New Oscillation Results from the NOvA Experiment

Alex Himmel, Fermilab for the NOvA Collaboration

u/Demux0 @ Reddit

The NOvA Experiment

- Long-baseline neutrino oscillation experiment
- NuMI beam: v_{μ} or \bar{v}_{μ}
- 2 functionally identical, tracking calorimeter detectors
 - Near: 300 T underground
 - Far: 14 kT on the surface
 - Placed off-axis to produce a narrow-band spectrum
- 810 km baseline
 - Longest baseline of current experiments.

Take a tour in VR!

NOvA Physics

- Atmospheric sector oscillations: $-\Delta m_{32}^2, \sin^2\theta_{23}, \delta_{CP}$
- Key open questions in oscillations:
 - Is the neutrino mass hierarchy normal or inverted $n_{32}^2 | \sin^2(2\theta_{23})$
 - Is CP violated in the neutrino sector?
 - Is θ_{23} mixing maximal?
 - ν_{μ} - ν_{τ} symmetry
 - If not, what is the octant of θ_{23} ?

 $\Delta m_{41}^2, \theta_{34}, \theta_{24}$

NOvA Physics

- Atmospheric sector oscillations: $-\Delta m_{32}^2, \sin^2\theta_{23}, \delta_{CP}$
- Key open questions in oscillations:
 - Is the neutrino mass hierarchy normal or inverted 2^{2}_{32} sin²(2 θ_{23})
 - Is CP violated in the neutrino sector?
 - Is θ_{23} mixing maximal?
 - ν_{μ} - ν_{τ} symmetry
 - If not, what is the octant of θ_{23} ?
- Disentangle by measuring...
 - disappearance $P(\nu_{\mu} \rightarrow \nu_{\mu})$ and appearance $P(\nu_{\mu} \rightarrow \nu_{e})$
 - in neutrinos and antineutrinos
 - over long baselines to separate hierarchy and δ effects.

NOvA Physics Beyond 3-flavor

Astrophysics Cross Sections Sterile and BSM

Neutrino 2020 Talks

- Cross-section measurements with NOvA
 - Linda Cremonesi

Papers since NEUTRINO 2018

- Observation of seasonal variation of atmospheric multiple-muon events in the NOvA Near Detector, Phys.Rev.D 99 (2019) 12, 122004
- Search for Multi-Messenger Signals in NOvA Coincident with LIGO/Virgo Detections, Phys.Rev.D 101 (2020) 112006
- Supernova neutrino detection in NOvA, arXiv: 2005.07155 [physics.ins-det]
- Measurement of Neutrino-Induced Neutral-Current Coherent π^0 Production in the NOvA Near Detector, Accepted to PRD, arXiv: 1902.00558 [hep-ex]
- Adjusting Neutrino Interaction Models and Evaluating Uncertainties using NOvA Near Detector Data, arXiv: 2006.08727 [hep-ex]

Neutrino 2020 Posters

- 358. Astrophysics with NOvA, Matt Strait & Oleg Samoylov
- 550. Galactic Supernova Neutrinos, Justin Vasel, Andrey Sheshukov, Alec Habig
- 555. Event Selection and Systematics, Adam Lister & Anne Norrick
- 442. Sterile Neutrino Search via NC Disappearance with Antineutrinos, Mike Wallbank
- 431. Poisson Likelihood Covariance Technique for 3+1 Sterile Searches, Jeremy Hewes
- 541. Neutrino Tridents, Erica Smith & Kelli Michaels
- 398. Inclusive CC v_{μ} , Connor Johnson
- 505. Inclusive CC v_{e_i} Matt Judah
- 228. CC $\nu_{\mu}\pi^{\pm}$, Cathal Sweeney

The NuMI Beam

- Typically ~670 kW
- Peaks >750 kW
- 50% more neutrino beam data in this analysis

MW-capable horn

- Working towards 900+ kW •
 - Upgrading the NuMI beamline components
 - Allows gradual increase in power up to 850 kW with faster cycle times
 - Early PIP-II upgrades allow _ 900+ KW

The NOvA Detectors

- Segmented liquid scintillator detectors provide 3D tracking and calorimetry
- Optimized for electron showers: ~6 samples per X_0 and ~60% active

- Good time resolution (few ns) and spatial resolution (few cm)
 - Allows clear separation of individual interactions

Observe flavor change as a function of energy over a long distance while mitigating uncertainties on neutrino flux, cross sections, and detector response.

How to Measure Oscillations

Neutrino Interaction Model

- Constantly evolving understanding of v interactions.
- Upgrade to GENIE 3.0.6 \rightarrow freedom to choose models
- Chose the most "theory-driven" set of models plus GENIE's re-tune of some parameters*.
- Some custom tuning is still required.
 - Substantially less than was needed with GENIE 2.12.2, which required tweaks to most models.

