously.
Other works, utilize machine learning techniques to apply malware
detection on mobile devices [8, 47]. Finally, Deyannis et al. pro-
pose a GPU-assisted antivirus solution on Android devices through
edge offloading [16]. While our work is based on the same grounds
(i.e. the malware detection with support for mobile devices), we
advance the state-of-the-art by proposing a practical, yet secure,
malware detection engine that strongly focuses on preserving user
privacy, offloading the processing of personal data inside a trusted
execution environment.

As the need for lower costs, higher performance and scalability
rises, outsourcing network processing applications to the cloud has
become tempting. APLOMB is a service for outsourcing enterprise
middlebox processing to the cloud [34]. To provide confidentiality,
BlindBox proposes the processing of encrypted traffic [35], some-
thing that leads to unpractical computational requirements. Like-
wise, Embark, aiming to offer security and confidentiality, enables
a cloud provider to support middlebox functionality by processing
encrypted traffic [20]. A common service that cloud-based services
providers offer is storage, yet, there is no transparency over the
manipulation of user data [22, 43, 45, 46]. CloudFence provides
transparent data tracking capabilities to both service providers
and users [26]. As already mentioned, TEEs, such as Intel SGX,
can guarantee data and code protection. Thus, recently, a signifi-
cant number of works focus on proposing the exploitation of this
technology for outsourced applications in the cloud. For instance,
VC3 [33], Opaque [49] and [14] offer privacy preserving data ana-
lytics in the cloud using Intel SGX. EnclaveDB [29] is a database
engine that can guarantee confidentiality, integrity, and freshness
for data and queries. In addition, EndBox [17], ShieldBox [41] and
SafeBricks [27] focus on securing middlebox functionality using In-
tel SGX. Unlike these works, our system aims to serve a cloud-based
anti-malware solution for any device type respecting their diverse
requirements. Finally, while there are works that enable the execu-
tion of unmodified applications in enclaves (e.g. [9, 10, 36, 39, 42]),
we choose not to follow such approach (i.e. execute our antivirus
solution on top of SGX using one of the aforementioned tools) since
these tools result to an increased trusted computing base (TCB),
which widens the attack surface [11, 32].

7 LIMITATIONS AND FUTUREWORK
Our proposed TrustAV cloud-based malware scanning solution

is based on a pattern matching technique in order to identify in-
fected data. As discussed in the paper, such approaches can face

performance limitations when the automata required for the data
processing are not able to entirely fit in secure enclaves and the
input data are highly infected. Also, it is possible that, in certain
applications, our TrustAV server might operate with more than
30000 virus signatures in total. Depending on the use-case, prelimi-
nary testing should be applied in order to identify the properties
of the automaton as different rules might generate automata with
different caching characteristics while the access patterns on each
automaton depend on the nature of the input data. As future work
we plan to extend our system so that the server can identify which
rules should be applied on each input stream. In this way, the server
will be able to utilize subsets of the rule-set so that smaller automata
will be generated, providing smaller memory footprints and bet-
ter caching properties. We expect that this technique will further
improve the overall performance of our system, regardless of the
infection rate of the input data.

For the evaluation of our proposed system we utilize real mal-
ware signatures, extracted by the database of the popular open-
source antivirus ClamAV. The input data streams are synthetic but
contain data that trigger all the malware signatures used. We chose
to evaluate our systems using synthetic input in order to be able to
control the infection rate as well as provide input that triggers the
worst possible access patterns in the automata. In this way we can
stress the limits of our system and provide a thorough evaluation. In
the future, we also plan to evaluate the end-to-end performance of
our system using real input streams collected by various platforms.

It is true that side-channel attacks are proven to be feasible
on SGX enclaves. However, protecting SGX enclaves from side-
channel attacks that either focus on software or hardware bugs
is orthogonal to TrustAV and thus we consider that it is out of
scope of our work. However, any successful attempt to protect
SGX-enabled code/hardware has a direct benefit to our system and
we plan to integrate such protections in the future, should they
become available.

8 CONCLUSION
In this work, we propose TrustAV, a practical and privacy pre-

serving cloud-based malware analysis solution. TrustAV offloads
the intensive process of malware analysis to a remote server with
Intel SGX support to protect offloaded personal data as well as
the scanning execution against untrusted parties. TrustAV is ca-
pable to perform with a minimum performance overhead, which
is introduced by the utilization of hardware assisted enclaves. To
reduce the memory footprint of our implementation, an important
limiting parameter for the majority of equivalent solutions in the
state-of-the-art, we develop a caching scheme that eliminates EPC
memory swapping and offers up to 3x speedup.

