_
CE/RW
\

Introducing SixTrackLib

A Versatile, Hardware-Accelerated Single-Particle Tracking Library

M. Schwinzerl[1], Riccardo De Maria[1], Giovanni ladarola[1], Adrian Oeftiger[2]

[1]CERN, BE Department, ABP-HSS, [2]GSI/FAIR

PyHEP 2019 :: Abingdon, Uk

2019/10/16

Introduction

Usage Examples

Design Principles & Implementation
Performance Analysis

Integration Into Python Programs

Conclusion & Outlook

Introduction :: A 6D Single Particle Tracking (Parallel) Library

1. 6D: Particle motion through phase space (x, px,y, py, ¢, 9)

Oz, y.s,1) H(s)

o -
- sy

J fZ p:h—l
™. /

reference particle trajectory \\ /

X

2. Single-Particle: non-interaction particles p;, px with i # k < N,

3. Tracking: via symplectic (thin-lens) map f; for the beam-element at
position j in the lattice: p; (j + 1) < i (pi (j))

4. Parallel: For N, > 1: "embarrassingly” parallel problem

5. Library: independent of application, low barrier of entry, reusable,
embedable, extensible (in contrast to established application
SixTrack: https://github.com/SixTrack/SixTrack)

2019/10/16 SixTrackLib

https://github.com/SixTrack/SixTrack

Introduction :: Usage Scenarios For Such A Library

* Building-block for applications (i.e. user-generated simulations or
even frameworks) that require tracking (for example PyHEADTAIL)

® Usable on PCs and Laptops with limited or no parallel computing
capabilities (development & debugging!)

* Large-scale simulations (i.e. many particles, many turns) on
dedicated HPC infrastructure

* Optimal usage of donated computing time (GPU and CPU) via
LHC®@Home volunteer project
http://lhcathome.web.cern.ch/projects/sixtrack

* Across these: same API/syntax
(i.e. without having to rewrite any user-code)

* Regular users should not need any GPU/HPC knowledge
(but allow advanced users to tweak things)

2019/10/16 SixTrackLib

http://lhcathome.web.cern.ch/projects/sixtrack

Introduction :: Current SixTrackLib Status

* Available from https://github.com/SixTrack/sixtracklib

* Early stage, intended for advanced users & selected studies

* In development for 18 months+ now

® Supports C99, C++11, and Python 3 — consistent API

* Supports Single threaded CPU (Auto-Vec), OpenCL 1.2 and Cuda

® Part of a larger ecosystem of libraries especially targeting Python:
* cobjects: Specialised binary serialisation buffer/protocol
https://github.com/SixTrack/cobjects
* pysixtrack: Rapid prototyping Python-only implementation
https://github.com/SixTrack/pysixtrack
* sixtracktools: Access SixTrack 10 files from Python

https://github.com/SixTrack/sixtracktools

2019/10/16 SixTrackLib

https://github.com/SixTrack/sixtracklib
https://github.com/SixTrack/cobjects
https://github.com/SixTrack/pysixtrack
https://github.com/SixTrack/sixtracktools

Examples

In [1]:

.- Track All Particles Until Turn On CPU

import sixtracklib as st

Load particle data and the accelerator machine description from
a binary dump:

particles = st.ParticlesSet.fromfile("./particles.bin"}
lattice = st.Elements.fromfile("./element®.bin")

Create a track-job instance
job = st.TrackJob(lattice, particles)

Track all particles until they are in turn 100
job.track_until(100)

Collect the particle state -> not strictly required on the CPU
job.collect_particles()

particles now contains the updated state after tracking for 100 turns
oo

Examples ::

In [1]:

Track All Particles Until Turn On GPU (OpenCL)

import sixtracklib as st

Like before, lead particles and machine description from binary dumps
particles = st.ParticlesSet.fromfile("./particles.bin")
lattice = st.Elements.fromfile("./lattice.bin")

We want to track now using OpenCL; get a list of supported devices
!clinfo -1

Platform #0: NVIDIA CUDA
+-- Device #0: TITAN V »

-- Device #1: GeForce GT 1030

Platform #1: Intel(R) CPU Runtime for OpenCL(TM) Applications
“-- Device #0: AMD Ryzen Threadripper 1950X 16-Core Processor
Platform #2: AMD Accelerated Parallel Processing

