
Readable and efficient HEP data analysis with bamboo
using python, PyROOT, cling, and RDataFrame

Pieter David

Université catholique de Louvain

PyHEP 2019 Workshop
16–18 October 2019

Abingdon, United Kingdom

mailto:pieter.david@cern.ch

Motivation

• Typical LHC analysis: a number of
selection and slimming steps to go
from fully reconstructed triggered
events to reduced TTrees, then:
lots of histograms at different
selection stages, MVAs, some
statistical analysis, and results

• Code needs to be very flexible, and
allow to keep a good overview:
python is a great fit

• Data sets are large (run 2: several
TB in reduced formats), so code
becomes slow… try to make
python faster? Use C++ instead?

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 2

Motivation

• Typical LHC analysis: a number of
selection and slimming steps to go
from fully reconstructed triggered
events to reduced TTrees, then:
lots of histograms at different
selection stages, MVAs, some
statistical analysis, and results

• Code needs to be very flexible, and
allow to keep a good overview:
python is a great fit

• Data sets are large (run 2: several
TB in reduced formats), so code
becomes slow… try to make
python faster? Use C++ instead?

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 3

Motivation

• Typical LHC analysis: a number of
selection and slimming steps to go
from fully reconstructed triggered
events to reduced TTrees, then:
lots of histograms at different
selection stages, MVAs, some
statistical analysis, and results

• Code needs to be very flexible, and
allow to keep a good overview:
python is a great fit

• Data sets are large (run 2: several
TB in reduced formats), so code
becomes slow… try to make
python faster? Use C++ instead?

How much time and effort to:
• plot one more distribution
• change a selection

• change a selection, and compare
N plots between the two cases

• add a correction that a) is a
per-event weight, or b) changes
object kinematics, and/or c) tracks
changing detector conditions —
only for simulation, not for data

• add a higher-statistics sample that
covers part of the phasespace of
an already included one

• include systematic variations

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 4

Motivation

• Typical LHC analysis: a number of
selection and slimming steps to go
from fully reconstructed triggered
events to reduced TTrees, then:
lots of histograms at different
selection stages, MVAs, some
statistical analysis, and results

• Code needs to be very flexible, and
allow to keep a good overview:
python is a great fit

• Data sets are large (run 2: several
TB in reduced formats), so code
becomes slow… try to make
python faster? Use C++ instead?

How much time and effort to:
• plot one more distribution
• change a selection
• change a selection, and compare

N plots between the two cases

• add a correction that a) is a
per-event weight, or b) changes
object kinematics, and/or c) tracks
changing detector conditions —
only for simulation, not for data

• add a higher-statistics sample that
covers part of the phasespace of
an already included one

• include systematic variations

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 5

Motivation

• Typical LHC analysis: a number of
selection and slimming steps to go
from fully reconstructed triggered
events to reduced TTrees, then:
lots of histograms at different
selection stages, MVAs, some
statistical analysis, and results

• Code needs to be very flexible, and
allow to keep a good overview:
python is a great fit

• Data sets are large (run 2: several
TB in reduced formats), so code
becomes slow… try to make
python faster? Use C++ instead?

How much time and effort to:
• plot one more distribution
• change a selection
• change a selection, and compare

N plots between the two cases
• add a correction that a) is a

per-event weight, or b) changes
object kinematics, and/or c) tracks
changing detector conditions —
only for simulation, not for data

• add a higher-statistics sample that
covers part of the phasespace of
an already included one

• include systematic variations

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 6

Motivation

• Typical LHC analysis: a number of
selection and slimming steps to go
from fully reconstructed triggered
events to reduced TTrees, then:
lots of histograms at different
selection stages, MVAs, some
statistical analysis, and results

• Code needs to be very flexible, and
allow to keep a good overview:
python is a great fit

• Data sets are large (run 2: several
TB in reduced formats), so code
becomes slow… try to make
python faster? Use C++ instead?

How much time and effort to:
• plot one more distribution
• change a selection
• change a selection, and compare

N plots between the two cases
• add a correction that a) is a

per-event weight, or b) changes
object kinematics, and/or c) tracks
changing detector conditions —
only for simulation, not for data

• add a higher-statistics sample that
covers part of the phasespace of
an already included one

• include systematic variations

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 7

Motivation

• Typical LHC analysis: a number of
selection and slimming steps to go
from fully reconstructed triggered
events to reduced TTrees, then:
lots of histograms at different
selection stages, MVAs, some
statistical analysis, and results

• Code needs to be very flexible, and
allow to keep a good overview:
python is a great fit

• Data sets are large (run 2: several
TB in reduced formats), so code
becomes slow… try to make
python faster? Use C++ instead?

How much time and effort to:
• plot one more distribution
• change a selection
• change a selection, and compare

N plots between the two cases
• add a correction that a) is a

per-event weight, or b) changes
object kinematics, and/or c) tracks
changing detector conditions —
only for simulation, not for data

• add a higher-statistics sample that
covers part of the phasespace of
an already included one

• include systematic variations

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 8

Motivation

• Typical LHC analysis: a number of
selection and slimming steps to go
from fully reconstructed triggered
events to reduced TTrees, then:
lots of histograms at different
selection stages, MVAs, some
statistical analysis, and results

• Code needs to be very flexible, and
allow to keep a good overview:
python is a great fit

• Data sets are large (run 2: several
TB in reduced formats), so code
becomes slow… try to make
python faster? Use C++ instead?

