
Machine-Checked Proofs for Cryptographic Standards
Indifferentiability of Sponge and Secure High-Assurance Implementations of SHA-3

José Bacelar Almeida
Universidade do Minho

INESC-TEC

Cécile Baritel-Ruet
Université Côte d’Azur
Inria Sophia-Antipolis

Manuel Barbosa
Universidade do Porto

INESC-TEC

Gilles Barthe
MPI-SP

IMDEA Software Institute

François Dupressoir
University of Surrey
University of Bristol

Benjamin Grégoire
Inria Sophia-Antipolis

Vincent Laporte
Inria

Tiago Oliveira
Universidade do Porto

INESC-TEC
FCUP

Alley Stoughton
Boston University

Pierre-Yves Strub
École Polytechnique

ABSTRACT

We present a high-assurance and high-speed implementation of
the SHA-3 hash function. Our implementation is written in the
Jasmin programming language, and is formally verified for func-
tional correctness, provable security and timing attack resistance
in the EasyCrypt proof assistant. Our implementation is the first
to achieve simultaneously the four desirable properties (efficiency,
correctness, provable security, and side-channel protection) for a
non-trivial cryptographic primitive.

Concretely, our mechanized proofs show that: 1) the SHA-3 hash
function is indifferentiable from a random oracle, and thus is res-
istant against collision, first and second preimage attacks; 2) the
SHA-3 hash function is correctly implemented by a vectorized x86
implementation. Furthermore, the implementation is provably pro-
tected against timing attacks in an idealized model of timing leaks.
The proofs include new EasyCrypt libraries of independent interest
for programmable random oracles and modular indifferentiability
proofs.

KEYWORDS

high-assurance cryptography; EasyCrypt; Jasmin; SHA-3; indiffer-
entiability

ACM Reference Format:

José Bacelar Almeida, Cécile Baritel-Ruet, Manuel Barbosa, Gilles Barthe,
François Dupressoir, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira,
Alley Stoughton, and Pierre-Yves Strub. 2019. Machine-Checked Proofs for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’19, November 11–15, 2019, London, United Kingdom

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00
https://doi.org/10.1145/3319535.3363211

Cryptographic Standards: Indifferentiability of Sponge and Secure High-
Assurance Implementations of SHA-3. In 2019 ACM SIGSAC Conference on

Computer and Communications Security (CCS ’19), November 11–15, 2019,

London, United Kingdom. ACM, New York, NY, USA, 16 pages. https://doi.
org/10.1145/3319535.3363211

1 INTRODUCTION

A stated goal of recent competitions for cryptographic standards
is to gain trust from the broad cryptography community through
open and transparent processes. These processes generally involve
open-source reference and optimized implementations for perform-
ance evaluation, rigorous security analyses for provable security
evaluation and, often, informal evaluation of security against side-
channel attacks. These artefacts contribute to building trust in
candidates, and ultimately in the new standard. However, the dis-
connect between implementations and security analyses is a major
cause for concern. This paper explores how formal approaches
could eliminate this disconnect and bring together implementa-
tions (most importantly, efficient implementations) and software
artefacts, in particular machine-checked proofs, supporting secur-
ity analyses. We put forward four desirable properties for formal
approaches:
• functional correctness: efficient implementations should be proved
equivalent to reference implementations and to algorithmic spe-
cifications of the standardised cryptographic construction that
are both human-readable and interpreted by machines. Such spe-
cifications and implementations should be proved to have the
same input/output behaviour (or interactive behaviour in the
case of protocols);
• provable security: rigorous security proofs should be provided
both for algorithms and for implementations. For the highest
level of assurance, security proofs should be machine-checked
and establish guarantees for the (machine-readable) algorithmic
specifications. Security for both efficient and reference imple-
mentations will follow from the functional correctness proofs,
using the baseline adversarial models from provable security;

https://doi.org/10.1145/3319535.3363211
https://doi.org/10.1145/3319535.3363211
https://doi.org/10.1145/3319535.3363211

CCS ’19, November 11–15, 2019, London, United Kingdom
José Bacelar Almeida, Cécile Baritel-Ruet, Manuel Barbosa, Gilles Barthe, François Dupressoir, Benjamin Grégoire, Vincent Laporte, Tiago

Oliveira, Alley Stoughton, and Pierre-Yves Strub

• side-channel resistance: implementations should be provably
secure against side-channel attacks, in relevant ideal models.
For instance, it is commonly required that implementations are
secure in an abstract model of timing, where implementations
leak secrets if they contain secret-dependent memory accesses
or control-flow instructions, a notion known as “cryptographic
constant-time”. Combined with provable security, it entails secur-
ity in a stronger adversarial model where side-channel leakage
is available to the adversary;
• efficiency: formal proofs should remain fully compatible with
efficiency considerations. They should neither constrain in any
way the code of the implementations (although constrained in-
termediate implementations could be used as proof artefacts) nor
impact its performance.

Contributions. We demonstrate through a relevant use case of
the feasibility of formal approaches with respect to the stated goals
of functional correctness, provable security, side-channel resistance
and efficiency. Our use case is the SHA-3 standard. Our choice is
guided by two main considerations. Firstly, the SHA-3 standard
will likely be used to protect real-world applications for many
years to come. Secondly, its security proof is intricate, and involves
techniques that are not routinely addressed in machine-checked
security proofs.

Concretely, our implementation is written in Jasmin [1, 5], a
framework that targets high-assurance and high-speed implement-
ations using “assembly in the head” (a mixture of high-level and
low-level, platform-specific, programming) and a formally verified,
predictable, compiler which empowers programmers towrite highly
efficient fine-tuned code. The generated (verified) x86-64 assembly
code matches in performance the best available implementations
for this primitive, including for example a currentOpenSSL version.
Machine-checked proofs of equivalence and provable security are
developed in EasyCrypt1 [11], a proof assistant for cryptographic
proofs, using the embedding developed by Almeida et al. [5]. More
precisely, as illustrated by Figure 1, we establish:
• functional correctness: the highly efficient implementations are
proved functionally equivalent to a readable Jasmin reference
implementation of the SHA-3 standard;
• provable security: we prove that the Sponge construction is indif-
ferentiable from a random oracle when the underlying permuta-
tion is modelled as a random object—from this result we derive
concrete bounds for the standard notions of collision-resistance,
and resistance against first- and second-preimage attacks in the
random permutation model;
• side-channel resistance: we prove that the implementation only
leaks the length of public data, in the abstract model of timing
used to reason about “cryptographic constant-time”. This prop-
erty is useful when hash function is integrated into higher-level
primitives, say key derivation functions, where hashed inputs
are secret.

Our results are established at different levels. Our provable security
analysis is based on an EasyCryptmodel of the sponge construction,
which matches the (bit-oriented) specification in the SHA-3 stand-
ard. At this level we adopt the standard approach for cryptographic

1https://www.easycrypt.info

Sponge
Specification
(EasyCrypt)

Sponge
Reference

Implementation
(Jasmin)

Permutation
Reference

Implementation
(Jasmin)

Sponge
Reference

Implementation
(EasyCrypt)

Permutation
Reference

Implementation
(EasyCrypt)

Sponge
Efficient

Implementations
(Jasmin)

Permutation
Efficient

Implementations
(Jasmin)

Sponge
Efficient

Implementations
(EasyCrypt)

Permutation
Efficient

Implementations
(EasyCrypt)

SHA3
Assembly

Security proofs

Constant-time proofs

Figure 1: Our results. Full lines represent extraction to Easy-
Crypt and compilation to assembly by the Jasmin compiler.

Dashed lines represent equivalence and security proofs,

formalized in EasyCrypt.

proofs of indifferentiability and treat the underlying permutation
as an ideal object. In contrast, constant-time security is therefore
established as close to the computational platform as possible: our
analysis of potential timing side-channels is carried out over highly
optimized (byte- and word-oriented) Jasmin implementations of
SHA-3.

We then use automatic extraction and equivalence proofs in
EasyCrypt to bridge these two levels of results. First, our optimized
Jasmin implementations are proved equivalent to a readable refer-
ence implementation of the standard, which includes the SHA-3
permutation. Finally, we also prove that the model of the Sponge
that we proved theoretically secure is functionally equivalent to
the Jasmin reference implementation of this construction, when
instantiated with the same permutation. This establishes a link
between theoretical security and implementation security.

We note that the proofs of the different properties vary in diffi-
culty. The proof of side-channel resistance is not hard, the proof
of functional correctness and indifferentiability are more involved.
The latter builds on contributions of independent interest:

• A methodology for proving indifferentiability modularly, which
could also be applied in pen-and-paper proofs;
• A new and generic formalization of programmable random or-
acles that more precisely captures partial adversary knowledge
in eager sampling arguments.