“-- Device #0: Hawaii

In [2]:

Initialize the TrackJob to use the NVidia GT 1030 card
job = st.TrackJob(lattice, particles, device='"opencl:0.1")
job.track_until(100)

Collect the particles -> now required
job.collect_particles()

Examples

In [1]:

In [2]:

In [3]:

. Lattice from MAD-X Sequence (via pysixtrack)

from cpymad.madx import Madx

import sixtracklib as st

import pysixtrack

from scipy.constants import e, m_p, ¢
import numpy as np

pOc = 6.0 * 1e9 # (PO * c) [eV]
Etot = np.sqrt(pOc**2 + (m_p / e)**2 x c**x4) * le-9 # [Gel]

mad = Madx()

mad.call(file="fodo.madx")

mad. command . beam(particle='proton',energy=str(Etot))
mad.use(sequence="FOD0")

Setup the lattice from the MAD-X Sequencz

sis18 = mad.sequence.FODO

ps_line, _ = pysixtrack.Line.from_madx_sequence(sis18)
elements = st.Elements()

elements.append_line(ps_line)

Setup the particles consistent with (PO¥c)
particles = st.Particles.from_ref (1000, pOc=pOc)

From here on, continue as before

job = st.TrackJob(lattice, particles, device="opencl:0.1")
job.track_until(100)

job.collect_particles()

Design Principles :: Overview

* Design Goal: separate the technical details (CPU, OpenCL, Cuda,
parallel computing, HPC, etc.) from the physics

* = Keep SixTrackLib extensible wrt. physics (even by end-users)

® = Have a single implementation of the physics models
(header only, C99, heavily abstracted & limited ~ DSL)

* — Keep SixTrackLib extensible wrt. supported architectures

® Design Goal: consistent APl across languages & architectures

® Challenge: limit externally facing API surface, stability promises
® = Focus SixTrackLib on tracking

® = Move auxiliary components out of the library

2019/10/16 SixTrackLib

Implementation :: External Library pysixtrack

* |dea: minimal, pythonic (Python-only!) tracking implementation
® Place for prototyping & implementing new physics models

* Collect also /O helper routines (cf. MAD-X example above)

* Strong focus on numerical precision and correctness (mp.math!)
* Slightly reduced focus on performance and scalability

In [1]: import pysixtrack as pyst
particle_1=pyst.Particles()
particle_1.x=1
particle_1.y=1

particle_2=particle_1.copy()

beleml=pyst.elements.RFMultipole(knl=[.5,2,.2],ks1=[.5,3,.1])
belem2=pyst.elements.Multipole(knl=ell.knl,ksl=ell.ksl)

beleml.track(particle_1)
belem2.track(particle 2)

assert particle_l.compare(particle_2,abs_tol=le-15), "should have same effect!"

2019/10/16 SixTrackLib

Implementation :: External Library cobjects

Particles, beam-elements, output

— need to be serialized, stored/restored, exchanged (Host«Device)
cobjects : binary protocol & buffer (Python3, numpy)

C/C++ implementation available as part of SixTrackLib

Allows objects to have nested structured members and vectors
Allows for user-contributed (structured) data-types

[1]: from cobjects import CField, CObject, CBuffer
import numpy as np

class VecObj(CObject):
_typeid = 1024 # to be coordinated across stored obj
= CField(0, 'real', default=1.0, alignmentiﬁ) # Scalar
CField(1, 'real', default=0.0, length=4, alignmentZB) # Fized Size Vec
. dynamically sized vector of 3 * z_lengih elements
length = CField(2, 'uint64', const=True, alignment=8)
= CField(3,'real', default=0.0, pointer=True, length='3*z_length', alignment:8)

[T

x
y
#
z_
z

def __init__(self, z_length=None, **kwargs):
if z_length is None:
z_length = 1
super () .__init__(z_length=z_length, *+kwargs)

2019/10/16 SixTrackLib

Implementation :: Externally Library cobjects (cont.)

