

ECAS: a data science environment for climate change in the EGI federated infrastructure

Fabrizio Antonio, Donatello Elia, Sandro Fiore

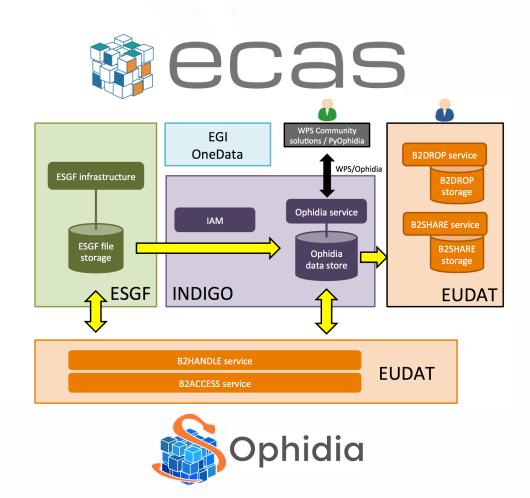
On behalf of the ECAS Team

eosc-hub.eu

@EOSC eu

EOSC-hub week 2020 Online | 18-20 May 2020

Impact of EOSC-hub on science communities



ENES Climate Analytics Service (ECAS)

The ENES Climate Analytics Service (ECAS), proposed by CMCC & DKRZ in the EU H2020 EOSC-Hub project, supports climate data analysis experiments with a strong focus on data intensive analysis, provenance management, and server-side approaches

It is one of the *EOSC-Hub Thematic*Services as well as a Compute Service in the IS-ENES3 project

ECAS consists of multiple integrated components from INDIGO-DataCloud, EUDAT, ESGF and EGI, centered around the *Ophidia HPDA framework*

https://www.eosc-hub.eu/services/ENES%20Climate%20Analytics%20Service

ECASLab: a Python environment for data analysis

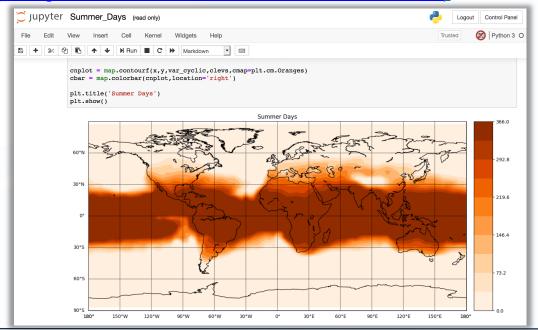
ECASLab provides a user-friendly environment for scientific analysis based on:

The ECAS integrated service

A *JupyterHub* instance providing a graphical environment for users experiments

A wide set of **Python scientific modules** for data manipulation, analysis and visualization (PyOphidia,

NumPy, Pandas, Dask, Matplotlib, basemap, Cartopy)


A set of ECAS usage example **notebooks** (https://github.com/ECAS-Lab/ecas-notebooks)

Two major instances hosted by:

- ✓ CMCC https://ecaslab.cmcc.it
- √ DKRZ https://ecaslab.dkrz.de

The Ophidia project

Ophidia (http://ophidia.cmcc.it) is a CMCC Foundation research project addressing data challenges for eScience¹

It provides:

a *High Performance Data Analytics* (**HPDA**) framework for multi-dimensional scientific data joining HPC paradigms with scientific data analytics approaches

in-memory and **server-side** data analysis exploiting parallel computing techniques and database approaches

a **multi-dimensional**, **array-based**, storage model and partitioning schema for scientific data leveraging the datacube abstraction

end-to-end mechanisms to support **complex experiments and large workflows** on scientific datacubes, primarily in **climate domain**

Ophidia

1. S. Fiore, A. D'Anca, C. Palazzo, I. T. Foster, D. N. Williams, G. Aloisio, "Ophidia: toward big data analytics for escience", ICCS 2013

EOSC-hub Programmatic access through the PyOphidia class

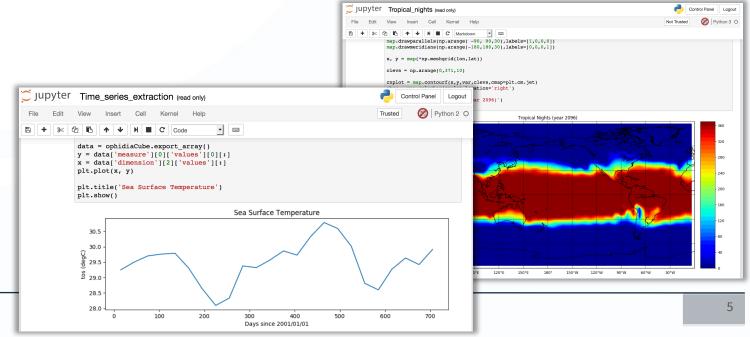
PyOphidia provides a Python interface to submit commands to the Ophidia Server and to easily retrieve the results (e.g. in Jupyter Notebooks)