9 ACKNOWLEDGMENTS
The research work was supported by the Hellenic Foundation

for Research and Innovation (HFRI) and the General Secretariat for
Research and Technology (GSRT), under the HFRI PhD Fellowship
grant (GA. No. 2767). This work was also supported by the projects
CONCORDIA, I-BiDaaS and C4IIoT, funded by the European Com-
mission under Grant Agreements No. 830927, No. 780787 and No.
833828. This publication reflects the views only of the authors, and

Session 1: Trusted Environment  CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

47



the Commission cannot be held responsible for any use which may
be made of the information contained therein.

REFERENCES
[1] [n.d.]. AVG AntiVirus for Android.
[2] [n.d.]. Avira: Download security, privacy, and speed-enhancing apps for Android

and iOS. https://www.avira.com/en/mobile-security.
[3] [n.d.]. Cisco Visual Networking Index: Forecast and Trends, 2017-

2022. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white-paper-c11-741490.html.

[4] [n.d.]. ClamAV | Cisco Talos Intelligence Group. https://www.talosintelligence.
com/clamav.

[5] [n.d.]. Google Play Protect. https://www.android.com/play-protect/.
[6] [n.d.]. Monthly Threat Report (March 2019), Symantec. https://www.symantec.

com/security-center/publications/monthlythreatreport.
[7] Yousra Aafer, Wenliang Du, and Heng Yin. 2013. Droidapiminer: Mining api-level

features for robust malware detection in android. In International conference on
security and privacy in communication systems. Springer, 86–103.

[8] Vitor Monte Afonso, Matheus Favero de Amorim, André Ricardo Abed Grégio,
Glauco Barroso Junquera, and Paulo Lício de Geus. 2015. Identifying Android
malware using dynamically obtained features. Journal of Computer Virology and
Hacking Techniques 11, 1 (2015), 9–17.

[9] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Daniel O’Keeffe, Mark L
Stillwell, et al. 2016. SCONE: Secure Linux Containers with Intel SGX. In 12th
USENIX Symposium on Operating Systems Design and Implementation.

[10] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shielding applications
from an untrusted cloud with haven. ACM Transactions on Computer Systems
(TOCS) 33, 3 (2015), 8.

[11] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto, and Ahmad-Reza
Sadeghi. 2018. The Guard’s Dilemma: Efficient Code-Reuse Attacks Against
Intel {SGX}. In 27th {USENIX} Security Symposium ({USENIX} Security 18).
1213–1227.

[12] Anat Bremler-Barr, Yotam Harchol, David Hay, and Yaron Koral. 2014. Deep
packet inspection as a service. In Proceedings of the 10th ACM International on
Conference on emerging Networking Experiments and Technologies. ACM.

[13] Sang Kil Cha, Iulian Moraru, Jiyong Jang, John Truelove, David Brumley, and
David G Andersen. 2010. SplitScreen: Enabling Efficient, Distributed Malware
Detection.. In NSDI. 377–390.

[14] Swarup Chandra, Vishal Karande, Zhiqiang Lin, Latifur Khan,Murat Kantarcioglu,
and Bhavani Thuraisingham. 2017. Securing data analytics on sgx with random-
ization. In European Symposium on Research in Computer Security. Springer.

[15] Victor Costan and Srinivas Devadas. [n.d.]. Intel SGX explained. Technical Report.
Cryptology ePrint Archive, Report 2016/086, 2016.

[16] Dimitris Deyannis, Rafail Tsirbas, Giorgos Vasiliadis, Raffaele Montella, Sokol
Kosta, and Sotiris Ioannidis. 2018. Enabling GPU-assisted antivirus protection on
android devices through edge offloading. In Proceedings of the 1st International
Workshop on Edge Systems, Analytics and Networking. ACM, 13–18.

[17] David Goltzsche, Signe Rüsch, Manuel Nieke, Sébastien Vaucher, Nico Weich-
brodt, Valerio Schiavoni, Pierre-Louis Aublin, Paolo Cosa, Christof Fetzer, Pascal
Felber, et al. 2018. EndBox: Scalable Middlebox Functions Using Client-Side
Trusted Execution. In 2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 386–397.