* Allows light-weight, zero-copy, in-place access to stored objects

In [2]: buffer
obj1 =
obj2 =

assert
assert

= CBuffer()
VecObj (cbuffer=buffer, z_length=10)
VecObj (cbuffer=buffer)

len(objl.z) == 30
len(obj2.z) == 3

alias_to_obj2 = buffer.get_cbject (1)
alias_to_obj2.x = 5.0

assert

np.isclose(alias_to_obj2.x, obj2.x, atol=le-16)

® Challenge: if a buffer of cobjects is moved, all stored pointers have
to be "remapped”

®* — cobjects buffers are intended to be used "sequentially”

2019/10/16 SixTrackLib

Implementation :: cobjects Storage Memory Layout

IR T

et N Partiles)

S s oo 1 i == 2 o

i 1 1
i 5 53 () s o e 2 e e) 1
Pad T . 0 T T T, 1 T T

block #1.of M partices

ik 1 Bloskinie

Bleck 91 par o data pointers.

- Scalar block attribute [:] Data storage (linear)
1d vector block attribute = ptr points to
ok #1 vt dotn
Bo | 7] Block Type Id (== Drift, Multipole, .. } Pointer to MetaData (== NULL for no Metadata)
EEEEEEREEERER] ‘
[#] Length in bytes of the block Not used / Don't care

Pointer to Begin of Block [=] Pointer to 1d vector block attribute

Performance Analysis :: Full LHC lattice, OpenCL Backend

LHC machine description with Beam-Beam elements (10866 elements)
Comparison of benchmarked results across configurations

10e-04

10205

Time / particle / turn [s]

= NVidia Titan V

= Intel OpenCL AMD CPU 1950X
= AMD FirePro W8100

10e-06 NVidia GTX1030

—— Single Thread AMD CPU 1950X

10e-07
10°

10! 10% 10° 10 10° 107
Number of particles

Integrating SixTrackLib Into Programs :: Overview

SixTrackLib supports several different integration strategies. Ranging
from "easily accessible” to "complex & invasive”:

® Use track until() & collect_particles() via TrackJob

® Use track_line() & manipulate particle state in-place
wen N COCOCOCOC3 -+ OO0 (user contributed code #1 j{ user contributed code #2]

[—— manipulating particle state manipulating particle state

w1 OO0 - OO0 I:I-'--I:II?D ‘%‘]:!EIEDD - OO0

weno CIOCOCICICI] -+ job.track_line(begin, end, finish_turn)

job.track_until(N)

® Run-time compile and execute custom kernel function written in the
header-only subset (currently only OpenCL, requires C99 interface)

* Integrate required functionality into SixTrackLib (C99,C++)

* Directly use the C99 header-only subset of SixTrackLib

SixTrac

Example: Integration of SixTrackLib With PyCUDA

In [1]: import sixtracklib as st
import numpy as np
import pycuda
from pycuda import gpuarray, driver, autoinit

particles = st.ParticlesSet.fromfile("./particles.bin")
lattice = st.Elements.fromfile("./lattice.bin")
job = st.CudaTrackJob(lattice, particles)

Initialize the pariticles to some walues on the host
job.particles_buffer.get_object(0).x[:] = np.array([-1.0, -2.0 1)

push particle state to the device
job.push_particles()

In [2]: job.fetch particle addresses()
ptr_particles_addr = job.get_particle_ addresses(0) #0 .. only one particle set
particles_addr = ptr_particles_addr.contents # particles_addr contains addr #on the device

print("num_particles = {0:8d}".format(particles_addr.num particles))
print("x begin at = {0:16x}".format(particles_addr.x))
num_particles = 2
X begin at = 7£6ca5000190

CE/RW
1

SZA

Example: Integration of SixTrackLib With PyCUDA (cont.)

In [3]: # Create a PyCUDA GPUArray coinciding with our memory Tukge
cuda_x = pycuda.gpuarray.GPUArray(
particles_addr.num_particles, np.float64, gpudata=particles_addr.x)

Modify the values via the cuda_x array
new_values = np.array([5.0, 6.0])
cuda_x[:] = new_values

In [4]: # Verify that the particle state has been modified
job.collect_particles()

print(job.particles_buffer.get_object(0).x)

[5. 6.]

* Allows in-place particle manipulation between calls to track_line ()
® Similar implementation also available with CuPY

® This way of integration is an additional motivation to support both
OpenCL and CUDA!