How much time and effort to:
• plot one more distribution
• change a selection
• change a selection, and compare

N plots between the two cases
• add a correction that a) is a

per-event weight, or b) changes
object kinematics, and/or c) tracks
changing detector conditions —
only for simulation, not for data

• add a higher-statistics sample that
covers part of the phasespace of
an already included one

• include systematic variations

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 9

Motivation

• Typical LHC analysis: a number of
selection and slimming steps to go
from fully reconstructed triggered
events to reduced TTrees, then:
lots of histograms at different
selection stages, MVAs, some
statistical analysis, and results

• Code needs to be very flexible, and
allow to keep a good overview:
python is a great fit

• Data sets are large (run 2: several
TB in reduced formats), so code
becomes slow… try to make
python faster? Use C++ instead?

Personal experience: need for speed
makes analysis code messy (hard to
find bugs), inflexible, or both

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 10

Motivation

• Typical LHC analysis: a number of
selection and slimming steps to go
from fully reconstructed triggered
events to reduced TTrees, then:
lots of histograms at different
selection stages, MVAs, some
statistical analysis, and results

• Code needs to be very flexible, and
allow to keep a good overview:
python is a great fit

• Data sets are large (run 2: several
TB in reduced formats), so code
becomes slow… try to make
python faster? Use C++ instead?

image credit: Claudio Caputo

there are many ideas to address this problem

— this is only one attempt, based on what

seemed promising for my use-case

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 11

RDataFrame: ROOT’s declarative data analysis approach

from this talk, see also today’s CERN EP Software Seminar

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 12

https://root.cern/doc/master/classROOT_1_1RDataFrame.html
https://indico.cern.ch/event/697389/timetable/?view=standard#19-rdataframe-roots-declarativ
https://indico.cern.ch/event/849610/

Cling (C++ interpreter / JIT compiler) and PyROOT

• The ROOT interpreter is based on
Clang/LLVM: correctly handles
almost any valid modern C++ code
(templates, lambda functions…)

• PyROOT exposes almost all of
ROOT’s functionality in python
(and that of any C++ you add)

• Experimental PyROOT is bringing
python callables to RDataFrame
(and much more)

• Current bamboo compromise:
pass expressions to RDataFrame
as strings (generated with python)

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 13

https://root.cern.ch/cling
https://root.cern.ch/pyroot
https://clang.llvm.org
http://llvm.org
https://root.cern/doc/v618/release-notes.html#experimental-pyroot

bamboo ingredients — outline for the rest of the talk

• High-level python analysis code to define plots and selections
(using loops, functions that take function arguments etc.)

• Decorated version of the input TTree: an event looks like a set of
containers of physics objects (jets, leptons, tracks etc.) and
(groups of) per-event quantities

• Expressions (selection, weight, variable) are composed of simple
python objects, built from decorators, and decorated to behave
as a value (to construct derived expressions)

• When the analysis is complete: convert expressions to strings for
RDataFrame, run over all samples, and make plots

• Every analysis derives from a base class, such that e.g. splitting in
batch jobs, and plotting code can be reused

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 14

bamboo ingredients — outline for the rest of the talk

• High-level python analysis code to define plots and selections
(using loops, functions that take function arguments etc.)

• Decorated version of the input TTree: an event looks like a set of
containers of physics objects (jets, leptons, tracks etc.) and
(groups of) per-event quantities

• Expressions (selection, weight, variable) are composed of simple
python objects, built from decorators, and decorated to behave
as a value (to construct derived expressions)

• When the analysis is complete: convert expressions to strings for
RDataFrame, run over all samples, and make plots

• Every analysis derives from a base class, such that e.g. splitting in
batch jobs, and plotting code can be reused

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 15

bamboo ingredients — outline for the rest of the talk

• High-level python analysis code to define plots and selections
(using loops, functions that take function arguments etc.)

• Decorated version of the input TTree: an event looks like a set of
containers of physics objects (jets, leptons, tracks etc.) and
(groups of) per-event quantities

• Expressions (selection, weight, variable) are composed of simple
python objects, built from decorators, and decorated to behave
as a value (to construct derived expressions)

• When the analysis is complete: convert expressions to strings for
RDataFrame, run over all samples, and make plots

• Every analysis derives from a base class, such that e.g. splitting in
batch jobs, and plotting code can be reused

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 16

bamboo ingredients — outline for the rest of the talk

• High-level python analysis code to define plots and selections
(using loops, functions that take function arguments etc.)

• Decorated version of the input TTree: an event looks like a set of
containers of physics objects (jets, leptons, tracks etc.) and
(groups of) per-event quantities

• Expressions (selection, weight, variable) are composed of simple
python objects, built from decorators, and decorated to behave
as a value (to construct derived expressions)

• When the analysis is complete: convert expressions to strings for
RDataFrame, run over all samples, and make plots

• Every analysis derives from a base class, such that e.g. splitting in
batch jobs, and plotting code can be reused

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 17

bamboo ingredients — outline for the rest of the talk

• High-level python analysis code to define plots and selections
(using loops, functions that take function arguments etc.)