Comparison with [1, 5]. Jasmin [1] is an assembly-like language,
which gives the developer full control over low-level implementa-
tion details, but also provides support for functional verification,
and a certified compiler. Almeida et al. [5] extend its toolset to
support the verification of local optimizations, by extracting optim-
ized and non-optimized code to EasyCrypt, where they are proved
functionally equivalent. The extraction mechanism is also used to
prove that the code does not address memory or branch based on
secret inputs. In this paper, we further exploit this extraction mech-
anism, and bring together Jasmin and EasyCrypt to demonstrate

https://www.easycrypt.info

Machine-Checked Proofs for Cryptographic Standards CCS ’19, November 11–15, 2019, London, United Kingdom

Table 1: Summary of related work

Framework Functional Correctness Provable Security Side-channel resistance Efficiency
FCF + VST [35] ✓ ✓(specific) ✗ ✗

EasyCrypt + Frama-C + CompCert [2, 3] ✓ ✓ ✓ ✗

Fiat Cryptography [24] ✓(source-level) ✗ ✗(limited) ✓(vs GMP)
HACL* [29, 36] ✓(source-level) ✗ ✓(source-level) ✓(vs OpenSSL)

Cryptol + SAW [34] ✓(source-level) ✗ ✗ ✓

Jasmin [1, 5] ✓ ✗ ✓ ✓

This paper ✓ ✓ ✓ ✓

that a single toolchain that addresses all four desirable properties—
including in contexts where provable security is non-trivial—is
possible today.

Formally verified proofs of hash functions. Backes et al [8] prove
indifferentiability of the Merkle-Damgård construction using Easy-
Crypt. However, their proof does not connect to verified imple-
mentations. Daubignard, Fouque and Lakhnech [22] prove indiffer-
entiability of several hash designs, including the Sponge construc-
tion, using the Computational Indistinguishability Logic (CIL) from
Barthe et al. [10]. Although CIL has been mechanized in Coq [17],
Daubignard, Fouque and Lakhnech’s proofs [22] are carried out
with pen-and-paper. They obtain bounds similar to ours, albeit
slightly less tight.

Appel [7] proves functional correctness of SHA-256, and lever-
ages the CompCert verified compiler [25] to carry guarantees to
low-level implementations. However, this work does not consider
side-channels or provable security.

Other proofs part of larger projects are discussed below.

Other related work. There is a growing body of work on high-
assurance and high-performance cryptographic implementations.
We briefly review it against the four desirable properties desirable
of such formal approaches as applied to the production of reference
implementations for cryptographic standards (see Table 1).

Beringer et al. [13] leverage the Coq-based Foundational Crypto-
graphy Framework (FCF) [27] for machine-checked cryptographic
proofs and the Coq-based Verified Software Toolchain (VST) [6]
for the verification of C programs to formally relate a version of
OpenSSL’s implementation of HMAC to a machine-readable spe-
cification that is proved secure following [12]. Ye et al. [35] extend
this result to the OpenSSL implementation of HMAC-DRBG. In
both cases, functional correctness and provable security results are
obtained on existing C code. The use of a complete toolchain fully-
integrated in Coq certainly provides advantages by significantly
reducing the trusted computing base, but comes at somewhat of a
cost. However, in order to preserve those results through compil-
ation, the CompCert certified compiler [25] must be used, which
incurs a significant performance cost. In addition, no guarantees
are given—even at source level—regarding side-channels.

Almeida et al. [2] use EasyCrypt to prove security (of RSA-OAEP)
on C-like programs with notions of timing leaks. They modify Com-
pCert to strictly enforce preservation of timing behaviour in com-
piled programs. The same authors later extend and clarify the meth-
odology [3] to separate the concerns of provable security, functional

correctness and side-channel security, and use EasyCrypt, Frama-
C [19] and CompCert to prove the INT-PTXT security of a com-
piled executable implementation of TLS 1.2’s notorious MAC-then-
Encode-then-CBC-Encrypt (TLS-MEE-CBC) against timing-aware
attackers. The combination of tools used significantly increases
the Trusted Computing Base for the framework, and requires care
when transitioning from one tool to the other in the toolchain.
However, EasyCrypt provides more flexibility than FCF in proving
cryptographic security, and the ability to develop specialized static
analyses for timing leaks provides additional guarantees—albeit
at a slightly lower level of assurance than that obtained by Ye et
al. [35], for example. Since semantics preservation down to com-
piled code requires the use of CompCert, this approach suffers the
same performance issues as Ye et al.’s.

Erbsen et al. [24] propose Fiat Cryptography, a Coq-based frame-
work for developing proofs of functional correctness for implement-
ations of mathematical operations commonly used in cryptography.
Their framework produces C code which performs much better
than existing libraries, but only guarantees correctness at source
level. Further, they do not consider provable security, and cover
timing channels by compiling only to straight-line code that uses
constant-time arithmetic operations, which limits the kind of prim-
itives their framework can consider.

Zinzindohoué et al. [36] leverage the techniques developed by
Protzenko et al. [29] to prove safety and functional correctness
of assembly-like programs written in the F⋆ programming lan-
guage [33]. Their focus is on functional correctness and efficiency,
and they obtain partial guarantees on side-channel security through
the use of abstract types. Their verified code compiles to C, which is
where high-assurance guarantees are given. The code they produce
rivals OpenSSL in performance, and has been deployed in Mozilla’s
NSS library [15]. EverCrypt [28] is a more complete cryptographic
library that combines source-level and target-level implementations.
As noted by the authors, formal verification in EverCrypt is for
now primarily confined to functional correctness and side-channel
resistance. Moreover, for source code implementations, there is a
trade-off between using verified compilers that carry guarantees
to assembly code or off-the-shelf compilers that deliver efficient
assembly.

Tomb [34] describes the use of the Cryptol and SAW tools to
prove functional correctness of “real-world cryptographic imple-
mentations”. The approach focuses on establishing functional cor-
rectness at source level in a variety of languages, and his focus on
existing implementations does guarantee satisfactory performance.
However, the approach is not compatible with any known tools

CCS ’19, November 11–15, 2019, London, United Kingdom
José Bacelar Almeida, Cécile Baritel-Ruet, Manuel Barbosa, Gilles Barthe, François Dupressoir, Benjamin Grégoire, Vincent Laporte, Tiago

Oliveira, Alley Stoughton, and Pierre-Yves Strub

Spongec[f , pad, r](m, ℓ)
1 : m0 ∥ . . . ∥mm−1 ← m ∥ pad(r, |m |);
2 : // absorption phase

3 : sa ∥ sc ← 0r ∥ 0c ;
4 : for i = 0 . . .m − 1 do
5 : sa ∥ sc ← f ((sa ⊕ mi) ∥ sc);
6 : // squeezing phase
7 : Z ← ε ;done ← false ;
8 : while ¬done

9 : Z ← Z ∥ sa ;
10 : if |Z | < ℓ

11 : sa ∥ sc ← f (sa ∥ sc);
12 : else

13 : done ← true ;
14 : return Z |ℓ ;

Figure 2: Pseudocode for the Sponge construction [23]

for the production of machine-checked proofs of cryptographic or
side-channel security.

Proof and Implementation artefacts

All proof and implementation artefacts are available from https:
//gitlab.com/easycrypt/sha3. The README.md file contained therein
further points to the relevant checking extraction and compilation
tools and gives light instructions on how to use them to check the
proofs and compile the code.

2 TECHNICAL OVERVIEW

The SHA-3 standard [23] defines a family of 4 hash functions and 2
extendable-output functions (XOFs). All functions follow rely on
a generic construction, called the Sponge, that is based on a fixed
(unkeyed) permutation. The standard therefore also defines modu-
larly a permutation algorithm—Keccak-p[1600, 24]—which oper-
ates over a 1600-bit-wide state and is defined as an approved func-
tion usable in other standards. In the following, we use Keccak-p
as shorthand for this permutation.2

In this section we first describe the Sponge construction and
the SHA-3 functions. Then we explain how the Sponge construc-
tion offers very strong security properties, when the underlying
permutation is modelled as a purely random object, and why this
gives strong heuristic evidence for the security of the SHA-3 func-
tions in real world use. Finally we discuss implementations, their
performance and security.

2.1 The Sponge Construction
Pseudocode for the Sponge construction is shown in Figure 2. It is
parametrised by: i. the permutation f , ii. the padding algorithm pad,
and iii. the rate (or block size) r . We write c for the construction’s

2We note that the standard in fact defines a family of permutations, indexed by state
size and number of rounds, but only approves Keccak-p[1600, 24] for use in SHA-3
and other standards. All discussions related to the permutation in this paper focus on
Keccak-p[1600, 24] unless otherwise specified.

capacity, defined as the permutation’s bitwidth (1600 in the stand-
ard) minus r . The construction’s internal state sa ∥ sc has two parts:
sa (r bits) and sc (c bits). On input of a bitstring m, the Sponge
construction pads it to a multiple of the block size and breaks it
into blocks (Line 1). The padding scheme must be injective and
length-regular (both properties are necessary in a padding scheme
used in secure cryptographic hashing) and must also guarantee that
no padded input ends with an all-zero block (which is a necessary
condition for the security of the Sponge). The padded input is then
absorbed block-by-block into the Sponge’s internal state (initialized
to all 0 bits on Line 3) by interleaving the addition of blocks into
the state with applications of the permutation (Lines 4-5). Once all
input blocks have been absorbed, the permutation is used, again,
to extract the output by blocks of size r (Lines 7-13), truncating the
final block to the requested ℓ bits (Line 14).3

In our description and formal treatment, we abstract the permuta-
tion’s bitwidth (set to 1600 by the standard) to some positive integer
b, refining it only in the final steps of the proof. Thus r + c = b. sc
is the part of the internal state that is not exposed to or controlled
by the adversary. For a fixed state width, the capacity serves as
the main security parameter for the Sponge construction, and the
rate as its main performance parameter. Therefore, as illustrated
in Figure 2, we often use c and r to specify a particular Sponge
construction, rather than b and r .