* But: corresponding integration with PyOpenCL thd/wip

2019/10/16 SixTrackLib

What Could Possibly Go Wrong? (Cuda Edition)

® Cuda High-Level API context management is implicit — sharing
contexts relies on conventions (Alternative: Driver API)
* PyCUDA, CuPY: context initialized & destroyed via Python
SixTrackLib objects created and destroyed in-between
* Inputs (particles, lattices): used by SixTrackLib
* Device buffers, Output buffer: managed by SixTrackLib
* Coordinated device selection PyCUDA / CuPY < SixTrackLib

* If selected devices mismatch, PyCUDA may try to be "helpful” —
very slow device<>device mem cpy

¢ SixTrackLib currently only exposes default stream
everything else: explicit device synchronisation

* Beyond entry-level usage — Platform-level integration!

2019/10/16 SixTrackLib

Conclusion & Outlook

® Writing a cross-platform, multi-language library that behaves like a
proper Python module is challenging

® Approach chosen for SixTrackLib is feasible & performance numbers
and feedback from users are encouraging

® Programming to least-common denominator & heavily relying on
abstractions has its limitations — Look into reflection & automatic
code-generation from pysixtrack

® Goal: Using SixTrackLib as tracking backend to SixTrack and
within the context of LHC@Home

® Goal: Simplify installation and deployment for Python users
® Goal: Optimise run-time performance and scalability
® Goal: Continue integration efforts with PyHEADTAIL et al

2019/10/16 SixTrackLib

Thank You For Your Attention!

Backup Slides

Example :: Tracking Map (Drift)

SIXTRL_INLINE NS{track status_t) NS(Track_particle drift)(
SIXTRL_PARTICLE_ARGPTR_DEC NS(Particles)* SIXTRL_RESTRICT p,
NS(particle num elements t) const ii,

SIXTRL_BE_ARGPTR_DEC const NS(Drift) *const SIXTRL_RESTRICT drift)

typedef NS{particle real t) real_t;
real_t const rpp = NS(Particles_get_rpp_value

)
real_t const xp NS(Particles_get_px_value)
real_t const yp NS(Particles_get py value)

)

(
(
(

real_t const length = NS(Drift_get_length)(drift
real_t const dzeta NS(Particles get rv a'Lue (p, i
{ (real_t)1 + { xp*xp yprf{realt)z};

H

NS{Particles_add_to_x value)(p, ii, xp * length);
NS(Particles add to y value)(p, ii, yp * length);

SIXTRL_ASSERT(NS(Particles_get beta® value)(p, ii } » { real t)8);

NS{Particles_add_to_s_value)(p, ii, length };

Ns(Particles add to zeta value)(p, ii, length * dzeta };

return SIXTRL TRACK SUCCESS;

Example :: C++ API Example

#include "sixtracklib/sixtracklib.hpp"
int main()
namespace st = sixtrack;

st::Buffer particle_set("./particles.bin");
st::Buffer lattice("./lattice.bin");

// We have to be explicit about using the CPU for tracking
st::TrackJobCpu job(particle set, lattice);

// Track until turn 100
job.trackUntil(100);

// Collect the particle state -> would not be needed for the CPU TrackJob
job.collectParticles();

// particle set now contains the tracked data
// ... Do something with the particles

return 0;

Example :: C99 API Example

#include "sixtracklib/sixtracklib.h"
int main()

NS(Buffer)* particle_set = NS(Buffer_new from file)("./particles.bin");
NS(Buffer)* lattice = NS(Buffer_new_from_file)("./lattice.bin");

/* We have to be explicit about using the CPU for tracking */
NS(TrackJobCpu)* job = NS(TrackJobCpu new)(particle set, lattice);

/* Track until turn 100 */
NS(TrackJob track until)(job, 100);

/* Collect the particle state ->
* would not be needed for the CPU TrackJob */
NS(TrackJob_collect particles)(job); W

/* particle_set now contains the tracked data */
/* ... Do something with the particles ... */

/* Cleaning-Up */
NS(TrackJob_delete)(job);
NS(Buffer delete)(particle set);
NS(Buffer_delete)(lattice);

return 0;

	Introduction
	Usage Examples
	Design Principles & Implementation
	Performance Analysis
	Integration Into Python Programs
	Conclusion & Outlook