[18] George Hatzivasilis, Konstantinos Fysarakis, Ioannis Askoxylakis, and Alexander
Bilanakos. 2018. CloudNet Anti-malware Engine: GPU-Accelerated Network
Monitoring for Cloud Services. In International Workshop on Information and
Operational Technology Security Systems. Springer, 122–133.

[19] Hahnsang Kim, Joshua Smith, and Kang G Shin. 2008. Detecting energy-greedy
anomalies and mobile malware variants. In Proceedings of the 6th international
conference on Mobile systems, applications, and services. ACM, 239–252.

[20] Chang Lan, Justine Sherry, Raluca Ada Popa, Sylvia Ratnasamy, and Zhi Liu.
2016. Embark: securely outsourcing middleboxes to the cloud. In 13th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 16).

[21] Lei Liu, Guanhua Yan, Xinwen Zhang, and Songqing Chen. 2009. Virusmeter: Pre-
venting your cellphone from spies. In International Workshop on Recent Advances
in Intrusion Detection. Springer, 244–264.

[22] Nick Nikiforakis, Marco Balduzzi, Steven Van Acker, Wouter Joosen, and Davide
Balzarotti. 2011. Exposing the Lack of Privacy in File Hosting Services.. In LEET.

[23] Jon Oberheide, Evan Cooke, and Farnam Jahanian. 2008. CloudAV: N-version
Antivirus in the Network Cloud. In Proceedings of the 17th Conference on Security
Symposium (SS’08).

[24] Jon Oberheide, Evan Cooke, and Farnam Jahanian. 2008. CloudAV: N-Version
Antivirus in the Network Cloud.. In USENIX Security Symposium. 91–106.

[25] Jon Oberheide, Kaushik Veeraraghavan, Evan Cooke, Jason Flinn, and Farnam
Jahanian. 2008. Virtualized in-cloud security services for mobile devices. In
Proceedings of the first workshop on virtualization in mobile computing. ACM,

31–35.
[26] Vasilis Pappas, Vasileios P Kemerlis, Angeliki Zavou, Michalis Polychronakis, and

Angelos D Keromytis. 2013. CloudFence: Data flow tracking as a cloud service.
In International Workshop on Recent Advances in Intrusion Detection. Springer,
411–431.

[27] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. 2018.
SafeBricks: Shielding Network Functions in the Cloud. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’18).

[28] Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis, and Herbert Bos.
2010. Paranoid Android: versatile protection for smartphones. In Proceedings of
the 26th Annual Computer Security Applications Conference. ACM, 347–356.

[29] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. EnclaveDB: A Secure
Database using SGX. In EnclaveDB: A Secure Database using SGX. IEEE, 0.

[30] Martin Roesch et al. 1999. Snort: Lightweight intrusion detection for networks..
In Lisa, Vol. 99. 229–238.

[31] Brendan Saltaformaggio, Rohit Bhatia, Zhongshu Gu, Xiangyu Zhang, and
Dongyan Xu. 2015. Vcr: App-agnostic recovery of photographic evidence from an-
droid device memory images. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. ACM, 146–157.

[32] Vasily A Sartakov, Stefan Brenner, Sonia Ben Mokhtar, Sara Bouchenak, Gaël
Thomas, and Rüdiger Kapitza. 2018. EActors: Fast and flexible trusted computing
using SGX. In Proceedings of the 19th International Middleware Conference.

[33] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: trustworthy data
analytics in the cloud using SGX. In IEEE Symposium on Security and Privacy.

[34] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Rat-
nasamy, and Vyas Sekar. 2012. Making middleboxes someone else’s problem:
network processing as a cloud service. ACM SIGCOMMComputer Communication
Review 42, 4 (2012), 13–24.

[35] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. 2015. Blind-
box: Deep packet inspection over encrypted traffic. ACM SIGCOMM Computer
Communication Review 45, 4 (2015), 213–226.

[36] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. 2017. Panoply:
Low-TCB Linux Applications With SGX Enclaves.. In NDSS.

[37] Junliang Shu, Yuanyuan Zhang, Juanru Li, Bodong Li, and Dawu Gu. 2017. Why
data deletion fails? A study on deletion flaws and data remanence in Android
systems. ACM Transactions on Embedded Computing Systems (TECS) 16, 2 (2017),
61.