2.2 SHA-3, hash functions and XOFs

The SHA-3 standard defines SHA3-224, SHA3-256, SHA3-384 and
SHA3-512—collectively referred to as SHA3-x in the following, as
approved hash functions that accept arbitrary bitstrings as input,
and deterministically produce a fixed-length digest (of length x , for
SHA3-x). For a fixed output length x , these functions instantiate
the Sponge construction with Keccak-p, fix r = 1600 − 2 · x and
use the multi-rate padding scheme pad10∗1 defined as

pad10∗1(r , ℓ) := 1 ∥ 0(−ℓ−2) mod r ∥ 1 .

The pad10∗1 scheme simply appends a string composed of two 1
bits around as many 0 bits as necessary (from 0 to r − 1) to the
message. It is easy to see that it satisfies the properties required
by the Sponge construction. Formally, the SHA3-x functions are
defined as:

SHA3-x (m) =

Sponge2·x [Keccak-p, pad10∗1, 1600 − 2 · x](m ∥ 01,x) ,

where 01 denote two domain separation bits.
The SHA-3 standard also defines two XOFs, SHAKE128 and

SHAKE256–collectively referred to as SHAKEx , that accept arbit-
rary bitstrings as input, and produce a caller-chosen-length prefix
of an infinite bitstream deterministically defined by the input. On
input a bitstring m and an output length d, the SHAKEx XOFs are
defined as

SHAKEx (m, d) =
Sponge2·x [Keccak-p, pad10∗1, 1600 − 2 · x](m ∥ ss ∥ 11, d) ,

3Figure 2 is as close to the standard as we could make it with a structured programming
language. Our specification differs slightly in that we do not squeeze at all when 0 bits
of output are requested. We prove both specifications equivalent.

https://gitlab.com/easycrypt/sha3
https://gitlab.com/easycrypt/sha3

Machine-Checked Proofs for Cryptographic Standards CCS ’19, November 11–15, 2019, London, United Kingdom

Game RealD
c,pad,r

b ←$DSpongec[p,pad,r],p+,p− ;
return b;

Game IdealD
S

b ←$DFℓ,S
Fℓ
+ ,S

Fℓ
− ;

return b;

Figure 3: Games defining the indifferentiability of the

Sponge construction from an (extendable output) RO.

where ss denote two suffix bits and 11 denote two domain separa-
tion bits. The standard—and our implementations—introduce suffix
bits for future compatibility with coding schemes for tree hashing
variants of the SHAKEx functions. They have no effect on security;
in fact, our security proof applies for arbitrary application suffixes
(of any length fixed in advance).

2.3 Security of the Sponge Construction
The Sponge construction satisfies a strong security notion known
as indifferentiability from a (extendable output) random oracle. The
notion of indifferentiability, introduced by Maurer, Renner and
Holenstein [26] generalizes over the standard notion of indistin-
guishability by considering settings where the adversary has oracle
access to both the construction and its underlying primitive. It has
been used as a way of reducing concerns in the design of block
ciphers (with proofs for Feistel networks [20, 21] and substitution-
permutation networks [16]) and hash functions (with proofs for
the Merkle-Damgård construction [18] and the Sponge construc-
tion [14]), in each case formally capturing the intuition that the
construction does not introduce any structural vulnerabilities when
the underlying primitive is seen as an ideal black-box.

Definition 2.1 (Indifferentiability [26]). A construction C with
oracle access to an ideal primitive F is said to be (qD ,qS , ϵ)-indif-
ferentiable from an ideal functionality G if there exists a simulator
S with oracle access to G such that for any distinguisher D that
makes queries of total cost at most qD , it holds that

����Pr
[
DC

F ,F = 1
]
− Pr

[
DG,S

G

= 1
] ���� < ϵ

and that S makes at most qS queries to the ideal functionality G.

Throughout the paper, when discussing the query cost of an
adversary, we consider the number of primitive calls incurred by
an adversary’s combined queries to the construction and to the
primitive itself.

For concreteness, we give the real experiment and ideal experi-
ments in Figure 3 when the notion of indifferentiability is applied to
the Sponge construction, as used in the SHA-3 standard and form-
alized in our proof. In the real game, p is a permutation sampled
uniformly at random from the set of all permutations over bit strings
of length 1600. The distinguisher is given access to oracles p+ and
p− that allow it to query the permutation backwards as well as
forwards. In the ideal game, the simulator S = (S+, S−) must fake
the outputs of the p+ and p− oracles, while oblivious of the calls
that the distinguisher places to the construction (which is replaced
by a random object in the ideal world). We show the simulator as
two different algorithms for clarity, but we allow them to share
state. The ideal functionality is an extendable output random oracle.

This is implemented as an infinite random oracle F that associates
to each input an infinite (lazy) bitstring, each element of which is
sampled uniformly at random. The distinguisher and simulator are
restricted to queries to the ideal functionality of the form (m, ℓ),
matching the syntax of the Sponge interface; these queries return
prefixes of size ℓ of the random oracle F outputs (denoted using Fℓ
notation in the security games). In our formalization we consider a
random function f ∈ Z2

∗ × N→ Z2 and construct the observable
prefix of length ℓ of the infinite random oracle F as follows:

F (m, ℓ) = f (m, 0) ∥ f (m, 1) ∥ . . . ∥ f (m, ℓ − 1)

We actually implement f lazily: representing it as a finite map from
Z∗2 × N to Z2 to which we add new input/output pairs as needed.

Our machine-checked proof establishes the following security
result for the EasyCrypt specification of the Sponge, which corres-
ponds to the pseudo code described in Figure 2.

Theorem 2.2 (Indifferentiability of Sponge). The Sponge
construction is (σ ,σ , σ

2−σ
2b+1 +

σ 2

2b−r−2)-indifferentiable from an extend-

able output random oracle for any σ < 2b−r . Namely, the simulator

Simulator exhibited in Figure 8 makes at most σ queries when the

adversary makes queries of total cost at most σ .

����Pr
[
RealD

b−r,pad,r = 1
]
− Pr

[
IdealD

S
= 1

] ���� ≤
σ 2

2b−r−2
+
σ 2 − σ

2b+1

Both simulator and bound are very similar to the original ones
given by Bertoni et al. [14].

For our simulator, we use a simplified version of Bertoni et al.’s
simulator which, unlike theirs, puts no work into maintaining a
permutation. This simplifies the formal handling of the proof, but
also yields a slightly higher bound than Bertoni et al.’s σ 2+σ

2b−r+1 −
σ 2−σ
2b+1

This is due to our simulator producing a distribution that is further
away from that of a truly random permutation, and to the use of
the PRP-PRF switching lemma. Beyond this, the main difference is
that our formalization of the simulator keeps track of sequences
of queries that mimic the behaviour of the Sponge construction as
paths to specific capacities. By contrast, Bertoni et al.’s reconstructs
such paths each time a query is received, saving memory at the
cost of computation time. Since security is information-theoretic,
this has no effect on the security claim.

We note that Bertoni et al.’s bound is only claimed to hold when
σ is “significantly smaller than” the capacity c = b − r , a situation
in which the difference between our bound and theirs is dwarfed
by the bound itself. Further, we believe our bound could be slightly
improved through a more precise handling of failure events when
bounding their probability (see Section 3.3).

2.4 Security Implications

Indifferentiability implies a strong form of composition for single-
stage security games, that is security experiments where the at-
tacker can keep unrestricted state [30], which includes standard
definitions for collision-, preimage-, and second preimage-resistance.
Composition implies in particular that any single-staged security
property that can be established for the ideal functionality is sat-
isfied by the indifferentiable construction, with the caveat that

CCS ’19, November 11–15, 2019, London, United Kingdom
José Bacelar Almeida, Cécile Baritel-Ruet, Manuel Barbosa, Gilles Barthe, François Dupressoir, Benjamin Grégoire, Vincent Laporte, Tiago

Oliveira, Alley Stoughton, and Pierre-Yves Strub

security holds in an idealized computational model where the un-
derlying primitive is a truly random permutation.

We prove Theorems 2.3, 2.4 and 2.5, which state that the SHA3-x
hash functions have all desired security properties in the random
permutation model. Similarly, all SHAKEx functions inherit from
the underlying Sponge its indifferentiability from an infinite ran-
dom oracle, but we do not give the details here.

Collision Resistance under generic attacks. Intuitively, a hash
function is collision-resistant if it is unfeasible for a probabilistic
polynomial-time adversary, given the ability to compute digests
for arbitrary inputs, to find two distinct inputs that produce the
same digest. The SHA3-x hash functions are collision-resistant in
the random permutation model.

Theorem 2.3 (Collision Resistance for SHA3-x). For all ad-
versaries A with oracle access to both a truly random permutation P
and the SHA3-x function instantiated with P , and making queries of

total cost at most σ , the probability thatA finds a collision is bounded

as follows:

Pr
[
CRA

SHA3-x = 1
]
≤

σ 2 − σ

21600+1
+

σ 2

22·x−2
+
σ 2 − σ + 2

2x−1

Preimage Resistance under generic attacks. Intuitively, a hash
function is preimage-resistant if it is infeasible for a probabilistic
polynomial time adversary to find a preimage to a given digest,
even when given the ability to compute digests for arbitrary inputs.
The SHA3-x hash functions are preimage-resistant in the random
permutation model.