• Decorated version of the input TTree: an event looks like a set of
containers of physics objects (jets, leptons, tracks etc.) and
(groups of) per-event quantities

• Expressions (selection, weight, variable) are composed of simple
python objects, built from decorators, and decorated to behave
as a value (to construct derived expressions)

• When the analysis is complete: convert expressions to strings for
RDataFrame, run over all samples, and make plots

• Every analysis derives from a base class, such that e.g. splitting in
batch jobs, and plotting code can be reused

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 18

Why decorate TTrees?
Example: plot a dimuon invariant mass distribution. The momenta are in
the branches Muon_pt[nMuon], Muon_eta[nMuon], Muon_phi[nMuon], and
Muon_mass[nMuon] (and there may be more than two muons in the event)

using ROOT::Math::VectorUtil::InvariantMass;
using LorentzVector =

ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<float>>;
df.Define("Dimuon_mass",

[] (const auto& pt, const auto& eta, const auto& phi, const auto& m) {
return InvariantMass(LorentzVector(pt[0], eta[0], phi[0], m[0]),

LorentzVector(pt[1], eta[1], phi[1], m[1]));
}, {"Muon_pt", "Muon_eta", "Muon_phi", "Muon_mass"}
).Histo1D(..., "Dimuon_mass", ...);

Alternative, using the JIT compiler instead of a lambda function
df.Define("Dimuon_mass_v2",

"InvariantMass("
"LorentzVector(Muon_pt[0], Muon_eta[0], Muon_phi[0], Muon_mass[0]),"
"LorentzVector(Muon_pt[1], Muon_eta[1], Muon_phi[1], Muon_mass[1]))"

).Histo1D(..., "Dimuon_mass_v2", ...);

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 19

Why decorate TTrees?
Example: plot a dimuon invariant mass distribution. The momenta are in
the branches Muon_pt[nMuon], Muon_eta[nMuon], Muon_phi[nMuon], and
Muon_mass[nMuon] (and there may be more than two muons in the event)

using ROOT::Math::VectorUtil::InvariantMass;
using LorentzVector =

ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<float>>;
df.Define("Dimuon_mass",

[] (const auto& pt, const auto& eta, const auto& phi, const auto& m) {
return InvariantMass(LorentzVector(pt[0], eta[0], phi[0], m[0]),

LorentzVector(pt[1], eta[1], phi[1], m[1]));
}, {"Muon_pt", "Muon_eta", "Muon_phi", "Muon_mass"}
).Histo1D(..., "Dimuon_mass", ...);

Alternative, using the JIT compiler instead of a lambda function
df.Define("Dimuon_mass_v2",

"InvariantMass("
"LorentzVector(Muon_pt[0], Muon_eta[0], Muon_phi[0], Muon_mass[0]),"
"LorentzVector(Muon_pt[1], Muon_eta[1], Muon_phi[1], Muon_mass[1]))"

).Histo1D(..., "Dimuon_mass_v2", ...);

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 20

Why decorate TTrees?
Example: plot a dimuon invariant mass distribution. The momenta are in
the branches Muon_pt[nMuon], Muon_eta[nMuon], Muon_phi[nMuon], and
Muon_mass[nMuon] (and there may be more than two muons in the event)

using ROOT::Math::VectorUtil::InvariantMass;
using LorentzVector =

ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<float>>;
df.Define("Dimuon_mass",

[] (const auto& pt, const auto& eta, const auto& phi, const auto& m) {
return InvariantMass(LorentzVector(pt[0], eta[0], phi[0], m[0]),

LorentzVector(pt[1], eta[1], phi[1], m[1]));
}, {"Muon_pt", "Muon_eta", "Muon_phi", "Muon_mass"}
).Histo1D(..., "Dimuon_mass", ...);

Alternative, using the JIT compiler instead of a lambda function
df.Define("Dimuon_mass_v2",

"InvariantMass("
"LorentzVector(Muon_pt[0], Muon_eta[0], Muon_phi[0], Muon_mass[0]),"
"LorentzVector(Muon_pt[1], Muon_eta[1], Muon_phi[1], Muon_mass[1]))"

).Histo1D(..., "Dimuon_mass_v2", ...);

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 21

Why decorate TTrees?
bamboo equivalent:
from bamboo import treefunctions as op
Plot.make1D(...,

op.invariant_mass(t.Muon[0].p4, t.Muon[1].p4), ...)

• The example on the previous slide assumes no selection or sorting is
needed (could e.g. keep a list of indices with sorted good muons)

• For jets: need to take different branches for systematic variations
• In practice: need to compose, e.g. invariant mass of the two highest-pT

b-tagged jets that are not within ΔR < 0.3 from any selected muon

Solution to #3:
cleanedBJets = op.select(t.Jet, lambda j : op.AND(

op.NOT(op.rng_any(muons, lambda mu : op.deltaR(mu.p4, j.p4) < 0.3)),
j.bTag > 0.6))

Plot.make1D(...,
op.invariant_mass(cleanedBJets[0].p4, cleanedBJets[1].p4), ...)

Not the fairest comparison — just to show how this can make code simpler

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 22

Why decorate TTrees?
bamboo equivalent:
from bamboo import treefunctions as op
Plot.make1D(...,

op.invariant_mass(t.Muon[0].p4, t.Muon[1].p4), ...)

