


Introducing SixTrackLib
A Versatile, Hardware-Accelerated Single-Particle Tracking Library

M. Schwinzerl[1], Riccardo De Maria[1], Giovanni Iadarola[1], Adrian Oeftiger[2]

[1]CERN, BE Department, ABP-HSS, [2]GSI/FAIR

PyHEP 2019 :: Abingdon, Uk

2019/10/16 SixTrackLib 2



Introduction

Usage Examples

Design Principles & Implementation

Performance Analysis

Integration Into Python Programs

Conclusion & Outlook

2019/10/16 SixTrackLib 3



Introduction :: A 6D Single Particle Tracking (Parallel) Library

1. 6D: Particle motion through phase space (x , px , y , py , ζ, δ)

2. Single-Particle: non-interaction particles pi , pk with i 6= k < Np

3. Tracking: via symplectic (thin-lens) map fj for the beam-element at
position j in the lattice: pi (j + 1)← fj (pi (j))

4. Parallel: For Np � 1: ”embarrassingly” parallel problem

5. Library: independent of application, low barrier of entry, reusable,
embedable, extensible (in contrast to established application
SixTrack: https://github.com/SixTrack/SixTrack)

2019/10/16 SixTrackLib 4

https://github.com/SixTrack/SixTrack


Introduction :: Usage Scenarios For Such A Library

• Building-block for applications (i.e. user-generated simulations or
even frameworks) that require tracking (for example PyHEADTAIL)

• Usable on PCs and Laptops with limited or no parallel computing
capabilities (development & debugging!)

• Large-scale simulations (i.e. many particles, many turns) on
dedicated HPC infrastructure

• Optimal usage of donated computing time (GPU and CPU) via
LHC@Home volunteer project
http://lhcathome.web.cern.ch/projects/sixtrack

• Across these: same API/syntax
(i.e. without having to rewrite any user-code)

• Regular users should not need any GPU/HPC knowledge
(but allow advanced users to tweak things)

2019/10/16 SixTrackLib 5

http://lhcathome.web.cern.ch/projects/sixtrack


Introduction :: Current SixTrackLib Status

• Available from https://github.com/SixTrack/sixtracklib

• Early stage, intended for advanced users & selected studies

• In development for 18 months+ now

• Supports C99, C++11, and Python 3 → consistent API

• Supports Single threaded CPU (Auto-Vec), OpenCL 1.2 and Cuda

• Part of a larger ecosystem of libraries especially targeting Python:
• cobjects: Specialised binary serialisation buffer/protocol
https://github.com/SixTrack/cobjects

• pysixtrack: Rapid prototyping Python-only implementation
https://github.com/SixTrack/pysixtrack

• sixtracktools: Access SixTrack IO files from Python

https://github.com/SixTrack/sixtracktools

2019/10/16 SixTrackLib 6

https://github.com/SixTrack/sixtracklib
https://github.com/SixTrack/cobjects
https://github.com/SixTrack/pysixtrack
https://github.com/SixTrack/sixtracktools


Examples :: Track All Particles Until Turn On CPU

2019/10/16 SixTrackLib 7



Examples :: Track All Particles Until Turn On GPU (OpenCL)

2019/10/16 SixTrackLib 8



Examples :: Lattice from MAD-X Sequence (via pysixtrack)

2019/10/16 SixTrackLib 9



Design Principles :: Overview

• Design Goal: separate the technical details (CPU, OpenCL, Cuda,
parallel computing, HPC, etc.) from the physics

• ⇒ Keep SixTrackLib extensible wrt. physics (even by end-users)

• ⇒ Have a single implementation of the physics models
(header only, C99, heavily abstracted & limited ≈ DSL)

• ⇒ Keep SixTrackLib extensible wrt. supported architectures

• Design Goal: consistent API across languages & architectures

• Challenge: limit externally facing API surface, stability promises

• ⇒ Focus SixTrackLib on tracking

• ⇒ Move auxiliary components out of the library

2019/10/16 SixTrackLib 10



Implementation :: External Library pysixtrack

• Idea: minimal, pythonic (Python-only!) tracking implementation

• Place for prototyping & implementing new physics models

• Collect also I/O helper routines (cf. MAD-X example above)

• Strong focus on numerical precision and correctness (mp.math!)