Theorem 2.4 (Preimage Resistance for SHA3-x). For all ad-
versaries A with oracle access to both a truly random permutation

P and the SHA3-x function instantiated with P , and queries of total
cost at most σ , the probability that A finds a preimage for any fixed

digest is bounded as follows:

Pr
[
PR1A

SHA3-x = 1
]
≤

σ 2 − σ

21600+1
+

σ 2

22·x−2
+
σ + 1
2x

Second Preimage Resistance under generic attacks. Intuitively, a
hash function is second-preimage-resistant if it is unfeasible, for all
possible inputs, for a probabilistic polynomial time adversary given
the ability to compute digests for arbitrary inputs, to find a distinct
input that produces the same digest. The SHA3-x hash functions
are second-preimage-resistant in the random permutation model.

Theorem 2.5 (Second Preimage Resistance for SHA3-x). For
all adversaries A with oracle access to both a truly random permuta-

tion P and the SHA3-x function instantiated with P , and making

queries of total cost at most σ , the probability that A finds a second

preimage of arbitrary length for any fixed input m is bounded as

follows:

Pr
[
PR2A

SHA3-x (m) = 1
]
≤

σ 2 − σ

21600+1
+

σ 2

22·x−2
+
σ + 1
2x

2.5 Secure and efficient implementations

Reference implementations with varying degrees of readability and
efficiency are a crucial part of modern cryptographic standards,
and they are very useful side results that illustrate the advantages
of the open competition-based process that underlies the selection

of new algorithms. In this section we discuss how one can ensure
that these reference implementations are correct and secure to the
highest level of assurance, using formal verification technology.

Implementation security. In the previous sections we have dis-
cussed the theoretical security of the SHA-3 functions in an ideal-
ized model of computation where the underlying permutation is
replaced by a purely random one. These results do not carry dir-
ectly to practice, as implementations rely on a fixed permutation.
Nevertheless, they provide (heuristic) confidence on the security of
the SHA-3 specification.

From a theoretical point of view, this has been discussed (for ex-
ample) by Rogaway and Shrimpton [31], who have defined notions
of security for practical hash functions where all parameters are
fixed called always preimage resistance and second-preimage resist-
ance. Intuitively, these notions state that the standardised algorithm
behaves like a one-way function and that finding second preim-
ages for hashes of high-entropy messages is hard, even though the
parameters are common to all applications. This level of security
is not directly implied by provable security, and so it is a security
assumption on the SHA-3 specification. For collision resistance, the
usual assumption is that the algorithm which outputs collisions
(which is known to exist) is hard to find.

This raises the question of what it means for a SHA-3 imple-
mentation to be secure. In this paper we follow the approach of [3]
whereby the security of implementations is defined as a set of suf-
ficient conditions that transfer the (potentially assumed) security
properties of high-level specifications to executable code; further-
more, checking the correct deployment of countermeasures against
timing attacks, one gets the guarantee that security holds even
against implementation attackers that can get precise measure-
ments of the implementation’s execution time.

Reference implementation. In Figure 4 we show the entry point
for the reference implementation we have constructed in Jasmin
as a direct transcription of the standard. The full reference im-
plementation is omitted due to space constraints, but included as
supplementary material. In this implementation the emphasis is
on readability: we see it as a machine-readable and interpretable
incarnation of the SHA-3 standard, when restricted to byte-aligned
messages, which is easy to check for compliance by inspection.
Note that the reference implementation is general enough to al-
low instantiations that exactly match all the SHA-3 hash functions
and XOFs: the trailing byte abstracts all the possible combinations
of domain separation bits and application specific suffixes in the
standard.

We have connected this implementation to our theoretical se-
curity results, by showing that, assuming the same permutation
algorithm, this reference implementation is functionally equivalent
to the generic construction that was analysed in the ideal permuta-
tion model.4 This result ensures that whatever (heuristic) security
guarantees follow from the theoretical security proofs on the spe-
cification will apply to the reference implementation.5 Furthermore,

4Our equivalence proof is restricted to inputs that have a sizemultiple of 8 bits, since the
reference implementation works over sequences of bytes, whereas as our theoretical
analysis does not impose this restriction.
5Recall that provable security holds in the ideal permutation model, and hence the
established security properties can only be assumed to still hold once we fix the

Machine-Checked Proofs for Cryptographic Standards CCS ’19, November 11–15, 2019, London, United Kingdom

fn keccak_1600(
reg u64 out, // output pointer
reg u64 outlen, // output length in bytes
reg u64 in, // input pointer
reg u64 inlen, // input length in bytes
stack u8 trail_byte,
stack u64 rate

) {
stack u64[25] state;

state = st0();

while (inlen >= rate)
{
state = add_full_block(state, in, rate);
state = keccak_f1600(state);
inlen = inlen - rate;
in = in + rate;

}

state = add_final_block(state, in, inlen, trail_byte, rate);

while (outlen > rate)
{
state = keccak_f1600(state);
xtr_full_block(state, out, rate);
outlen = outlen - rate;
out = out + rate;

}

state = keccak_f1600(state);
xtr_bytes(state, out, outlen);

}

Figure 4: Reference Implementation

it also guarantees that our security analysis indeed applies to the
SHA-3 standard as transcribed in our reference implementation.

Efficient implementations. In Section 5 we present a formally
verified library of highly efficient implementations of the SHA-3
functions for x86-64. These implementations follow the state of
the art in optimizing SHA-3 in 64-bit architectures, both with and
without support for vectorized instructions. In both cases our code
essentially matches the best non-verified implementations. How-
ever, we prove that the assembly code for these implementations is
both functionally correct with respect to our reference implement-
ation, and that its execution time does not depend on user input
data (no branching or memory access dependencies on secret data).
These results were achieved by applying Jasmin’s extraction meth-
odology [5], integrating it—for the first time—with a theoretical
security analysis.

In comparison with previous equivalence proofs carried out over
Jasmin implementations, we encountered new challenges, as the
SHA-3 specification deals with lists of bits, whereas the implement-
ation (and particularly the representation of values in memory) is
word-oriented. Conversely, in the SHA-3 case the abstraction gap
associated with big number arithmetic, that was faced and dealt
with in prior work [5] is not present.

permutation. Our equivalence proof guarantees that whatever security properties
are retained by the specification once the permutation is fixed will also hold for the
reference implementation.

D

RP

CoreSponge [·] IdealCore CoreSim [·]

BlockSponge [·] IdealBlock BlockSim [·]

Sponge [·] IdealSponge SpongeSim [·]

Simulator [·]

Figure 5: A layered proof for the Sponge construction.

As discussed above, applying the theoretical framework of [3],
our results imply that the optimized assembly code inherits the
security assumed for the reference implementation without any
loss, even in the presence of timing attacks in a model where the
adversary is able to observe full execution traces containing all
code-memory and data-memory addresses accesses performed by
the implementation.

We discuss all proofs carried out over the implementations in
Section 4.

3 MACHINE-CHECKED SECURITY PROOF

We now discuss in more detail the machine-checked provable se-
curity proofs, which we write in EasyCrypt. After a brief overview
of our proof strategy, we give some background on EasyCrypt—
introducing some useful notations, before detailing some of the
proof’s more important aspects.

3.1 Proof Outline

Our formalization of definitions and top-level statements is direct:
we simply express the Sponge, its ideal functionality, the simulator
and the indifferentiability result in EasyCrypt, and express the
upper bound on any distinguisher’s probability of differentiating
as is standard, specialized to a two-oracle primitive interface.

In order to carry out the proof, we layer it as shown in Figure 5
to account for individual aspects of the construction. Our layers
separately deal with truncation and padding (Sponge), and squeez-
ing (BlockSponge) over a simplified CoreSponge which outputs
only a single block. We discuss the decomposition methodology
in Section 3.3. The simulator constructed by layers is not optimal
in terms of query cost, and we then show its equivalence to the
top-level simulator, allowing us to conclude with a tighter concrete
security result.

In addition to layering the proof to separate concerns, we also
greatly generalize known formal results on random oracles to allow
switching painlessly from eagerly sampled random oracle to lazily
sampled random oracles (and back) in a greater variety of cases.

CCS ’19, November 11–15, 2019, London, United Kingdom
José Bacelar Almeida, Cécile Baritel-Ruet, Manuel Barbosa, Gilles Barthe, François Dupressoir, Benjamin Grégoire, Vincent Laporte, Tiago

Oliveira, Alley Stoughton, and Pierre-Yves Strub

This generalization, discussed in Section 3.5, also contributes to
placing this proof, and others, within reach of formalization.

Beyond the proof of indifferentiability for the bare Sponge con-
struction, we then show that the functions defined in the SHA-3
standard [23] inherit specialized version of this indifferentiability,
and formally establish concrete security bounds on an adversary’s
ability to produce collisions, preimages or second preimages on
the SHA-3 hash functions without first breaking the Keccak-p
permutation. At the highest level, our indifferentiability proof is
instantiated to the hash functions SHA3-224, SHA3-256, SHA3-384
and SHA3-512, and extendable output functions SHAKE128 and
SHAKE256 as they are defined in the SHA-3 standard [23]. We dis-
cuss these proofs, which discharge Theorems 2.3, 2.4 and 2.5, in
Section 3.6.

3.2 Background on EasyCrypt
EasyCrypt [11] is an interactive proof assistant, which also em-
beds a simple probabilistic programming language, pWhile, used
to model cryptographic primitives, schemes, oracles and experi-
ments, as well as program logics for bounding the probability of
events in programs, and for proving equivalences or approximate
equivalences between programs. Although EasyCrypt was initially
designed to capture Shoup’s code-based game-based proof meth-
odology [32], it has since successfully been applied to simulation-
based proofs, and to a growing body of standard symmetric prim-
itives [3, 8, 9]. Both of these make it a suitable candidate for this
formalization effort.

