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Abstract

This documentation supplements a set of Matlab scripts to reconstruct the shape of a two-
dimensional rough surface based on scattered acoustic field data. The method is based on the
approach introduced by Krynkin et al. (2016) (Krynkin et al., 2016, An airborne acoustic method
to reconstruct a dynamically rough surface, J. Ac. Soc. Am. 140(3) https://doi.org/10.

1121/1.4962559). The present implementation is based on the work by Dolcetti et al. (2020)
(Dolcetti et al., 2020, Robust Reconstruction of Scattering Surfaces Using a Linear Microphone
Array, submitted to Journal of Sound and Vibration). This includes some improvements to the
previous algorithms, including a multi-frequency extension aimed at improving the robustness of the
reconstruction using broadband data. The algorithms apply to smooth sound-hard rough surfaces
that satisfy the applicability of the Kirchhoff approximation. Input data can be either experimental
or numerical. Algorithms to create random realisations of a rough surface with a power-function
spatial spectrum, and to estimate the corresponding synthetic scattered sound field based on the
Kirchhoff approximation, are included, together with a working example.

1 Generalities:

The user is referred to Dolcetti et al. [2020] for detailed information about the theory and sensitivity
to the choice of the algorithm and parameters. Here only the main equations and meaning of the
mathematical symbols are reported.

1.1 Problem Statement:

Sound is produced by a source with co-ordinates vector S = (xs, 0, z0) in the half plane z0 > 0, and
scattered by a sound-hard surface with profile z = ζ(x). The surface elevation is constant along the
direction y. The scattered sound field P (Mm) is recorded at a set of Nm microphones with co-ordinates
Mm = (xm, 0, zm). Assuming the validity of the Kirchhoff approximation [Thorsos, 1988], and the
smallness of ζ/z0 � 1, ζ/zm � 1, an estimate of the surface profile ζ(xr) at a set of points xr is
obtained from a measurement of P (Mm) [Krynkin et al., 2016]. The solution is found by means of
a singular value decomposition of the linearised Kirchhoff integral equation, after a stationary phase
expansion along the y-direction (parallel to the surface crest). The number of microphones Nm does not
need to be as large as the number of reconstruction locations Nr.
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Figure 1: Schematic representation of the surface scattering problem geometry, and characteristic
parameters: acoustic wavenumber k0, source inclination angle φ0, equivalent piston radius a0, micro-
phone array separation d0 and height z0, surface standard deviation σ0, spectrum slope α0, saturation
wavenumber κ0, and short-scale cut-off wavenumber, κ1. The rough surface is described by the function
z = ζ(x), with normal vector n. (taken from Dolcetti et al. [2020])

1.2 Kirchhoff Approximation:

Theoretically, the complex potential can be calculated according to the Kirchhoff approximation [Dolcetti
et al., 2020, Eq.5-7]:

P (Mm, k) ≈
∫
A(S,Mm, x, k) exp [−iqz(Mm,S, x, k)ζ(x)] dx, (1)

where

qz(Mm,S, x, k) = k

[
zm

R(Mm,ρ0)
+

z0
R(S,ρ0)

]
, (2)

ρ0 is the projection of ρ onto the x-axis, ρ0 = (x, 0), and

A(S,Mm, x, k) =
e−iπ/4

k
√
k8π

D(θ(ρ0 − S)) exp {ik [R(Mm,ρ0) +R(S,ρ0)]}√
R(S,ρ0)R(Mm,ρ0)

√
[R(S,ρ0) +R(Mm,ρ0)]

qz(Mm,S, x, k). (3)

k = 2π/λ is the acoustic wavenumber, λ is the wavelength, R(Mm,ρ0) is the distance from the m-th
receiver to a point ρ0 on the surface, and R(S,ρ0) is the distance from the source to a point ρ0 on the
surface. D(θ(ρ0 − S) is the source directivity pattern, which is approximated by the directivity of an
ideal piston with radius a0 and with an infinite baffle [Morse and Ingard, 1986, p. 381],

D(θ) = 2
J1(ka0 sin(θ))

ka0 sin(θ)
, (4)

where Jn is the Bessel function of the first kind, and θ is the angle from the axis of the piston. The result
of Eq. (1) is estimated by the Matlab script KirchhoffScattering2D.m, where the integral is approximated
with a quadrature method applied to a discretised surface.
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1.3 Input Data:

The input data must be given in the form of a non-dimensionalised complex signal amplitude. This can
be calculated from a measured acoustic pressure time series by means of a Fourier transform. In this
case, it is suggested to divide the measured complex Fourier amplitudes at each frequency by that of a
reference signal, for example the direct output from the speaker or a reference microphone, in order to
synchronise the phase and remove the speaker sensitivity. Correct scaling of the measurements should
be ensured prior to any reconstruction attempt by comparing experimental and synthetic data obtained
for a simple case, for instance a flat reflecting surface.

1.4 Scaling and Calibration:

For a correct implementation of the inversion, the measured data should be scaled consistently with
Eq. (1)-(3). A calibration procedure has been suggested by Dolcetti et al. [2020], as follows: (i) measure
the reflection from a flat surface at wavenumber k and at all receivers Mm, P̃0(Mm, k); (ii) calculate
the acoustic potential reflected by a flat surface, P0(Mm, k), theoretically (one can use the Matlab
script KirchhoffScattering2D.m, after setting the z-component of the surface co-ordinates matrix Co-
ordSurface to zero); (iii) calculate a complex scaling factor C(Mm, k) = P0(Mm, k)/P̃0(Mm, k). Each
subsequent measurement obtained with a rough surface can be correctly rescaled multiplying it by the
factor C(Mm, k). In principle, the rescaling corrects for the amplitude and phase mismatch of each
microphone, for the microphone sensitivity at each frequency, and for the different variables used within
the algorithms (acoustic potential vs acoustic pressure). Once it has been calculated, it remains valid
at least in principle even after a change of the array geometry, as long as the correct factor is applied
to each microphone and the source excitation signal is the same. However, it is strongly recommended
to measure the scaling factor using a setup as similar as possible to the one used for the measurements.
In this way, the calibration procedure can also limit the uncertainties due to the array geometry.

1.5 Algorithms:

The scripts allow to choose among three different reconstruction algorithms. These are explained with
more detail by Dolcetti et al. [2020]. The choice of the algorithm is made in the argument of the script
Reconstruction MultiFrequency 2D.mat. The three options are:

• ‘SA’: standard (short array) algorithm, as described by Krynkin et al. [2016];

• ‘SA0’: debiased version of ‘SA’;

• ‘SP’: small-perturbation version of ‘SA’.

A thorough comparison of the three algorithms can be found in Dolcetti et al. [2020]. The ‘SA’
algorithm is affected by a significant bias for surfaces with small relative rms roughness amplitude σ0/λ.
The ‘SP’ algorithm, instead, works best when σ0/λ < 0.1. The ‘SA0’ algorithm was found to be the most
accurate over a wide range of σ0/λ. The ‘SP’ and ‘SA0’ algorithms require the flat-surface potential P0

as input. This can be calculated with the script KirchhoffScattering2D.m, after setting the z-component
of the surface co-ordinates matrix CoordSurface to zero.

1.6 Multiple-Frequency Extension:

All three algorithms can be applied either in single-frequency or multiple-frequency mode. Multiple-
frequency mode combines information at multiple frequencies to constrain the inversion, to produce more
robust results without significantly affecting the measurement resolution. The method is described in
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more detail in Dolcetti et al. [2020], where it was first introduced. To be able to apply the multiple-
frequency extension, data at multiple frequencies must be available. These can be obtained sequentially,
one frequency at a time, or simultaneously, for example by means of a broadband excitation. In the
latter case, the complex amplitude at each frequency can be calculated by means of a Fourier transform.
The data frequency bands do not need to be contiguous.

The multiple-frequency extension is slower, but can be useful especially in the presence of noise
and for relatively high frequencies, when standard methods can become unreliable and occasionally
fail. The extension is selected automatically based on the form of the input data matrix within the
script Reconstruction MultiFrequency 2D.mat. If the input frequency array f0 has dimensions 1 × 1,
then the ‘single-frequency’ algorithms are used. If the input frequency array f0 has length Nk, then
the ‘multiple-frequency’ extension is used. In this case, the input acoustic data matrices U2D Kir and
U02D Kir must have dimensions Nm×Nk, i.e., each column must correspond to the data at a separate
frequency.