Process	Model	Reference
Quasielastic	Valencia 1p1h	J. Nieves, J. E. Amaro, M. Valverde, Phys. Rev. C 70 (2004) 055503
Form Factor	Z-expansion	A. Meyer, M. Betancourt, R. Gran, R. Hill, Phys. Rev. D 93 (2016)
Multi-nucleon	Valencia 2p2h	R. Gran, J. Nieves, F. Sanchez, M. Vicente Vacas, Phys. Rev. D 88 (2013)
Resonance	Berger-Sehgal	Ch. Berger, L. M. Sehgal, Phys. Rev. D 76 (2007)
DIS	Bodek-Yang	A. Bodek and U. K. Yang, NUINT02, Irvine, CA (2003)
Final State Int.	hN semi-classical cascade	S. Dytman, Acta Physica Polonica B 40 (2009)

* We call our tune N1810j_0211a, and it is built by starting with G1810b_0211a and substituting the Z-expansion form factor for the dipole one. This combination was not available in the 3.0.6 release, but it may be available in future versions. Fig: Teppei Katori, "Meson Exchange Current (MEC) Models in Neutrino Interaction Generators" AIP Conf.Proc. 1663 (2015) 030001

Neutrino Interaction Model

- 2p2h or Meson Exchange Current or Multi-nucleon Interactions:
 - Disagreement of models with multiple experiments well-known
 - Tuned to **NOvA ND data** with two 2D gaussians in q_0 - $|\vec{q}|$ space.
 - Generous systematics covering normalization and kinematic shape
- Final State Interactions
 - Used **external** π -scattering data primarily to set uncertainties
 - Required adjusting central value, change in overall xsec was small.

- 67. Cross section adjustments for 2p2h
- Maria Martinez Casales

osters

- 352. Central value tuning and uncertainties for the hN FSI model in GENIE 3
 - Michael Dolce, Jeremy Wolcott, Hugh Gallagher

Selecting and Identifying Neutrinos

- Identify neutrino flavor using a convolutional neural network.
 - A deep-learning technique from computer vision
 - New, faster network for 2020.
- Before main PID:
 - Events are contained in the detector
 - CC v_{μ} require a well-reconstructed μ track
 - Reject cosmic rays with BDTs
- Performance relative to preselection:
 - ν_{μ} : ~90% efficient, 99% bkg. rejection
 - ν_{e} : ~80% efficient, 80% bkg. rejection
- Validate performance against data-driven control samples in both detectors.

182. Improvements and New Applications of Machine Learning

Ashley Back & Micah Groh

120. Data-Driven cross checks for v_e selection efficiency in NOvA

Anna Hall & Liudmila Kolupaeva

258. Data-Driven Wrong-Sign Background Estimates

Abhilash Yallappa Dombara

First CNN in HEP result: A. Aurisano, et al. JINST 11 (2016) 09, P09001

Energy Reconstruction

Near Detector v_{μ} Spectra

NOvA Preliminary

- Band around the MC shows the large impact of flux and cross-section uncertainties in only a single detector.
- We use this sample to predict both v_{μ} and v_e signal spectra at the Far Detector.
 - Appearing v_e 's are still v_μ 's at the ND

Near Detector *v_e*-like Spectra

NOvA Preliminary

- The ND v_e -like spectrum contains the **background** to the appearing v_e 's at the FD.
- Largest background is the irreducible v_e/\bar{v}_e flux component.
 - 50% in neutrino-mode
 - 71% in antineutrino mode
- We use this sample to predict the background to v_e appearance.

Enhancing Sensitivity to Oscillations

- Sensitivity depends primarily on the shape of the energy spectrum.
- Bin by energy resolution → bin by hadronic energy fraction

v_e sample

- Sensitivity depends primarily on separating signal from background.
- Bin by *purity* \rightarrow bins of low & high PID
- Peripheral sample:
 - Captures high-PID events which might not be contained close to detector edges.
 - No energy binning.

Extrapolating from Near to Far Detector

- Observe data-MC differences at the ND, use them to modify the FD MC.
 - Extrapolation performed in the analysis binning of energy + (resolution or PID).
- Significantly reduces the impact of uncertainties correlated between detectors
 - Especially effective at rate effects like the flux $(7\% \rightarrow 0.3\%)$.

Extrapolating Kinematics

- Containment limits the range of lepton angles more in the Near Detector than in the Far.
 - The ND is 1/5 the size of the FD.
- Mitigate by extrapolating in bins of lepton transverse momentum, p_t
 - Transverse to the ν-beam direction
 ≈ the central axis of the detectors
- Split the ND sample into 3 bins of p_v extrapolate each separately to the FD.
 - Effectively "rebalances" the kinematics to better match between the detectors.
 - Re-sum the p_t bins before fitting.

 Near Det.

 Far Det.

Systematic Uncertainties with p_t Extrapolation

- Increased robustness also leads to a 30% reduction in cross section uncertainties.
 - Reduces the size of the systematics most likely to contain "unknown unknowns"
 - Slightly increase the sensitivity to well-understood systematics on lepton reconstruction.
- Overall systematic reduction is 5-10%,
 - The largest systematics come from the detector energy scale.

- Simultaneous fit of all samples, reactor-constrained $\sin^2 2\theta_{13} = 0.085 \pm 0.003$.
- We perform a frequentist analysis and use the Feldman-Cousins method to ensure proper coverage in all contours and intervals.