The pWhile language is a simple imperative programming lan-
guage with assignments, conditionals (if-then-else) and while

loops, as well as the ability to sample a value—stored in a variable,
say x—from an arbitrary (sub-)distribution d , denoted x ←$d . We
sometimes abuse notation and write x ←$X with X a set, to denote
uniform sampling in X . The language of expressions, including
distributions, can be user-extended using a simple polymorphic
higher-order functional programming language. A rich module sys-
tem can be used to describe global memories and control access
to them (which captures groups of oracles that should share some
global state), to define programs that rely on some external func-
tionalities (modelling oracle access), and to universally quantify
over all possible programs that implement a set of interfaces (which
captures adversaries). In the following, we use different notations
for the same mechanism that parameter sizes a module by other
modules, in order to clarify the intended semantics. In particular,
we denote with C [P] a modular construction,6 where a construc-
tion C relies on a primitive (or lower-level construction) P for its
functionality, and with AO the standard notion of oracle access
whereby a program A (often an adversary) is given access to a set
of oracles O (whose security it is usually attempting to break).

As mentioned, program logics in EasyCrypt can be used to prove
three kinds of statements over programs (or pairs of programs). We
use only two in this paper, although the third (approximate equi-
valence between two programs) is used extensively in the proofs:

(1) perfect equivalence between two programs c1 and c2, de-
noted c1 ∼ c2, indicates that if c1 and c2 are run on the same
initial memory configuration, then they either both diverge,

6We also use C ◦ P for the same when trying to emphasize a decomposition instead.

or both terminate with final memory configurations that
follow the same distribution;

(2) bounds or equality on the probability for an event E to occur
during execution of a program c , denoted with Pr[c : E].

3.3 Decomposing Indifferentiability proofs

The decomposition outlined in Figure 5 is made possible by the
following general observation. Suppose we have a stateless “upper-
level” construction C[RP] that we want to prove to be indiffer-
entiable from an upper-level ideal functionality J . Furthermore,
let us assume that we already know that a stateless “lower-level”
construction E[RP] is indifferentiable from a lower-level ideal
functionality I, where S is a lower-level simulator such that no
adversary can effectively distinguish between (E[RP],RP) and
(I,S[I]).

We construct a pair of stateless converters D andU that works
as follows:D (“down”) transforms an upper-level functionality into
a lower-level one; andU (“up”) transforms a lower-level function-
ality into a upper-level one. We define the upper-level simulator T
such that T [J] := S[D[J]]. And, for any upper-level adversary
A that is asked to differentiate C from J , let the lower-level ad-
versary B[A] be defined as B[A]X ,Y := AU[X],Y .

Then, to prove that C[RP] is indifferentiable from J , it will
suffice to show the following two equivalences.

AC[RP],RP ∼ B[A]E[RP],RP (1)
AJ ,T [J] ∼ B[A]I,S[I] (2)

Equivalence (1) relates the “real” games, and simply reflects that
the modular construction is correct. Equivalence (2), on the other
hand, pertains to the “ideal” games. Since E is indifferentiable from
I for all adversaries, this holds in particular for B[A].

Because C and E (and U) are stateless, it is clear both what
C[RP] ∼ U[E[RP]] should mean, and that it will be sufficient to
imply that Equivalence (1) holds.

However the situation is more complex for the ideal equival-
ence (2), since our ideal functionalities have persistent local state
(say, query maps) of different types. Consequently it is unclear what
the statements J ∼ U[I] and I ∼ D[J] would even mean,
and we must instead prove finer-grained equivalence statements
where equivalence—over the whole game—also defines how the
ideal functionalities’ states are related.

We now describe the fine-grained ideal equivalences and their
proofs for the two derived layers (Sponge in Section 3.3.1, and
BlockSponge in Section 3.3.2), also giving an intuition of the core
simulator and proof for CoreSponge in Section 3.3.3.

3.3.1 Sponge. The BlockSponge construction is similar to Sponge,
but works on blocks rather than bits, forgoing padding of inputs
and truncation of outputs. The IdealBlock ideal functionality is
like the infinite random oracle IdealSponge, except that it, too,
works on blocks rather than bits. Both the construction and ideal
functionality should only be called with lists of blocks that can be
successfully unpadded; when called with invalid arguments, they
return the empty list.

We prove that, if BlockSponge is indifferentiable from Ideal-
Block, then Sponge is indifferentiable from IdealSponge by in-
stantiating the generic argument discussed in Section 3.3. In this

Machine-Checked Proofs for Cryptographic Standards CCS ’19, November 11–15, 2019, London, United Kingdom

instance, C is Sponge, E is BlockSponge, J is IdealSponge, I
is IdealBlock, and S is the block sponge simulator. We construct
the transformers D and U as follows. D[J ′] takes in a list of
blocks and a requested length n; it returns the empty list if given an
input that is not correctly padded. Otherwise, it calls J ′ with the
unpadded input and n ∗ r , and then chunks the resulting bitstring
into n blocks.U[I ′] takes in a list of bits and a requested length n.
It calls I ′ on the padding of its input and ⌈n/r⌉, and then truncates
the result of turning the resulting blocks into a list of bits.

For the real equivalence AC[RP],RP ∼ B[A]E[RP],RP , we
simply prove that the construction and its modularly-constructed
version are equivalent, as C[RP] ∼ U[E[RP]]. This involves
inlining and code rewriting, noting thatU simply truncates and
pads exactly as the Sponge does.

In contrast, and as discussed in Section 3.3, the proof of the ideal
equivalence AJ ,T [J] ∼ B[A]I,S[I] is more complex. We carry
it out in three steps, involving hybrid infinite random oracles (hybrid
IROs), which are midway between J and I. An input to a hybrid
IRO is a well-padded list of blocks and a desired number of output
bits. Internally, they work with finite maps from (Zr2)

∗ ×N to Z2. A
hybrid IRO can be raised, for comparison with J , or lowered, for
comparison with I. Two hybrid IROs are defined: a lazy one, and
an eager one. The lazy one consults/updates just enough inputs of
its finite map to provide the requested bits, whereas the eager one
continues up to a block boundary, consulting/updating subsequent
inputs of the finite map, as if it had been asked for a multiple of r
bits.

The first step of the proof transitions from AJ ,T [J] to a game
involving the lazy IRO. This is done by employing a relational
invariant between the maps of J and the lazy IRO.

The second step of the proof uses the eager sampling facility
of Section 3.5 to transition from a game involving the lazy IRO to
one involving the eager IRO. The bridge between these games uses
the eager sampling theory’s sample oracle to sample the extra bits
needed to take one up to a block boundary. The lazy version of
sample then gives us the lazy IRO, whereas its eager version gives
us the eager IRO.

The third step of the proof takes us from the game involving the
eager IRO to B[A]I,S[I]. This is done by employing an invari-
ant between the maps of the eager IRO and I. The proof is rather
involved, and makes use of: (a) EasyCrypt’s library’s support for
showing the equivalence of randomly choosing a block versus form-
ing a block out of r randomly chosen bits; and (b) a mathematical
induction over a pRHL judgement.

3.3.2 BlockSponge. The next step in our proof is to show that
squeezing, the operation through which the Sponge’s output is
extended to any desired length, also preserves indifferentiability.
Consider a functionality CoreSponge that computes only the ab-
sorption stage of BlockSponge (lines 3-5 of Figure 2, taking as
input a list of blocks, and outputting the final value of sa).

We define Sqeeze as the construction layer that builds Block-
Sponge from CoreSponge as follows. Given a list of blocks m
corresponding to a padded bitstring, and a desired output length i
(in blocks), Sqeeze[F](m, i) iteratively calls F times, with inputs
(m ∥ 0r ·j)0≤j<i , each call producing a single block of output. An
example is shown in Figure 6.

BlockSponge [RP]

Sqeeze ◦ CoreSponge[RP]

: full block of 0

Figure 6: BlockSponge [RP] and Sqeeze◦CoreSponge[RP] on
inputs that are a list of 4 blocks and output size 3.

Since the primitive RP appears deterministic (and in particular
returns the same output when queried twice on the same input) it
is easy to prove in EasyCrypt that the real equivalence Sqeeze ◦
CoreSponge[RP] ∼ BlockSponge[RP] holds.

To define the BlockSim simulator for BlockSponge from an
assumed simulator for CoreSponge, we first need to simulate the
IdealCore functionality—a simple random oracle in ({0, 1}r)∗ →
{0, 1}r—from IdealBlock. We thus define a construction trans-
former, called Last, which parses its input m—a non-empty list
of blocks—to produce a pair (y, j) ∈ ({0, 1}r)∗ × N such thatm =
y ∥ (0r) j andy does not end with a full block of 0s, calls IdealBlock
with input (y, j + 1) to obtain a list of blocks, finally outputting
only the last block. As before, the ideal equivalence here must be
expressed and proved over the whole game, and indeed requires re-
lating the states of ideal functionalities and simulator based on quer-
ies done on both interfaces. We thus prove in EasyCrypt that, for
all adversariesA,ASqeeze[IdealCore],CoreSim[IdealCore] is equival-
ent to AIdealBlock,CoreSim[Last◦IdealBlock]. Once again, this proof
leverages the generic lazy-eager sampling theory described in Sec-
tion 3.5 to prove that the intermediate blocks sampled and thrown
away by Last[IdealBlock] can instead not be sampled at all.