• Slightly reduced focus on performance and scalability

2019/10/16 SixTrackLib 11



Implementation :: External Library cobjects
• Particles, beam-elements, output
→ need to be serialized, stored/restored, exchanged (Host↔Device)

• cobjects : binary protocol & buffer (Python3, numpy)
• C/C++ implementation available as part of SixTrackLib
• Allows objects to have nested structured members and vectors
• Allows for user-contributed (structured) data-types

2019/10/16 SixTrackLib 12



Implementation :: Externally Library cobjects (cont.)

• Allows light-weight, zero-copy, in-place access to stored objects

• Challenge: if a buffer of cobjects is moved, all stored pointers have
to be ”remapped”

• → cobjects buffers are intended to be used ”sequentially”

2019/10/16 SixTrackLib 13



Implementation :: cobjects Storage Memory Layout

2019/10/16 SixTrackLib 14



Performance Analysis :: Full LHC lattice, OpenCL Backend

2019/10/16 SixTrackLib 15



Integrating SixTrackLib Into Programs :: Overview

SixTrackLib supports several different integration strategies. Ranging
from ”easily accessible” to ”complex & invasive”:

• Use track until() & collect particles() via TrackJob

• Use track line() & manipulate particle state in-place

• Run-time compile and execute custom kernel function written in the
header-only subset (currently only OpenCL, requires C99 interface)

• Integrate required functionality into SixTrackLib (C99,C++)

• Directly use the C99 header-only subset of SixTrackLib

2019/10/16 SixTrackLib 16



Example: Integration of SixTrackLib With PyCUDA

2019/10/16 SixTrackLib 17



Example: Integration of SixTrackLib With PyCUDA (cont.)

• Allows in-place particle manipulation between calls to track line()

• Similar implementation also available with CuPY

• This way of integration is an additional motivation to support both
OpenCL and CUDA!

• But: corresponding integration with PyOpenCL tbd/wip

2019/10/16 SixTrackLib 18



What Could Possibly Go Wrong? (Cuda Edition)

• Cuda High-Level API context management is implicit −→ sharing
contexts relies on conventions (Alternative: Driver API)

• PyCUDA, CuPY: context initialized & destroyed via Python

SixTrackLib objects created and destroyed in-between
• Inputs (particles, lattices): used by SixTrackLib
• Device buffers, Output buffer: managed by SixTrackLib

• Coordinated device selection PyCUDA / CuPY ↔ SixTrackLib

• If selected devices mismatch, PyCUDA may try to be ”helpful” −→
very slow device↔device mem cpy

• SixTrackLib currently only exposes default stream
everything else: explicit device synchronisation

• ...

• Beyond entry-level usage −→ Platform-level integration!

2019/10/16 SixTrackLib 19



Conclusion & Outlook

• Writing a cross-platform, multi-language library that behaves like a
proper Python module is challenging

• Approach chosen for SixTrackLib is feasible & performance numbers
and feedback from users are encouraging

• Programming to least-common denominator & heavily relying on
abstractions has its limitations −→ Look into reflection & automatic
code-generation from pysixtrack

• Goal: Using SixTrackLib as tracking backend to SixTrack and
within the context of LHC@Home

• Goal: Simplify installation and deployment for Python users

• Goal: Optimise run-time performance and scalability

• Goal: Continue integration efforts with PyHEADTAIL et al

2019/10/16 SixTrackLib 20



Thank You For Your Attention!

2019/10/16 SixTrackLib 21



Backup Slides

2019/10/16 SixTrackLib 22



Example :: Tracking Map (Drift)

2019/10/16 SixTrackLib 23



Example :: C++ API Example

2019/10/16 SixTrackLib 24



Example :: C99 API Example

2019/10/16 SixTrackLib 25


	Introduction
	Usage Examples
	Design Principles & Implementation
	Performance Analysis
	Integration Into Python Programs
	Conclusion & Outlook