Two modules available:

Client class: supports the submissions of Ophidia commands and workflows as well as the management of sessions

Cube class: provides the datacube type abstraction and the methods to manipulate, process and get information from cubes objects

```
from PyOphidia import cube, client
cube.Cube.setclient(read_env=True)


mycube =
cube.Cube.importnc(src_path='/public/data/ecas_training
/file.nc', measure='tos', imp_dim='time',
import_metadata='yes', ncores=5)
mycube2 = mycube.reduce(operation='max',ncores=5)
mycube3 = mycube2.rollup(ncores=5)
data = mycube3.export_array()

mycube3.exportnc2(output_path='/home/test',
export_metadata='yes')
```

https://github.com/OphidiaBigData/PyOphidia

https://pypi.org/project/PyOphidia/

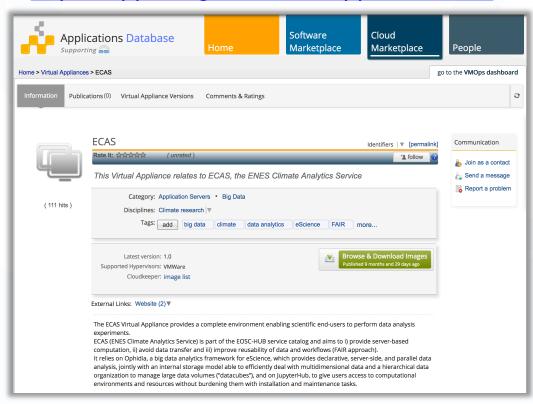
https://anaconda.org/conda-forge/pyophidia

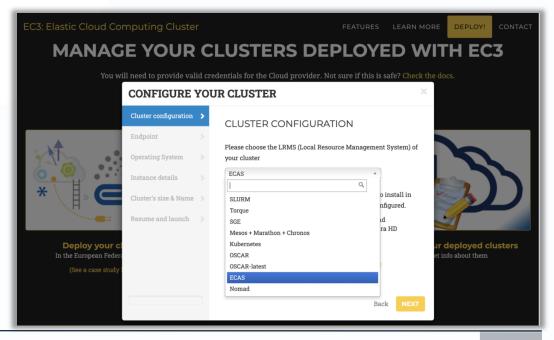
Integration of ECAS with Onedata

Onedata Provider deployed at CMCC SuperComputing Center to support a shared read-only repository (ECAS_space)

Single **OneClient** instance set up to interact with the provider

Data folders mounted on the ECAS users home through NFS in read-only mode

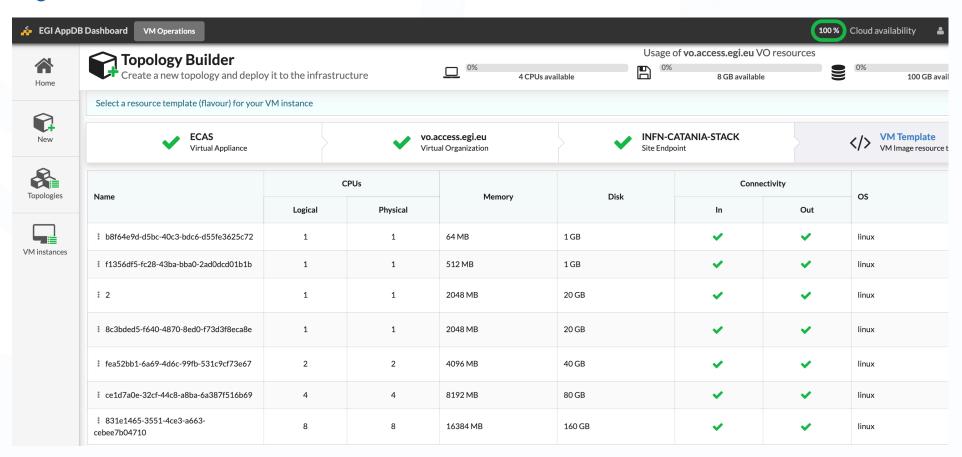



ECAS on the EGI Federated Cloud Infrastructure

ECAS has been integrated into the EGI FedCloud, considering two scenarios¹:

A ready-to-use ECAS single-node VMI available from the EGI AppDB https://appdb.egi.eu/store/vappliance/ecas

A multi-node ECAS cluster dinamically provisioned on the EGI FedCloud through the Elastic Cloud Computing Cluster (EC3)