On the query cost. In this particular application of the decom-
position, the cost in number of permutation queries differs greatly
between BlockSponge[RP] and Sqeeze◦CoreSponge[RP]. Con-
sidering the example shown in Figure 6, the cost of that query to
BlockSponge is 6 permutations, but the same query to Sqeeze ◦
CoreSponge costs 4+5+6 = 15 permutation calls. Simply applying
the decomposition as described would yield a bound dominated by
O
(
σ 4/2r

)
. We therefore also use this transfer result to refine the

way in which the cost of a query in CoreSponge is measured, to
avoid double-counting common prefixes.

3.3.3 CoreSponge. All proof steps discussed thus far involve trans-
ferring indifferentiability from a simple construction to a more com-
plex one. We now focus on the core of the Sponge construction, a
block-oriented construction that, on input a list of blocks, produces
a single block of output. As discussed above, our notion of query
cost on this CoreSponge construction differs from the top-level
notion, and is defined instead as the length of the query without its
longest common prefix with any of the previous queries. We call
this cost the prefix cost of a query. Considering this notion of cost
requires us to carefully design the CoreSponge construction to

CCS ’19, November 11–15, 2019, London, United Kingdom
José Bacelar Almeida, Cécile Baritel-Ruet, Manuel Barbosa, Gilles Barthe, François Dupressoir, Benjamin Grégoire, Vincent Laporte, Tiago

Oliveira, Alley Stoughton, and Pierre-Yves Strub

ensure that the prefix cost and query cost of the same query align
when transferring indifferentiability to BlockSponge. In particular,
CoreSponge memoizes all query prefixes it has already seen and
associates each of them to its final absorption state. We prove in
EasyCrypt that CoreSponge is indifferentiable from IdealCore.

As a first simplifying step, we replace the primitive, a random
permutation, with a random function. This simplifies some of the
formal reasoning—in particular by removing internal dependencies
between samplings in the random permutation—but introduces
an additional term σ 2−σ

2b+1 in the bound. We note that all results
discussed above transfer indifferentiability without loss. Therefore,
improving the bound for this simpler functionality would be suffi-
cient in improving the bound for the whole Sponge construction
at almost no formal cost beyond that of tightening the bound for
CoreSponge.

The idea behind the simulator. Indifferentiability requires us to
simulate answers to the permutation, in a way that is consistent
with what the adversary may have already observed of the ideal
functionality, without knowing which queries the distinguisher has
made—or will make—to the functionality. To do so, the simulator
CoreSim, shown in Figure 7, keeps track of paths—which are se-
quences of blocks that, when fed through CoreSponge, leave its
state with a particular value of the capacity—and uses the func-
tionality to simulate its answer to any query that makes use of a
capacity to which a path is known, that is, a query that extends a
known path through CoreSponge. Queries that are disjoint from
path are answered as if by the ideal random function.

When the simulation fails. The simulation fails (and can be dis-
tinguished from the true permutation) if either one of the following
events occurs:

bcol : A capacity that was previously seen as output of the per-
mutation with a rate sa has been output again, associated
with a different block s ′a .

bext : The adversary has queried the primitive or its inverse with a
capacity that has already been, or is later sampled internally
by CoreSponge, but to which the simulator does not know
a path.

We show in EasyCrypt that these are the only conditions under
which the distinguisher can indeed distinguish the construction
from the ideal functionality.

Bounding the probability of a simulation failure. It remains to
bound the probability that these bad events occur. bcol is a straight-
forward collision event, whose probability we can bound immedi-
ately, since it occurs as values are sampled.

On the other hand, bounding the probability that bext occurs in
any particular run is much more complex, as it requires identifying
that the adversary has guessed a value that has been sampled in
the past, or will be sampled later on in the run. We note, how-
ever, that the event is only triggered when the adversary guesses
a value that is independent from his view of the system: indeed
CoreSponge keeps all capacities internal, and the event does not
consider the case where the adversary has obtained the capacity’s
value through a legitimate sequence of calls to the permutation
that mimics CoreSponge’s operations. The trick is therefore to

CoreSim[F](x1,x2)
1 : if (x1, x2) < m {

2 : y2 ←$Zb−r2 ;
3 : if x2 ∈ paths {

4 : (p, v) ← paths[x2];
5 : y1 ← F (p ∥ (v ⊕ x1)) ;
6 : paths[y2]← (p ∥ (v ⊕ x1), y1);
7 : } else {

8 : y1 ←$Zr2;
9 : }

10 : m[(x1, x2)]← (y1, y2);
11 : mi[(y1, y2)]← (x1, x2);
12 : }
13 : return m[(x1, x2)];

CoreSim[F]−1 (x1,x2)
if (x1, x2) < mi {

y1 ←$Zr2;

y2 ←$Zb−r2 ;
mi[(x1, x2)]← (y1, y2);
m[(y1, y2)]← (x1, x2);
}

return mi[(x1, x2)];

Figure 7: The core simulator CoreSim

delay the sampling of capacities that are used in CoreSponge until
the end of the game (at which point we can sample them all, and
easily bound the probability that any one of them was used by the
adversary), or until the simulator constructs a path to it, at which
point bext is no longer triggered.

In order to deploy the lazy-eager sampling theory described
in Section 3.5, however, we must first remove the dependencies
between capacities and rates introduced by their joint use in the
permutation.

A proof trick: indirection. To do so, we deploy an indirection
technique similar to that used by Backes et al. [8] in proving in-
differentiability of Merkle-Damgård. First, each fresh permutation
query (made by the adversary or the functionality) is tagged with
its sequence number. The main permutation map is used to keep
track, given an input state, of the rate that was returned, and of the
sequence number. An auxiliary map is used to translate sequence
numbers into capacities. This auxiliary map can then be sampled
lazily: on direct permutation queries, both rate and capacities are
sampled and returned to the distinguisher; on permutation queries
made by the construction, the rate is sampled and associated with a
sequence number, but the capacity is not sampled. A loop after the
distinguisher has finished running samples all remaining capacities,
that is, exactly those that have been used in the construction, but
not been observed as part of a path, triggering the bad event a
posteriori if any one of them collides with an adversarial input that
is not part of a path. This last transformation makes heavy use of
the lazy-eager sampling theory described in Section 3.5, including
in particular the use of programming queries in some cases.

3.4 The Sponge simulator

As described in Figure 5, the simulator resulting from the proof
described above is constructed from the modular layers as:

SpongeSim [BlockSim [CoreSim [·]]]

The final step of our proof is to collapse the layered construction
into a final simulator, shown in Figure 8. This allows us to reduce

Machine-Checked Proofs for Cryptographic Standards CCS ’19, November 11–15, 2019, London, United Kingdom

Simulator[F](x1, x2)
1 : if (x1, x2) < m {

2 : y2 ←$Zb−r2 ;
3 : if x2 ∈ paths {

4 : (p, v) ← paths[x2];
5 : (m, k) ← parse(p∥ (v ⊕ x1));
6 : if unpad(m) , ⊥ {

7 : lb← F (unpad(m), k · r);
8 : y1 ← last(bits2blocks(lb));
9 : } else if 0 < k {

10 : if (m, k − 1) < invalid {
11 : invalid[m, k − 1]←$Zr2;
12 : }

13 : y1 ← invalid[m, k − 1];
14 : } else {

15 : y1 ← 0r ;
16 : }

17 : paths[y2]← (p∥x1 ⊕ v, y1);
18 : } else {

19 : y1 ←$Zr2;
20 : }

21 : m[x1, x2]← (y1, y2);
22 : mi[y1, y2]← (x1, x2);
23 : }
24 : return m[(x1, x2)];

Simulator[F]−1 (x1, x2)
if (x1, x2) < mi {

y1 ←$Zr2;

y2 ←$Zb−r2 ;
mi[x1, x2]← (y1, y2);
m[y1, y2]← (x1, x2);
}

return mi[(x1, x2)]

Figure 8: The optimized Simulator for Sponge

the cost of simulator queries, aligning them with the announced no-
tion of query cost, and to present the simulator as a single algorithm.
However, the layered nature of the simulator can still be seen in this
final presentation: the core simulator still appears, keeping track of
paths through the simulated permutation that could correspond to
functionality calls and extending them as required, or simply simu-
lating the random permutation with a random function. However,
the way in which paths are extended in the layered simulator (lines
5-16 in Figure 8 replacing the single line 5 in Figure 7) reflects the
different layers required to turn a path through the core sponge
(a well-padded bitstring followed by a number of 0r blocks) into a
valid query to the Sponge (a bitstring that the Sponge itself pads
and a number of desired output bits), also turning the output of
the Sponge (a list of bits of the requested length) into the expected
output for the core simulator (a single block). For top-level simu-
lator queries that would yield invalid queries to any intermediate
functionalities (for example because they correspond to paths that
do not reflect well-padded inputs), the layered simulator simply
simulates an independent random function.

In other words, our final simulator is CoreSim where the ideal
functionality IdealCore itself is further simulated from the top-
level IdealSponge ideal functionality.