262. Accelerating Calculation of Confidence Intervals for NOvA's Neutrino Oscillation Parameter Estimation with Supercomputers

– Steven Calvez, Tarak Thakore

National Energy Research Scientific Computing Center

v_{μ} and \overline{v}_{μ} Data at the Far Detector

211 events, 8.2 background

105 events, 2.1 background

v_e and \overline{v}_e Data at the Far Detector

Total Observed	82	Range
Total Prediction	85.8	52-110
Wrong-sign	1.0	0.6-1.7
Beam Bkgd.	22.7	
Cosmic Bkgd.	3.1	
Total Bkgd.	26.8	26-28

Total Observed	33	Range
Total Prediction	33.2	25-45
Wrong-sign	2.3	1.0-3.2
Beam Bkgd.	10.2	
Cosmic Bkgd.	1.6	
Total Bkgd.	14.0	13-15

>4 σ evidence of $\bar{\nu}_e$ appearance

NOvA Preliminary

25

83. Long-baseline neutrino oscillation results from NOvA

- Liudmila Kolupaeva & Karl Warburton

262. Accelerating Calculation of Confidence Intervals for NOvA's Neutrino Oscillation Parameter Estimation with Supercomputers

- Steven Calvez, Tarak Thakore

Posters

• We see no strong asymmetry in the rates of appearance of v_e and \bar{v}_e

- We see no strong asymmetry in the rates of appearance of v_e and \bar{v}_e
- Disfavor hierarchy- δ combinations which would produce that asymmetry •

```
Exclude IH \delta = \pi/2 at >3\sigma
Disfavor NH \delta = 3\pi/2 at \sim 2\sigma
```


- We see no strong asymmetry in the rates of appearance of v_e and \bar{v}_e
- Disfavor hierarchy- δ combinations which would produce that asymmetry
- Consistent with hierarchy-octant- δ combinations which include some "cancellation."
 - Since such options exist for both octants and hierarchies, results show no strong preferences.

Exclude IH $\delta = \pi/2$ at >3 σ Disfavor NH $\delta = 3\pi/2$ at $\sim 2\sigma$

Prefer	
Normal Hierarchy at	1.0σ
Upper Octant at	1.2σ

Comparison to T2K

- Clear tension with T2K's preferred region.
- Quantifying consistency requires a joint fit of the data from the two experiments, which is already in the works.
 - Semi-annual workshops, regular joint group meetings, and a signed joint agreement.

Comparison to T2K

Conclusions

- We present an updated neutrino oscillation analysis with:
 - 50% more neutrino beam data,
 - updated simulation and reconstruction, including a new GENIE 3 cross-section model,
 - updated extrapolation which mitigates differing detector acceptances.
- New 3-flavor oscillation results:
 - $-\Delta m_{32}^2 = (2.41 \pm 0.07) \times 10^{-3} \text{ eV}^2$
 - $-\sin^2\theta_{23} = 0.57^{+0.04}_{-0.03}$
 - exclude IH, $\delta = \pi/2$ at > 3 σ ,
 - disfavor NH, $\delta = 3\pi/2$ at $\sim 2\sigma$.
- Looking ahead:
 - We can reach 3σ hierarchy sensitivity for 30-50% of δ values, with the full dataset and an upgraded beam.
 - Plan to reduce our largest systematics, those related to detector energy scale, with the results of our test beam experiment.

 Sign and Operation of a Charged Particle Beamline
 – David Duenas Tonguino, Mike Wallbank, Alex Sousa, Andrew Sutton, Teresa Lackey

Questions?

11.16

I MA

Pulls in the Fit

- Largest pulls also correspond to some of our known most important systematics:
 - Detector light model and energy scale (calibration)
 - Multi-nucleon cross section
- We see examples where a pull comes primarily from the neutrino or antineutrino beam, but generally do not see *contradictory* pulls.

Spectra with NOvA and T2K Best Fits

• Both best fits also include minimization of our systematic uncertainties.

2020 vs. 2017 Cross Section Model

• The QE central value is quite similar, but the expanded uncertainty due to the Z-expansion is apparent.

- In resonance, the uncertainty remains similar, the but the central value has changed.
- New model, Berger-Seghal, plus the global retune to scattering data.

hN2018 FSI tuning

- New FSI model in GENIE 3.0.6: semi-classical cascade, "hN"
 - Propagates hadrons through nucleus in finite steps
 - Simulates interactions according to probabilities derived from Oset et al. quantum model*
 - Tuned using external pion scattering data, which is related to intranuclear probabilities using amplitudes from Oset model
- Old model ("hA") simply assumes hadron scattering data applies directly to FSI

We retune hN2018 and develop systematics based in part on similar work by T2K[†]

Selection: Validating Performance

- Examine PID efficiency relative to pre-selection.
 - Specifically target the behavior of the PID.
- ND: mixed data-MC sample
 - Mix simulated electrons and real hadronic showers
- FD: decay-in-flight electrons

Posters

 Real electron showers from cosmic muons which decay

120. Data-Driven cross checks for v_e selection efficiency in NOvA
Anna Hall
258. Data-Driven Wrong-Sign Background Estimates

– Abhilash Yallappa Dombara