ECAS single-node VMI

ECAS single-instance VMI uploaded to the EGI AppDB

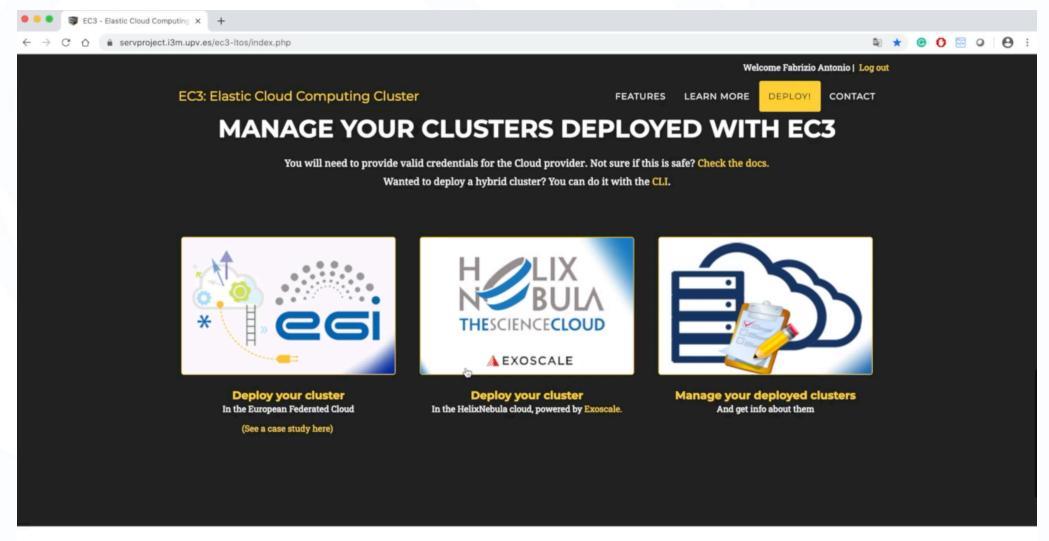
VMI assigned to a set of trusted VOs

Elastic deployment of ECAS on EGI

Multi-node ECAS environment dynamically provisioned on the FedCloud through the EC3

LToS service according to the user requirements

RADL file for the Infrastructure Manager (**IM**) to define the cluster setup in terms of resources, infrastructure and software configuration, and contextualization



DEMO

ECAS accounting management

timestamp	idworkflow	name	username	ip address	client address	<pre>#tasks #success_tasks</pre>	duration	
2018-03-29 01:08:48	1171802	oph_list	*4E6FA15F82F3	$19\overline{2.168.88.150}$	$193.20\overline{4}.199.213$	1 1	0.194882	
2018-03-29 01:09:05	1171804	oph_randcube	*4E6FA15F82F3	192.168.88.150	193.204.199.213	1 1	0.613289	
2018-03-29 08:29:54	1171806	oph_list	*OCOEBFOFBAAF	192.168.88.150	193.204.199.213	1 1	0.185737	
2018-03-29 09:16:38	1171808	oph_list	*7041('	idtask	idworkflow	operator	#cores success	flag duration
2018-03-29 09:36:34	1171810	oph list	*7041(timestamp	Idlask	Idworktiow	operator	#cores success_	_irag duration
				01:08:48 1171803	1171802	oph_list	1 1	0.153245
			2018-03-29	01:09:05 1171805	1171804	oph randcube	1 1	0.578767
			2018-03-29	08:29:54 1171807	1171806	oph list	1 1	0.152150
			2018-03-29	09:16:38 1171809	1171808	oph_list	1 1	0.223756
			2018-03-29	09:36:34 1171811	1171810	oph list	1 0	0.153697

Ophidia Server logs

Registered users

180

Number of jobs

1750K

Number of core-hours ∼10K

Other metrics about users and computing resources usage

https://github.com/ECAS-Lab/ecas-accounting

Training events

8

Conclusions & next steps

Conclusions

ECAS enables scientific end-users to perform data analysis experiments on large volumes of multidimensional data by exploiting a PID-enabled, server-side, and parallel approach

The integration of **ECAS** in the **EGI cloud-based resources** allows researchers to deploy on demand a full ECAS elastic cluster on the **EGI Infrastructure** thanks to the **EC3 platform**.

Next steps

Integration of **EGI Check-in** in ECAS

Stronger integration with **Onedata**

Useful links

CMCC ECASLab instance: https://ecaslab.cmcc.it/

DKRZ ECASLab instance: https://ecaslab.dkrz.de/

ECASLab repository: https://github.com/ECAS-Lab

Ophidia Website: http://ophidia.cmcc.it

Ophidia Doc: http://ophidia.cmcc.it/documentation

PyOphidia repository: https://github.com/OphidiaBigData/PyOphidia

Acknowledgment

These activities are supported in part by EOC-Hub and IS-ENES3 projects:

EOSC-hub receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 777536

IS-ENES3 is a project funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 824084

Thanks