3.5 Eager Sampling in the Programmable ROM

As described above, all three layers of our decomposition—including
its core—rely on an eager sampling argument for random oracles.
Eager sampling is a standard argument when working with ran-
dom oracles in cryptographic proofs, which consists in switching
between two different views of a random oracle: i. an eager view,
in which the random oracle is sampled at random in a distribution
over the space of functions (of the appropriate type) when the game
is initialized; and ii. a lazy view, in which the random oracle’s re-
sponses are individually sampled upon fresh requests. Although it
is clear that no adversary that can only query the random oracle
can distinguish between these two views, this restriction is often
much too strict for the argument to be applicable directly.

For example, the second step in the proof that padding and trun-
cation preserve indifferentiability, discussed in Section 3.3.1 boils
down to proving that the oracles E and L shown on the outside of
Figure 9 cannot be distinguished—when instantiated with a random
oracle RF with domain D × N and range Z2—by any algorithm
(even unbounded) with oracle access to one of them. Note here that
it is impossible to simply eagerly sample the random oracle RF ,
since its domain is countably infinite, preventing us from defining
a uniform distribution over the function space.

Rather than forcing the EasyCrypt user to use low-level tactics to
reason about this equivalence, we define a new abstraction for ran-
dom oracles that supports eager arguments, not only in situations
like the one of Figure 9—where definitional difficulties arise from
the use of infinite domains, but also in the presence of programming
queries, such as scenarios in which answers to some queries are de-
terministically set or removed by the context. Our new abstraction
models a random oracle with input in setD, output inC , and output
distribution dC as 4 oracles that share state, and whose canonical
eager and lazy implementations are shown in Figure 10. They differ
only in their sample oracle: an eager implementation (shown on
a grey background), which samples values even though they are
not returned; and a lazy implementation, which does nothing.

Even given this much extended interface (over the “traditional”
interface which only exposes get), we can prove the following
lemma, which states that the eager and lazy implementations are
strictly equivalent.

Lemma 3.1 (Eager sampling for programmable random or-
acles). For anymapm0 ∈ D → C , and for any unbounded adversary
Dwith unbounded oracle access to get, set, rem and sample oracles
as specified above, we have

D
Eagerm0 ∼ D

Lazym0

Proving this lemma makes heavy use of EasyCrypt’s advanced
eager tactic, formalizing and confirming the standard intuition
that, even when oracles can be externally programmed, sampling
operations whose results do not influence the adversary’s view can
safely be delayed, either until the point where they do influence
the adversary’s view, or until the end of the game’s execution.

Continuing our example, the extended interface can be used as
shown in Figure 9 to define a hybrid oracle HO that usesO .sample
as well as O .get for O ∈

{
Eager, Lazy

}
. Then E and HEager are

equivalent, since their second loops do nothing with the values
they sample: both oracles sample ⌈n/r⌉ · r bits, returning the first

CCS ’19, November 11–15, 2019, London, United Kingdom
José Bacelar Almeida, Cécile Baritel-Ruet, Manuel Barbosa, Gilles Barthe, François Dupressoir, Benjamin Grégoire, Vincent Laporte, Tiago

Oliveira, Alley Stoughton, and Pierre-Yves Strub

E (x ∈ D,n ∈ N)

z ← ε ;
for (i = 0; i < n; i + +)
z ← z ∥ RF .get(x, i);

for (i = n; i < ⌈n/r ⌉ · r ; i + +)
RF .get(x, i);

return z ;

HO (x ∈ D,n ∈ N)

z ← ε ;
for (i = 0; i < n; i + +)
z ← z ∥O .get(x, i);

for (i = n; i < ⌈n/r ⌉ · r ; i + +)
O .sample(x, i);

return z ;

L(x ∈ D,n ∈ N)

z ← ε ;
for (i = 0; i < n; i + +)
z ← z ∥ RF .get(x, i);

return z ;

Figure 9: Eager-lazy random sampling example.

Eagerm0
Lazym0

Global state: a mapm ∈ D → C , initiallym0.

Common oracles
get(x)
if (x <m)

m[x]←$dC ;
returnm[x];

set(x, y)
m[x]← y ;
return;

rem(x)
m[x]← ⊥;
return;

sample(x)
if (x <m)

m[x]←$dC ;
return;

sample(x)
return;

Figure 10: The eager and lazy programmable random or-

acle

n of them. Also HLazy is equivalent to L, since the second loop in
HLazy does nothing. Finally, if D is a distinguisher for E/L, then
by Lemma 3.1, we have that DE ∼ DH Eager

∼ DH Lazy
∼ DL ,

considering the distinguisher DH · when applying Lemma 3.1.

3.6 Completing the Proofs

It now remains to close the proofs of Theorems 2.3, 2.4 and 2.5 (and
of corresponding theorems, not stated explicitly here, regarding
the SHAKEx functions).

As demonstrated by Maurer, Renner and Holenstein [26], in-
differentiability naturally extends the intuitive consequences of
indistinguishability to adversarial settings where multiple com-
ponents must be simulated at the same time. In particular, they
show that security properties that can be expressed as single-stage
games are preserved by indifferentiability, and Theorems 2.3, 2.4
and 2.5 are thus simple corollaries of Theorem 2.2. We formalize
this argument—specialized to the notion of indifferentiability from
an infinite random oracle—and leverage it in the proofs of our top-
level security theorems. We note, however, that Maurer, Renner
and Holenstein’s results do not cover multi-stage games, for which
a stronger notion of indifferentiability—not known to be met by
the Sponge construction—is required [30].

3.6.1 Security Definitions and Proofs. We now formally define the
security notions referred to in Section 2, and discuss the choices
where they are not obvious. Formally, our top-level results on the
SHA3-x functions are all expressed in the ideal permutation model,

where the adversary always has oracle access to the permutation,
and we model the SHA3-x functions as families of hash functions
indexed by their permutation.

Collision Resistance. We use the textbook notion of collision res-
istance. Formally, the game CRAH used in Theorem 2.3 is displayed
in Figure 11.

Preimage Resistance. For preimage resistance, we use Rogaway
and Shrimpton’s everywhere preimage resistance [31]. This is a com-
promise, which allows us to express and prove the absence of generic
attacks against the SHA3-x functions, while also being stronger
than the standard notion of preimage resistance. Formally, the game
PR1AH used in Theorem 2.4 is displayed in Figure 12.

Second Preimage Resistance. Finally, for second preimage res-
istance, we generalize and strengthen Rogaway and Shrimpton’s
everywhere second preimage resistance to remove its parametrization
by the challenge length: the advantage of an adversary in breaking
our notion of second preimage is the maximum over all possible in-
put m of any length of the probability the adversary finds a second
preimage for that input. We formally express the game PR2AH used
in Theorem 2.5 in Figure 13.

3.6.2 About Joint Security. Our proofs do not attempt to capture
the joint security of SHA3-x and SHAKEx , even with compatible
rates. This is due to the strategy we followed to complete the top-
level proofs, whereby we proved that fixing the Sponge construc-
tion’s output length produces a hash function that is collision,
preimage and second preimage resistant before considering the
domain separation bits, which do not affect the security of a hash
function. We leave the consideration of domain separation as future
work, with proofs carried out modularly following the methodology
presented here, and do not foresee any particular difficulty.

Obtaining a proof of security—even informal—for a multi-rate
Sponge construction, whereby the same permutation is used to
construct several XOFs, remains an open problem of independent
interest. We do not tackle it here, and do note that our results
therefore do not cover the SHA-3 standard as a whole, but rather
each of its components in isolation.

4 MACHINE-CHECKED CORRECTNESS

Jasmin [1] is a language for high-assurance and high-speed crypto-
graphy, Jasmin implementations are predictably transformed into
assembly programs by the Jasmin compiler. Indeed, the Jasmin

Machine-Checked Proofs for Cryptographic Standards CCS ’19, November 11–15, 2019, London, United Kingdom

CRAH ()

P ←$Perm;

(m, m′) ←$AH [P],P ();
return m , m′∧

H [P] (m) = H [P] (m′);

Figure 11: Collision resistance.

PR1AH ()

P ←$Perm;
y ←$C ;

m←$AH [P],P (y);
return H [P] (m) = y ;

Figure 12: Preimage resistance.

PR2AH (m)

P ←$Perm;

m′ ←$AH [P],P (m);
return m , m′∧

H [P] (m′) = H [P] (m);

Figure 13: Second preimage resistance.

language is designed to support “assembly in the head” program-
ming, i.e., it smoothly combines high-level (structured control-flow,
variables, etc.) and low-level (assembly instructions, flag manipula-
tion, etc.) constructs. Predictability empowers Jasmin programmers
to develop optimized implementations with essentially the same
level of control as if they were using assembly or domain-specific
languages such as qhasm.

Recently [5], the Jasmin framework has been extended with a
formal verification back-end based on EasyCrypt. This back-end
makes it possible to reason about the correctness of Jasmin im-
plementations by automatically extracting them into EasyCrypt
programs whose semantics is formally defined by an embedding
of the Jasmin semantics in the EasyCrypt logic. The EasyCrypt
proof assistant supports program logics for reasoning about cor-
rectness and equivalence of imperative programs. The approach
proposed in [5] takes advantage of this relational reasoning to carry
out functional correctness proofs in the “game-hopping” style: one
starts from a reference implementation, which is proved correct
with respect to a high-level specification, and gradually modifies it
until equivalence to high-speed code is trivial to prove. Crucially,
this approach mimics the optimization process adopted by cryp-
tographers when writing high-speed code, which means that the
intermediate implementations required to bridge reference and tar-
get code are side-effects of the optimization procedure itself.7 The
Jasmin compiler is certified via a proof formalized in the Coq proof
assistant, thus guarantees are carried to assembly code.