Whenever NmNk > Nr, where Nr is the number of grid points that discretise the surface, the problem
changes from being under-determined to over-determined. In this case, the method inversion changes
from a pseudo inversion obtained via a singular value decomposition (svd), to an iterative least-squares
inversion based on the standard lsqr Matlab script. In the latter case, the accuracy can be substantially
higher, and the calculations are generally faster.

2 Scripts:

Four separate scripts are included:

• Example.m: contains a working example of reconstruction based on synthetic data obtained for a
random surface with power-function spatial spectrum;

• SurfaceInversion MultiFrequency 2D.m: estimates the shape of the scattering surface based on
acoustic scattering data and setup geometry information;

• KirchhoffScattering2D.m: estimates the acoustic potential scattered by a rough surface. Setup
geometry and surface shape must be provided as input;

• RandomSurfaceGenerator.m: creates random surface profiles with a power-function spatial spec-
trum, based on a choice of surface parameters.

The scripts SurfaceInversion MultiFrequency 2D.m, KirchhoffScattering2D.m, and RandomSurfaceGen-
erator.m can be run independently.

2.1 Example.m

This is an example script, that allows to calculate the inverse surface profile based on all three methods,
using synthetic data calculated with the Kirchhoff approximation for a surface with a power-function
spatial spectrum. Each time the script is run, a different random surface realisation is generated based
on script RandomSurfaceGenerator.m. Synthetic acoustic potential data scattered by the rough surface
realisation, P, and reflected by a flat surface, P0, are generated with script KirchhoffScattering2D.m,
based on the defined array geometry. The synthetic data are then inverted to estimate the surface shape
using script SurfaceInversion MultiFrequency 2D.m, and this is finally compared to the known original
surface shape visually. Amplitude and phase noise can be added to the synthetic data according to

Pν(Mm, k) = P (Mm, k) (1 + ξ) exp (iχ2π) , (5)
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where Pν is the signal with noise, and ξ and χ are Gaussian distributed random variables. The parameters
AmpNoise (σξ) and PhaNoise (σχ) correspond to the standard deviations of the distributions of ξ and
χ, and can be modified within the script.

All simulation parameters summarised below can be modified within the script. The effect of each
parameter is described by Dolcetti et al. [2020]. The corresponding symbols are listed below in the
tables.

2.1.1 Surface parameters:

name symbol dimensions description
sigma0 σ0 m Average standard deviation of the surface profile.
kappa0 κ0 rad/m Wavenumber of the surface saturation scale.
kappa1 κ1 rad/m Wavenumber of the surface cut-off scale.
alpha0 α0 – Exponent of the surface spatial power spectrum.

Dx ∆x m Surface discretisation grid scale.
N N – Number of surface grid points.

2.1.2 Signal parameters:

name symbol dimensions description
f0 f0 Hz Excitation frequency. For multiple-frequency, f0 is the centre-band

frequency.
Wf Wf Hz Frequency half-bandwidth. If Wf = 0, then the single-frequency ap-

proach is used.
Nf Nf – Number of frequency bands between f0 −Wf and f0 +Wf .

2.1.3 Array parameters:

name symbol dimensions description
a0 a0 m Equivalent source radius.

psi0 ψ0 rad Source inclination from the horizontal.
z0 z0 m Source height from the surface.
zM zm m Receivers height from the surface.
d0 d0 m Spacing between receivers.
Nm Nm – Number of receivers.

2.1.4 Noise parameters:

name symbol dimensions description
AmpNoise σξ – Relative amplitude noise standard deviation.
PhaNoise σχ – Relative phase noise standard deviation.

2.1.5 Reconstruction parameters:

name symbol dimensions description
Dxr ∆xr m Reconstruction grid size.

The size of the reconstruction grid is set to 6Λ, by default, where Λ is the effective reconstruction
domain [Dolcetti et al., 2020].
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2.2 SurfaceInversion MultiFrequency 2D.m

This code estimates the shape of a 2D scattering surface from scattered acoustic data, information
about the array geometry, and excitation signal. For the under-determined problem (Nm × Nf < Nr)
the solution is calculated by a singular value decomposition, with Tikhonov regularisation, and the
regularisation parameter is identified by means of a generalised cross-validation technique. For the over-
determined problem (Nm×Nf > Nr) the solution is calculated by an iterative least squares minimisation
algorithm based on the standard Matlab lsqr script, with a tolerance value of 0.01.

