

Status of NEOS-II

Young Ju Ko Center for Underground Physics at Institute for Basic Science (IBS) On behalf of the NEOS collaboration June 25, 2020

NEOS Experiment

- NEOS: Neutrino Experiment for Oscillation at Short baseline
- NEOS collaboration
 - 20 collaborators at 7 institutes

NEOS-phase1

- Reactor antineutrino anomaly¹⁾
 - Deficits in measured antineutrino fluxes
 - Confirmed in other recent experiments
- NEOS-I
 - Data taking: Jul. 2015 ~ May 2016
 (ON ~180 day & OFF ~45 days)
 - To test the hypothesis for the (3+1)v framework
 - No strong evidence of light sterile-v²).

1) Phys. Rev. D **83**, 073006 (2011) 2) Phys. Rev. Lett. **118**, 121802 (2017)

NEOS-phase2

- 5-MeV excess
 - Recent experiments have observed the excess.
 - Is ²³⁵U the source of the excess?
- NEOS-II
 - To understand the reactor neutrino spectrum
 - Rate+shape analysis for sterile-v search
 - Similar uncertainty to Daya Bay is expected thanks to larger changes in fission fraction.

3) Nature Physics 16, 558-564 (2020) 4) Phys. Rev. Lett. 118, 251801 (2017)

5-MeV excess in recent experiments³⁾

Experimental Site

- Hanbit-5 reactor in Yeonggwang, Korea
- 2.8-GW_{th} commercial reactor
- Core size: 3.1-m diameter and 3.8-m height

Experimental Site

- Detector in tendon gallery
 - 23.7-m baseline and 20-m.w.e. overburden
 - Muon rate: ~1/6 of the ground (~28.7 Hz/m²)

cor

NEOS Detector

Active target Homogeneous 1,008-L volume 0.48% Gd-LS Mixed LS (LAB + DIN)

etecto

cor

10-cm thick B-PE (n⁰) and Pb(γ)
Muon veto detectors
3-cm thick plastic scintillator
15 panels with PMTs
Except bottom side

Photomultiplier tubes

Two buffer tanks at both side of target Acrylic window b/w target & buffers 19 R5912 (8 inch) PMTs in each buffer

A

DAQ systems 500 MS/s Flash ADC for target (recording waveforms for PSD) 62.5 MS/s ADC for muon counters

Inverse Beta Decay

- NEOS detector is a calorimeter with Gd-LS to detect the electron antineutrino.
 - Neutrino detection through inverse β -decay (IBD) in the active target

Detector Operation

- Installation in Sep. 2018
- Temperatures of target buffers within ~2°C (~20°C in NEOS-I)
 - Air conditioner in the booth
- Data taking began in the same month.
 - The number of IBD candidates is similar to phase1.
 - ~90% DAQ efficiency
 - Data taking will be over in Sep. 2020.

Status of NEOS-II - Y. J. Ko@IBS

Detector Response

- Escaping y events
 - It can distort energy distribution of γ events.
 - Prompt signal includes two 0.511-MeV γs.
- Non-uniformity
 - Detector response depends on position.
 - Non-uniformity is corrected with α events.

10

800

750

700

650

600

550

500

450

400

350

-1

An Issue Regarding Light Yield

- Decreasing light output
 - Precipitation in a stored LS sample
 - Decreased to ~60% over 1.6 years
- Increasing energy resolution
 - Increased to 7% from 5% @ 1 MeV
- Effect on spectra decomposition by resolution change

- We cannot see any significant differences due to the resolution change.
- More details in Poster #433

Energy Calibration

- Calibration sources
 - Point sources: ¹³⁷Cs, ⁶⁰Co, ²²Na, PoBe and ²⁵²Cf (biweekly)
 - Volume sources: ^{40}K (PMT glass), ^{208}TI (B-PE) and α/β events (LS)
 - Used for position/time dependent corrections as well as energy calibration.
- Charge to energy conversion
 - Only single γ sources
 - Non-linearity due to quenching and Cherenkov effects.
 - Simulation describes the data well.

Status of NEOS-II - Y. J. Ko@IBS

IBD Selection

- Criteria for single event
 - Energy cut, electronic noise and flasher events removal
- Criteria for IBD selection
 - Energy range and time difference

IBD Selection

- Criteria for single event
 - Energy cut, electronic noise and flasher events removal
- Criteria for IBD selection
 - Energy range and time difference
- Criteria for background rejection
 - Muon veto: Δt_{v1} & Δt_{v2}
 - Multiplicity: Δt₀ & Δt₃
 - Pulse shape discrimination (PSD)

 Δt_{v2}

Δto

Prompt

Signal (S₁)

• More details in Poster #299

 Δt_{v1}

 S_0

S_µ

S₃

 Δt_3

Delayed

Signal (S₂)

Comparison of Background

- Phase1 vs. Phase2
 - Similar rate and shape
 - Energy scale and IBD criteria can be updated.
- Before vs. after reactor-on period
 - No significant changes.
 - Background is stable.

Phase1 VS Phase2

- Generally in an agreement
 - Rate: ~2.5% smaller than Phase1
 - Shape: slightly increasing in ratio
- Data will be compared with models after tuning MC.

NEOS PreliminaryS/B ratio# of IBD (off)
[/day]Phase122.21977 (85)Phase222.31925 (82)

Summary

- NEOS-II
 - Started from Sep. 2018 with the same design and site as NEOS-I
 - Data was taken in a full cycle, and the experiment will be ended when a new cycle begins (~Sep. 2020).
- Stability issue
 - The initial performance was similar to phase1, but charge has been dropping due to the LS issue.
 - No serious effect on spectra decomposition due to the resolution changes
- Analysis status & Plan
 - Background stability is confirmed.
 - Prompt spectrum of phase2 agrees with that of phase1.
 - MC tuning is almost done, so we expect to show the comparison with model soon.
 - Study for spectra decomposition is ongoing.
 - Rate+shape analysis for sterile-v is also in progress.

Thank You for Your Attention !!!