• The example on the previous slide assumes no selection or sorting is
needed (could e.g. keep a list of indices with sorted good muons)

• For jets: need to take different branches for systematic variations
• In practice: need to compose, e.g. invariant mass of the two highest-pT

b-tagged jets that are not within ΔR < 0.3 from any selected muon

Solution to #3:
cleanedBJets = op.select(t.Jet, lambda j : op.AND(

op.NOT(op.rng_any(muons, lambda mu : op.deltaR(mu.p4, j.p4) < 0.3)),
j.bTag > 0.6))

Plot.make1D(...,
op.invariant_mass(cleanedBJets[0].p4, cleanedBJets[1].p4), ...)

Not the fairest comparison — just to show how this can make code simpler

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 23

Why decorate TTrees?
bamboo equivalent:
from bamboo import treefunctions as op
Plot.make1D(...,

op.invariant_mass(t.Muon[0].p4, t.Muon[1].p4), ...)

• The example on the previous slide assumes no selection or sorting is
needed (could e.g. keep a list of indices with sorted good muons)

• For jets: need to take different branches for systematic variations
• In practice: need to compose, e.g. invariant mass of the two highest-pT

b-tagged jets that are not within ΔR < 0.3 from any selected muon

Solution to #3:
cleanedBJets = op.select(t.Jet, lambda j : op.AND(

op.NOT(op.rng_any(muons, lambda mu : op.deltaR(mu.p4, j.p4) < 0.3)),
j.bTag > 0.6))

Plot.make1D(...,
op.invariant_mass(cleanedBJets[0].p4, cleanedBJets[1].p4), ...)

Not the fairest comparison — just to show how this can make code simpler
Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 24

Implementation: expressions and proxies

Expressions
• are composed of simple python

objects, e.g. t.Muon[0].pt
(Muon_pt[0]) becomes
GetItem(GetArrayLeaf("Muon_pt"),0)

• can be converted to a string for
RDataFrame/JIT

• are considered immutable as soon
as they are fully constructed and
passed around (but a fresh clone
can be modified by the owner)

Proxies
• Wrap an expression

• Emulate the value type of
expression’s result (through
python operator overloading and
other magic methods)

• float-like, integer-like, object-like,
and a few list-like classes — but no
complete type system (yet), so
limited checks at construction

Currently each of these interfaces has about 25 implementations – the user
should only need the decorated tree and the bamboo.treefunctions module

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 25

Implementation: tree decorations

• Tree proxy class generated on the fly, based on
the branches that are found

• By default, each branch is an attribute of the tree
proxy (the class is generated with type())

• Groups of non-array branches: “group proxy” in
between: t.HLT.MuXX, t.pdf.x1

• Groups of array branches: container proxy, and a
proxy for the elements: t.Muon[0].IDLoose

• Can also add references and arbitrary functions:
t.Jet[0].Mu1.pt, t.Muon[0].p4.E()

• Needs to be adapted to recognize different tree
formats, but for flat trees (most common) this is
fairly straightforward (examples are from CMS
NanoAOD, one other format is implemented)

image credit

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 26

https://commons.wikimedia.org/wiki/File:Yarn_bombing_St_Patricks_Cathedral_Park_1.JPG

Implementation: tree decorations

• Tree proxy class generated on the fly, based on
the branches that are found

• By default, each branch is an attribute of the tree
proxy (the class is generated with type())

• Groups of non-array branches: “group proxy” in
between: t.HLT.MuXX, t.pdf.x1

• Groups of array branches: container proxy, and a
proxy for the elements: t.Muon[0].IDLoose

• Can also add references and arbitrary functions:
t.Jet[0].Mu1.pt, t.Muon[0].p4.E()

• Needs to be adapted to recognize different tree
formats, but for flat trees (most common) this is
fairly straightforward (examples are from CMS
NanoAOD, one other format is implemented)

image credit

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 27

https://commons.wikimedia.org/wiki/File:Yarn_bombing_St_Patricks_Cathedral_Park_1.JPG

Implementation: tree decorations

• Tree proxy class generated on the fly, based on
the branches that are found

• By default, each branch is an attribute of the tree
proxy (the class is generated with type())

• Groups of non-array branches: “group proxy” in
between: t.HLT.MuXX, t.pdf.x1

• Groups of array branches: container proxy, and a
proxy for the elements: t.Muon[0].IDLoose

• Can also add references and arbitrary functions:
t.Jet[0].Mu1.pt, t.Muon[0].p4.E()

• Needs to be adapted to recognize different tree
formats, but for flat trees (most common) this is
fairly straightforward (examples are from CMS
NanoAOD, one other format is implemented) image credit

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 28

https://commons.wikimedia.org/wiki/File:Yarn_bombing_St_Patricks_Cathedral_Park_1.JPG

Selections and plots

Zooming in on the currently main use
case of different selections and
histograms now (skims also work)

• This only needs two fundamental
RDataFrame actions: Filter and
Histo{1D,2D} (and Define, to
calculate intermediate values)

• Important distinction: Filter
changes control flow, whereas the
others do not — so there is some
freedom in ordering the Define
nodes (in between the Filter
that makes sure the expression is
valid and the first use)

Current solution (bamboo.plots):
• Selection class, with each

instance (optionally) holding a set
of selection requirements (cuts)
and weight factors

• Selections are defined by adding
cuts or weights to a more inclusive
selection (starting point: all events
in the input, unit weight)

• Plot instances are defined by a
Selection, variable(s), binning(s),
and layout options