2.2.1 Input:

name symbol dim. size description
f0 f Hz 1×Nk Excitation frequency array. If Nk > 1, the

multiple-frequency extension is applied.
CoordMic dimensional M m Nm × 3 Matrix of microphones co-ordinates.

(:, 1): x-co-ordinate; (:, 2): y-co-ordinate;
(:, 3): z-co-ordinate.

CoordSource dimensional S m 1× 5 Array of source co-ordinates. (:, 1): x-co-
ordinate; (:, 2): y-co-ordinate; (:, 3): z-co-
ordinate; (:, 4): source inclination angle ψ0

(rad); (:, 5): equivalent source radius a0 (m).
xRec dimensional xr m Nr × 1 Array of reconstruction locations.

TypeExp - - - ‘SA’: short-array method; ‘SA0’: de-biased
short-array method; ‘SP’: small perturbation
method.

U2D Kir P (-) Nm ×Nf Matrix of scattered potentials. U2D Kir(j, i)
is the potential at the j-th microphone, at the
i-th frequency.

U02D Kir P0 (-) Nm ×Nf Matrix of scattered potentials for a flat sur-
face. U02D Kir(j, i) is the potential at the
j-th microphone, at the i-th frequency.

2.2.2 Output:

name symbol dim. size description
zRec ζ m Nr × 1 Array of reconstructed surface elevation.

2.3 KirchhoffScattering2D.m

This script estimates the scattered acoustic potential based on the Kirchhoff approximation, according
to Eq. (1). The equation is derived for a surface with constant elevation in the y-direction. The surface
shape, array geometry, and excitation signal must be provided as input.
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2.3.1 Input:

name symbol dim. size description
CoordMic M m Nm × 3 Matrix of microphones co-ordinates.

(:, 1): x-co-ordinate; (:, 2): y-co-ordinate; (:, 3): z-co-
ordinate. CoordMic(:, 2) must be equal to 0 for the 2D
case.

CoordSource S m 1× 5 Array of source co-ordinates. (:, 1): x-co-ordinate; (:, 2):
y-co-ordinate; (:, 3): z-co-ordinate; (:, 4): source inclination
angle ψ0 (rad); (:, 5): equivalent source radius a0 (m). Co-
ordSource(:, 2) must be equal to 0 for the 2D case.

CoordSurface ρ0 m N × 3 Array of surface co-ordinates. (:, 1): x-co-ordinate; (:, 2):
y-co-ordinate; (:, 3): z-co-ordinate. CoordSurface(:, 2) must
be equal to 0 for the 2D case.

lambda λ m 1× 1 Acoustic wavelength.

2.3.2 Output:

name symbol dim. size description
U P (-) Nm × 1 Array of scattered acoustic potential.

2.4 RandomSurfaceGenerator.m

This script generates a random realisation of a discretised surface with power-function spatial spectrum
each time it is run. The average surface power-spectrum is of the form

Ψ(κ) =


σ2
0C, where κ < κ0,

σ2
0C
(
κ
κ0

)−α0

, where κ0 ≤ κ ≤ κ1

0, where κ > κ1,

(6)

where σ0 is the surface standard deviation, C is a constant scaling factor, α0 is the spectrum exponent,
κ0 is the saturation wavenumber, and κ1 is the short-scale cut-off wavenumber. The surface extends for
a size of N∆x, where ∆x is the grid size.

2.4.1 Input:

name symbol dim. size description
sigma 0 σ0 m 1× 1 Surface standard deviation.
kappa 0 κ0 rad/m 1× 1 Spectrum saturation wavenumber.
kappa 1 κ1 rad/m 1× 1 Short-scale surface cut-off wavenumber.
alpha 0 α0 (–) 1× 1 Power spectrum slope.

Dx ∆x m 1× 1 Surface discretisation grid size.
N N (–) 1× 1 Number of surface grid points.

2.4.2 Output:

name symbol dim. size description
x x m N × 1 Surface x-co-ordinate.
z ζ m N × 1 Surface z-co-ordinate.
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