[38] Hao Sun, Xiaofeng Wang, Jinshu Su, and Peixin Chen. 2015. Rscam: Cloud-based
anti-malware via reversible sketch. In International Conference on Security and
Privacy in Communication Systems. Springer, 157–174.

[39] Hongliang Tian, Yong Zhang, Chunxiao Xing, and Shoumeng Yan. 2017. SGXK-
ernel: A Library Operating System Optimized for Intel SGX. In Proceedings of the
Computing Frontiers Conference. ACM, 35–44.

[40] Eran Toch, Claudio Bettini, Erez Shmueli, Laura Radaelli, Andrea Lanzi, Daniele
Riboni, and Bruno Lepri. 2018. The privacy implications of cyber security systems:
A technological survey. ACM Computing Surveys (CSUR) 51, 2 (2018), 36.

[41] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov, Pramod Bhato-
tia, and Christof Fetzer. 2018. ShieldBox: Secure Middleboxes using Shielded
Execution. In Proceedings of the Symposium on SDN Research. ACM, 2.

[42] Chia-Che Tsai, Donald E Porter, and Mona Vij. 2017. Graphene-SGX: A practical
library OS for unmodified applications on SGX. In 2017 USENIX Annual Technical
Conference (USENIX ATC).

[43] Marten Van Dijk, Ari Juels, Alina Oprea, Ronald L Rivest, Emil Stefanov, and
Nikos Triandopoulos. 2012. Hourglass schemes: how to prove that cloud files are
encrypted. In Proceedings of the 2012 ACM conference on Computer and communi-
cations security. ACM, 265–280.

[44] Giorgos Vasiliadis and Sotiris Ioannidis. 2010. Gravity: a massively parallel an-
tivirus engine. In InternationalWorkshop on Recent Advances in Intrusion Detection.
Springer, 79–96.

[45] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. 2010. Privacy-preserving
public auditing for data storage security in cloud computing. In 2010 proceedings
ieee infocom. Ieee, 1–9.

[46] Jia Xu, Ee-Chien Chang, and Jianying Zhou. 2013. Weak leakage-resilient client-
side deduplication of encrypted data in cloud storage. In Proceedings of the 8th
ACM SIGSAC symposium on Information, computer and communications security.
ACM, 195–206.

[47] Chao Yang, Zhaoyan Xu, Guofei Gu, Vinod Yegneswaran, and Phillip Porras. 2014.
Droidminer: Automated mining and characterization of fine-grained malicious
behaviors in android applications. In European symposium on research in computer
security. Springer, 163–182.

[48] Hanlin Zhang, Yevgeniy Cole, Linqiang Ge, Sixiao Wei, Wei Yu, Chao Lu, Genshe
Chen, Dan Shen, Erik Blasch, and Khanh D Pham. 2016. ScanMe mobile: a cloud-
based Android malware analysis service. ACM SIGAPP Applied Computing Review
16, 1 (2016), 36–49.

[49] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, Joseph E
Gonzalez, and Ion Stoica. 2017. Opaque: An Oblivious and Encrypted Distributed
Analytics Platform.. In NSDI. 283–298.

Session 1: Trusted Environment  CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

48

https://www.avira.com/en/mobile-security
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.talosintelligence.com/clamav
https://www.talosintelligence.com/clamav
https://www.android.com/play-protect/
https://www.symantec.com/security-center/publications/monthlythreatreport
https://www.symantec.com/security-center/publications/monthlythreatreport

	Abstract
	1 Introduction
	2 Background
	2.1 Threat model
	2.2 Secure execution inside Intel SGX enclaves
	2.3 Signature-based malware analysis

	3 Design
	3.1 TrustAV Client
	3.2 TrustAV Server
	3.3 Service Registration
	3.4 Remote Attestation

	4 Implementation
	4.1 Malware Scanning Inside SGX Enclaves
	4.2 SGX Enclave I/O
	4.3 Performance Optimizations
	4.4 TrustAV Clients

	5 Evaluation
	5.1 Evaluation setup
	5.2 Malware Analysis
	5.3 Performance Optimizations

	6 Related Work
	7 Limitations and Future work
	8 Conclusion
	9 Acknowledgments
	References