• RDataFrame nodes are created
when Selection and Plot
objects are constructed

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 29

Selections and plots

Zooming in on the currently main use
case of different selections and
histograms now (skims also work)

• This only needs two fundamental
RDataFrame actions: Filter and
Histo{1D,2D} (and Define, to
calculate intermediate values)

• Important distinction: Filter
changes control flow, whereas the
others do not — so there is some
freedom in ordering the Define
nodes (in between the Filter
that makes sure the expression is
valid and the first use)

Current solution (bamboo.plots):
• Selection class, with each

instance (optionally) holding a set
of selection requirements (cuts)
and weight factors

• Selections are defined by adding
cuts or weights to a more inclusive
selection (starting point: all events
in the input, unit weight)

• Plot instances are defined by a
Selection, variable(s), binning(s),
and layout options

• RDataFrame nodes are created
when Selection and Plot
objects are constructed

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 30

Selections and plots

Zooming in on the currently main use
case of different selections and
histograms now (skims also work)

• This only needs two fundamental
RDataFrame actions: Filter and
Histo{1D,2D} (and Define, to
calculate intermediate values)

• Important distinction: Filter
changes control flow, whereas the
others do not — so there is some
freedom in ordering the Define
nodes (in between the Filter
that makes sure the expression is
valid and the first use)

Current solution (bamboo.plots):
• Selection class, with each

instance (optionally) holding a set
of selection requirements (cuts)
and weight factors

• Selections are defined by adding
cuts or weights to a more inclusive
selection (starting point: all events
in the input, unit weight)

• Plot instances are defined by a
Selection, variable(s), binning(s),
and layout options

• RDataFrame nodes are created
when Selection and Plot
objects are constructed

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 31

Selections and plots

Zooming in on the currently main use
case of different selections and
histograms now (skims also work)

• This only needs two fundamental
RDataFrame actions: Filter and
Histo{1D,2D} (and Define, to
calculate intermediate values)

• Important distinction: Filter
changes control flow, whereas the
others do not — so there is some
freedom in ordering the Define
nodes (in between the Filter
that makes sure the expression is
valid and the first use)

Current solution (bamboo.plots):
• Selection class, with each

instance (optionally) holding a set
of selection requirements (cuts)
and weight factors

• Selections are defined by adding
cuts or weights to a more inclusive
selection (starting point: all events
in the input, unit weight)

• Plot instances are defined by a
Selection, variable(s), binning(s),
and layout options

• RDataFrame nodes are created
when Selection and Plot
objects are constructed

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 32

Selections and plots

Zooming in on the currently main use
case of different selections and
histograms now (skims also work)

• This only needs two fundamental
RDataFrame actions: Filter and
Histo{1D,2D} (and Define, to
calculate intermediate values)

• Important distinction: Filter
changes control flow, whereas the
others do not — so there is some
freedom in ordering the Define
nodes (in between the Filter
that makes sure the expression is
valid and the first use)

Current solution (bamboo.plots):
• Selection class, with each

instance (optionally) holding a set
of selection requirements (cuts)
and weight factors

• Selections are defined by adding
cuts or weights to a more inclusive
selection (starting point: all events
in the input, unit weight)

• Plot instances are defined by a
Selection, variable(s), binning(s),
and layout options

• RDataFrame nodes are created
when Selection and Plot
objects are constructed

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 33

Selections and plots: an example
def definePlots(self, t, noSel, sample=None, sampleCfg=None):

from bamboo.plots import Plot, EquidistantBinning
from bamboo import treefunctions as op
plots = []
muons = op.select(t.Muon, lambda mu : mu.pt > 20.)
twoMuSel = noSel.refine("dimu", cut=(op.rng_len(muons) > 1))
plots.append(Plot.make1D("dimu_M",

op.invariant_mass(muons[0].p4, muons[1].p4), twoMuSel,
EquidistantBinning(100, 20., 120.), title="Dimuon invariant mass"))

jets = op.select(t.Jet, lambda j : j.pt > 20.)
plots.append(Plot.make1D("dimu_nAllJets", op.rng_len(jets), twoMuSel,

EquidistantBinning(10, 0., 10.), title="Number of jets (uncleaned)"))
cleanedJets = op.select(jets, lambda j : op.NOT(

op.rng_any(muons, lambda mu : op.deltaR(mu.p4, j.p4) < 0.3)))
plots.append(Plot.make1D("dimu_nJets", op.rng_len(jets), twoMuSel,

EquidistantBinning(10, 0., 10.), title="Number of jets (cleaned)"))
twoMuTwoJetSel = twoMuSel.refine("dimudijet",

cut=(op.rng_len(cleanedJets) > 1))
plots.append(Plot.make1D("dimudijet_leadJetPT", cleanedJets[0].pt,

twoMuTwoJetSel, EquidistantBinning(50,0.,250.),title="Leading jet PT"))
return plots

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 34

Implementation: interface to RDataFrame and Cling

• Plot and Selection interact with a wrapper
class around the RDataFrame

• A tree of “selection nodes” is built up,
grouping a Filter node and an attached set
of Define nodes

• When converting an expensive expression to a
C++ string, values are defined on-demand by
attaching Define nodes (and functions
declared with the interpreter as needed;
global scope, so can be reused everywhere)

• Much of this needs fast searches through
expression trees for dependencies etc., which
is achieved by caching the value-based hash
of every expression (possible because they are
immutable)

image credit

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 35

https://www.flickr.com/photos/10319017@N08/2598486738

Implementation: interface to RDataFrame and Cling

• Plot and Selection interact with a wrapper
class around the RDataFrame

• A tree of “selection nodes” is built up,
grouping a Filter node and an attached set
of Define nodes

• When converting an expensive expression to a
C++ string, values are defined on-demand by
attaching Define nodes (and functions
declared with the interpreter as needed;
global scope, so can be reused everywhere)

• Much of this needs fast searches through
expression trees for dependencies etc., which
is achieved by caching the value-based hash
of every expression (possible because they are
immutable)

image credit

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 36

https://www.flickr.com/photos/10319017@N08/2598486738

Implementation: interface to RDataFrame and Cling

• Plot and Selection interact with a wrapper
class around the RDataFrame

• A tree of “selection nodes” is built up,
grouping a Filter node and an attached set
of Define nodes

• When converting an expensive expression to a
C++ string, values are defined on-demand by
attaching Define nodes (and functions
declared with the interpreter as needed;
global scope, so can be reused everywhere)

• Much of this needs fast searches through
expression trees for dependencies etc., which
is achieved by caching the value-based hash
of every expression (possible because they are
immutable)

image credit

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 37

https://commons.wikimedia.org/wiki/File:Beffroi_Hôtel_de_ville_de_Bruxelles_04.jpg

From code to workflows

$ bambooRun -m myAnalysis.py:BasicPlots mySamples.yml

• Also between the command line
and the analysis definition, much
code can be shared or reused, e.g.
for processing different samples
and combining the results in one
plot, using a batch system…

• Proposed solution: analysis
module inherits from a base class,
and implements the definePlots
method (which returns a list of
Plot objects)

• Input samples, and plot options,
are passed through a YAML file

With different options one can:
• interactively explore the decorated

tree (in an IPython prompt)

• run over only one file per sample,
for testing locally

• run sequentially or on a batch
system (slurm or HTCondor are
supported), worker jobs use
almost the same command

• rerun only the postprocessing
(plotting) step

• enable “implicit multi-threading”

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 38

From code to workflows

$ bambooRun -m myAnalysis.py:BasicPlots mySamples.yml

• Also between the command line
and the analysis definition, much
code can be shared or reused, e.g.
for processing different samples
and combining the results in one
plot, using a batch system…

• Proposed solution: analysis
module inherits from a base class,
and implements the definePlots
method (which returns a list of
Plot objects)

• Input samples, and plot options,
are passed through a YAML file

With different options one can:
• interactively explore the decorated

tree (in an IPython prompt)

• run over only one file per sample,
for testing locally

• run sequentially or on a batch
system (slurm or HTCondor are
supported), worker jobs use
almost the same command

• rerun only the postprocessing
(plotting) step

• enable “implicit multi-threading”

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 39

From code to workflows

$ bambooRun -m myAnalysis.py:BasicPlots mySamples.yml

• Also between the command line
and the analysis definition, much
code can be shared or reused, e.g.
for processing different samples
and combining the results in one
plot, using a batch system…

• Proposed solution: analysis
module inherits from a base class,
and implements the definePlots
method (which returns a list of
Plot objects)

• Input samples, and plot options,
are passed through a YAML file

With different options one can:
• interactively explore the decorated

tree (in an IPython prompt)

• run over only one file per sample,
for testing locally

• run sequentially or on a batch
system (slurm or HTCondor are
supported), worker jobs use
almost the same command

• rerun only the postprocessing
(plotting) step

• enable “implicit multi-threading”

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 40

From code to workflows

$ bambooRun -m myAnalysis.py:BasicPlots mySamples.yml

• Also between the command line
and the analysis definition, much
code can be shared or reused, e.g.
for processing different samples
and combining the results in one
plot, using a batch system…

• Proposed solution: analysis
module inherits from a base class,
and implements the definePlots
method (which returns a list of
Plot objects)

• Input samples, and plot options,
are passed through a YAML file

With different options one can:
• interactively explore the decorated

tree (in an IPython prompt)
• run over only one file per sample,

for testing locally

• run sequentially or on a batch
system (slurm or HTCondor are
supported), worker jobs use
almost the same command

• rerun only the postprocessing
(plotting) step

• enable “implicit multi-threading”

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 41

From code to workflows

$ bambooRun -m myAnalysis.py:BasicPlots mySamples.yml

• Also between the command line
and the analysis definition, much
code can be shared or reused, e.g.
for processing different samples
and combining the results in one
plot, using a batch system…

• Proposed solution: analysis
module inherits from a base class,
and implements the definePlots
method (which returns a list of
Plot objects)

• Input samples, and plot options,
are passed through a YAML file

With different options one can:
• interactively explore the decorated

tree (in an IPython prompt)
• run over only one file per sample,

for testing locally
• run sequentially or on a batch

system (slurm or HTCondor are
supported), worker jobs use
almost the same command

• rerun only the postprocessing
(plotting) step

• enable “implicit multi-threading”

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 42

From code to workflows

$ bambooRun -m myAnalysis.py:BasicPlots mySamples.yml

• Also between the command line
and the analysis definition, much
code can be shared or reused, e.g.
for processing different samples
and combining the results in one
plot, using a batch system…

• Proposed solution: analysis
module inherits from a base class,
and implements the definePlots
method (which returns a list of
Plot objects)

• Input samples, and plot options,
are passed through a YAML file

With different options one can:
• interactively explore the decorated

tree (in an IPython prompt)
• run over only one file per sample,

for testing locally
• run sequentially or on a batch

system (slurm or HTCondor are
supported), worker jobs use
almost the same command

• rerun only the postprocessing
(plotting) step

• enable “implicit multi-threading”

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 43

From code to workflows

$ bambooRun -m myAnalysis.py:BasicPlots mySamples.yml

• Also between the command line
and the analysis definition, much
code can be shared or reused, e.g.
for processing different samples
and combining the results in one
plot, using a batch system…

• Proposed solution: analysis
module inherits from a base class,
and implements the definePlots
method (which returns a list of
Plot objects)

• Input samples, and plot options,
are passed through a YAML file

With different options one can:
• interactively explore the decorated

tree (in an IPython prompt)
• run over only one file per sample,

for testing locally
• run sequentially or on a batch

system (slurm or HTCondor are
supported), worker jobs use
almost the same command

• rerun only the postprocessing
(plotting) step

• enable “implicit multi-threading”

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 44

Extending the basic functionality

Written in python, and tried to keep things loosely coupled (interfaces), so
many things are straightforward to customise and extend:

• Loading additional C++ headers and libraries in the interpreter
Examples: good runs/events filter and scale factors from JSON files,
jet and muon energy scale corrections calculated on the fly

• Alternative analysis (base) classes, e.g. for different tree formats, to
customise plotting, or to calculate efficiencies in addition

• There is a hook to specify additional command-line arguments from the
analysis module

• The sample definition (YAML) is open-ended, the base class only looks at
the attributes it needs (e.g. input files, to do the job splitting), and the
plotting library at a few more (normalisation for MC, grouping and
ordering, colors…)

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 45

Extending the basic functionality

Written in python, and tried to keep things loosely coupled (interfaces), so
many things are straightforward to customise and extend:

• Loading additional C++ headers and libraries in the interpreter
Examples: good runs/events filter and scale factors from JSON files,
jet and muon energy scale corrections calculated on the fly

• Alternative analysis (base) classes, e.g. for different tree formats, to
customise plotting, or to calculate efficiencies in addition

• There is a hook to specify additional command-line arguments from the
analysis module

• The sample definition (YAML) is open-ended, the base class only looks at
the attributes it needs (e.g. input files, to do the job splitting), and the
plotting library at a few more (normalisation for MC, grouping and
ordering, colors…)

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 46

Extending the basic functionality

Written in python, and tried to keep things loosely coupled (interfaces), so
many things are straightforward to customise and extend:

• Loading additional C++ headers and libraries in the interpreter
Examples: good runs/events filter and scale factors from JSON files,
jet and muon energy scale corrections calculated on the fly

• Alternative analysis (base) classes, e.g. for different tree formats, to
customise plotting, or to calculate efficiencies in addition

• There is a hook to specify additional command-line arguments from the
analysis module

• The sample definition (YAML) is open-ended, the base class only looks at
the attributes it needs (e.g. input files, to do the job splitting), and the
plotting library at a few more (normalisation for MC, grouping and
ordering, colors…)

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 47

Extending the basic functionality

Written in python, and tried to keep things loosely coupled (interfaces), so
many things are straightforward to customise and extend:

• Loading additional C++ headers and libraries in the interpreter
Examples: good runs/events filter and scale factors from JSON files,
jet and muon energy scale corrections calculated on the fly

• Alternative analysis (base) classes, e.g. for different tree formats, to
customise plotting, or to calculate efficiencies in addition

• There is a hook to specify additional command-line arguments from the
analysis module

• The sample definition (YAML) is open-ended, the base class only looks at
the attributes it needs (e.g. input files, to do the job splitting), and the
plotting library at a few more (normalisation for MC, grouping and
ordering, colors…)

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 48

Extending the basic functionality

Written in python, and tried to keep things loosely coupled (interfaces), so
many things are straightforward to customise and extend:

• Loading additional C++ headers and libraries in the interpreter
Examples: good runs/events filter and scale factors from JSON files,
jet and muon energy scale corrections calculated on the fly

• Alternative analysis (base) classes, e.g. for different tree formats, to
customise plotting, or to calculate efficiencies in addition

• There is a hook to specify additional command-line arguments from the
analysis module

• The sample definition (YAML) is open-ended, the base class only looks at
the attributes it needs (e.g. input files, to do the job splitting), and the
plotting library at a few more (normalisation for MC, grouping and
ordering, colors…)

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 49

Pushing the limits: automatic systematics

• Many systematic uncertainties are
taken into account in very similar
ways: as a change in per-event
weight, or as a different value for
some quantities (e.g. jet energy)

• If expressions are marked as
changing under a certain
systematic effect (in the
decorations, or explicitly when
constructing the expression), the
correspondingly varied histograms
can be automatically produced

• On by default, but can be disabled
for a selection (and everything
attached to it) or a plot

Implementation: the backend code
scans cuts, weights, and variables for
marked nodes, and defines the
additional RDataFrame nodes as
needed (alternative weights are
cheap, but anything used in cuts may
change the events passing a filter, so
need to branch off, and duplicate
subsequent defines)

Quite some bookkeeping, but fully
generic (changes to analysis code are
minimal), and the code for this is
localised in a handful of places

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 50

Pushing the limits: automatic systematics

• Many systematic uncertainties are
taken into account in very similar
ways: as a change in per-event
weight, or as a different value for
some quantities (e.g. jet energy)

• If expressions are marked as
changing under a certain
systematic effect (in the
decorations, or explicitly when
constructing the expression), the
correspondingly varied histograms
can be automatically produced

• On by default, but can be disabled
for a selection (and everything
attached to it) or a plot

Implementation: the backend code
scans cuts, weights, and variables for
marked nodes, and defines the
additional RDataFrame nodes as
needed (alternative weights are
cheap, but anything used in cuts may
change the events passing a filter, so
need to branch off, and duplicate
subsequent defines)

Quite some bookkeeping, but fully
generic (changes to analysis code are
minimal), and the code for this is
localised in a handful of places

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 51

Pushing the limits: automatic systematics

• Many systematic uncertainties are
taken into account in very similar
ways: as a change in per-event
weight, or as a different value for
some quantities (e.g. jet energy)

• If expressions are marked as
changing under a certain
systematic effect (in the
decorations, or explicitly when
constructing the expression), the
correspondingly varied histograms
can be automatically produced

• On by default, but can be disabled
for a selection (and everything
attached to it) or a plot

Implementation: the backend code
scans cuts, weights, and variables for
marked nodes, and defines the
additional RDataFrame nodes as
needed (alternative weights are
cheap, but anything used in cuts may
change the events passing a filter, so
need to branch off, and duplicate
subsequent defines)

Quite some bookkeeping, but fully
generic (changes to analysis code are
minimal), and the code for this is
localised in a handful of places

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 52

Pushing the limits: automatic systematics

• Many systematic uncertainties are
taken into account in very similar
ways: as a change in per-event
weight, or as a different value for
some quantities (e.g. jet energy)

• If expressions are marked as
changing under a certain
systematic effect (in the
decorations, or explicitly when
constructing the expression), the
correspondingly varied histograms
can be automatically produced

• On by default, but can be disabled
for a selection (and everything
attached to it) or a plot

Implementation: the backend code
scans cuts, weights, and variables for
marked nodes, and defines the
additional RDataFrame nodes as
needed (alternative weights are
cheap, but anything used in cuts may
change the events passing a filter, so
need to branch off, and duplicate
subsequent defines)

Quite some bookkeeping, but fully
generic (changes to analysis code are
minimal), and the code for this is
localised in a handful of places

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 53

Future developments and links

• Development status: beta; usable, but moving from a narrow
proof-of-concept to actual research, so some interfaces may still change

• Performance: memory usage increases to about 5GB for 5000 histograms
(more than expected, under investigation), CPU time acceptable for now
(O(1min) for defining plots — compiled code speed for the event loop)

• Being used or evaluated for three CMS analyses — early adopter
feedback has been extremely valuable; many thanks, especially to
Khawla Jaffel (UCLouvain) and Sébastien Wertz (Universität Zürich)

• Technical requirements: python3.6+, a recent ROOT (6.14/06, 6.16/00 or
6.18/04), and a few python packages (typical installation: with pip in a
virtualenv). plotIt (a ROOT-based C++ tool) is used for turning
histograms into pdf/png stack plots

• The code is public in this repository, and there is HTML documentation

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 54

https://github.com/cp3-llbb/plotIt
https://gitlab.cern.ch/cp3-cms/bamboo
https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/

Conclusion

• RDataFrame is a very powerful tool (especially when paired with Cling
for piece-by-piece compilation)

• For actual analysis use: still a lot of bookkeeping to do, especially for flat
trees (e.g. indices)

• bamboo is an attempt to bridge this gap, such that the user code is little
more than a compact description of the analysis

• Hopefully some (not too) creative uses of python, and interesting ideas

• Started from a simple problem and idea, ended up writing a more
general tool… usable, but much room for improvement and additionss

Thanks for your attention, I am looking forward to hearing your
thoughts/suggestions/criticism and exchange ideas

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 55

Additional material

Installation

Suggested way to get a recent ROOT release: from the
LCG software distribution on CVMFS

Installation (to be improved):
source /cvmfs/sft.cern.ch/lcg/views/LCG_95apython3/x86_64-centos7-gcc8-opt/setup.sh
python -m venv myvenv
source myvenv/bin/activate
git clone -o upstream git+https://gitlab.cern.ch/cp3-cms/bamboo.git
cd bamboo/ext
./getjetclasses.sh ## copy some source files from CMSSW
cd -
pip install ./bamboo

plotIt (for pdf/png output):
git clone -o upstream https://github.com/cp3-llbb/plotIt.git
cd plotIt/external
./build-external.sh
cd ..
BOOST_ROOT=$CMAKE_PREFIX_PATH make -j4
cd ..
cp plotIt/plotIt myvenv/bin

Upload to pip/condaforge is planned
(the bamboo name is taken, so probably bamboo-hep)

CP3SlurmUtils on test.pypi.org, will be uploaded to production PyPI soon

Pieter David (UCLouvain) Readable and efficient HEP data analysis with bamboo PyHEP 2019 57

http://lcginfo.cern.ch
https://github.com/cp3-llbb/plotIt
https://test.pypi.org/project/CP3SlurmUtils/