In this paper we build on the work of [5] to show that the em-
bedding into EasyCrypt opens a way for a new type of formal
guarantee: in addition to correctness of high-speed implement-
ations, we can connect high-speed implementations to provable
security results for the high-level specifications.

Equivalence proofs. In Figure 14 we show the general structure of
our correctness proofs. At the top we show the standard connected
by arrows that represent correctness by inspection to three artefacts:
i. the Sponge specification that was proved indifferentiable from
a random oracle in EasyCrypt; ii. the reference implementation
of the Sponge construction; and iii. the reference implementation
of Keccak-p. The latter two implementations are shown as roun-
ded rectangles to denote Jasmin as the implementation language.
At the bottom of the figure are the high-speed implementations.
Here x denotes either a scalar implementation or a vectorized avx2
implementation. Both were proved correct with respect to the ref-
erence implementation using a common strategy detailed below.

7There is a rich body of work in equivalence checking that we do not discuss in this
paper, as our contributions are not centred on the verification technology itself. See [5]
for a detailed discussion.

Sponge

Sponge1600

Spec1600 RefSponge

RefSponge

Security
proof

instantiates

extracts to

Standard

RefPerm

RefPerm

uses

uses

extracts to

x-Sponge

extracts to

eq*

eq*

eq

extracts to

uses

uses
x-Sponge x-Perm

x-Perm

x-Perm

x-Perm

eq
uses

inspection

Figure 14: Equivalence proofs

The optimizations used in these implementations are well-known
and follow the general approach adopted in OpenSSL, which in
turn builds on observations by the proposers of Keccak.8 The main
difference here is that they can be expressed in Jasmin, which per-
mits reasoning about their correctness at a convenient level of
abstraction.

Reference implementation correctness. The reference implement-
ation for the Sponge construction in Jasmin is proved equivalent
to the provably secure EasyCrypt specification using several steps
shown within a large rectangle. In this rectangle, there are no
permutation implementations or specifications, as the theoretical
security of the Sponge idealizes this component. For this reason,
equivalence proofs are denoted eq*, to indicate that they are per-
formed under the assumption that the sponge constructions are
instantiated with the same permutation. The Jasmin reference im-
plementation is extracted to EasyCrypt, and linked to the Sponge
specification using two intermediate steps: i. Sponge1600 is simply
an instantiation of the provably secure construction for a concrete
permutation size of 1600-bits; and ii. Spec1600 is an implementa-
tion of the Sponge that uses the semantics of Jasmin to define the
construction over sequences of bytes, for input messages that are
byte-aligned. The main challenges in these proofs relate to both

8https://github.com/XKCP/XKCP

https://github.com/XKCP/XKCP

CCS ’19, November 11–15, 2019, London, United Kingdom
José Bacelar Almeida, Cécile Baritel-Ruet, Manuel Barbosa, Gilles Barthe, François Dupressoir, Benjamin Grégoire, Vincent Laporte, Tiago

Oliveira, Alley Stoughton, and Pierre-Yves Strub

data representation (from bit-level, to byte-level and ultimately to
word-level manipulation) and to modifications in the control-flow
that are needed to deal with lazy memory reading and writing (read
when needed, write when ready in order to avoid buffering) and
corner cases that arise in the padding stage.

High-speed implementation correctness. The correctness of the
high-speed implementations is established modularly. First, the un-
derlying implementation of the permutation is proved equivalent
to the reference implementation of Keccak-p. Then, the full im-
plementation is proved correct using the permutation equivalence
as a stepping stone. All equivalence proofs are carried out over
EasyCrypt code extracted from the Jasmin implementations.

The permutation code does not perform memory write opera-
tions, as the entire state is maintained in the stack and registers.
This greatly simplifies proofs, as stack arrays are treated in the
Jasmin semantics as applicative arrays. The main challenges at this
level are therefore related with the semantics of low-level optimiz-
ations, including vectorization, instruction selection, spilling, and
instruction scheduling.

Conversely, the main challenges in proving the full implement-
ations are related to memory accesses. Concretely, some of the
permutation implementations rely on memory tables to keep global
constants, which means that one must prove that the memory write
operations performed by the squeeze stage do not overwrite these
memory regions. In the absorb phase, the main difficulty arises in
the proof of the vectorized implementation, where the behaviour is
significantly different from the reference implementation. In short,
the state of the permutation is kept in a (redundant) representation
using seven 256-bit registers, where the logical arrangement of 64-
bit subwords is optimized for taking advantage of simd permutation
operations. This means that loading a message block and xor-ing it
with the state is a semantically challenging operation: rather than
performing a xor over only part of the state, the implementation
first constructs a dummy message block with the correct word ar-
rangement (padded with zeros up to full permutation input size) in
the stack, and then xors the entire state. Proving equivalence to the
reference implementation therefore cannot be proved by matching
intermediate state values on a per-instruction basis, and involves
complex invariants over the state of the memory and the stack.

Safety verification and side channels. The extended Jasmin frame-
work of [5] also includes a mechanism for the automatic verification
of safety—safety is a necessary condition for the soundness of the
embedding of Jasmin in EasyCrypt—and another mechanism to
check for the absence of timing side-channels. We have checked
our implementations for both safety and absence of timing leaks
in the constant-time model (input and output lengths are assumed
to be public). The constant-time proofs consist of extracting the
optimized Jasmin implementations to EasyCrypt using the mech-
anism introduced in [5], and then proving that the leakage trace
explicitly constructed by the extracted code is independent from (or,
formally, non-interfering with) the application data processed by
the hash function. The leakage trace constructed by the implement-
ation exactly maps the formal definition of constant-time leakage,
as defined for example in [4].

We emphasize that, as proved in [3], checking for the constant-
time property at the Jasmin level, guarantees that the timing leak-
age of the implementation can be simulated based solely on public
information, i.e., it is independent of user inputs. Together with
functional correctness given by our equivalence proofs, this means
that whatever security properties are guaranteed by the reference
implementations, these are retained by the optimized implementa-
tions, even in the presence of timing attackers. Eliminating this type
of leakage is critical for applications where hash functions process
secret data and the hash function input (albeit not its length) needs
to be hidden, as is the case in keyed constructions such as HMAC,
or in key derivation functions.

5 PERFORMANCE EVALUATION

In this section we demonstrate the efficiency of our Jasmin im-
plementation of SHA-3. We use SHAKE256 for concreteness, but
note that for all the other SHA-3 functions the comparison to other
libraries yields similar results, as they all share the same base im-
plementations of the Sponge construction and Keccak-p.

Benchmarking Environment. The performance evaluation of the
Jasmin implementations of SHAKE256 was performed using super-
cop, v. 20190110. All measurements were taken on an Intel i7-6500U
(Skylake) processor clocked at 2.5GHz, with Turbo Boost disabled,
Ubuntu 16.04, kernel release 4.15.0-46-generic and gcc 8.1.

We compare our code with OpenSSL9 and HACL*10. We con-
figured three different versions of OpenSSL: i. with the no-asm flag
to exclude all assembly implementations; ii. without any flags or
changes so that the x86_64 assembly implementation of Keccak-p
was selected; and iii. with an edited version of configuration file
crypto/sha/build.info to force the usage of the avx2 implementa-
tion of Keccak-p. The resulting three shared libraries were then
used in different runs of the supercop benchmarks to produce the
presented results. The corresponding binding to the supercop API
for hash functions, crypto_hashwas already defined. For theHACL*
evaluation we produced a static library from the extracted imple-
mentations that are present in the directory dist/compact-gcc by
using the Makefile provided by the authors. The binding to super-
cop is a simple function call to the implementation: Hacl_SHA3_-
shake256_hacl. As a final note, for SHAKE256 supercop defines
CRYPTO_BYTES, the output length, as 136 bytes. As such, the
presented results correspond to executions of SHAKE256 for that
specific output length.

Results. We show our results in Figures 15 and 16. The chart in Fig-
ure 15 shows a comparison of our implementations with OpenSSL.
We show vectorized (avx2) and non-vectorized (scalar) implement-
ations, as well as the C implementation in OpenSSL. It is clear from
the chart that there are significant advantages in moving from C to
assembly, and further performance boosts from vectorization. All of
these were known. The novelty in this chart is that we are compar-
ing verified Jasmin code to non-verified implementations, and that
the verified code matches the performance of the non-verified code.
For small message sizes our implementation is faster mostly due to
overheads in the library bindings; these overheads lose significance

9Branch: OpenSSL_1_1_1-stable; Commit: 4f4d37dacec205066b369b93aa5bacb0553f68d1
10Branch: evercrypt-v0.1+; Commit: bc1b759fe5f471c827d2b6d292e530e36a6d3a67

Machine-Checked Proofs for Cryptographic Standards CCS ’19, November 11–15, 2019, London, United Kingdom

5

10

15

20

25

30

35

128 256 512 1024 2048 4096 8192 16384

cy
cl

es
 p

er
 b

yt
e

message length in bytes

OpenSSL (No Assembly)

OpenSSL (Scalar)

Jasmin (Scalar)

OpenSSL (AVX2)

Jasmin (AVX2)

Figure 15: Comparison to non-verified code.

0

10

20

30

40

50

60

70

80

90

100

110

128 256 512 1024 2048 4096 8192 16384

cy
cl

es
 p

er
 b

yt
e

message length in bytes

EverCrypt

Jasmin (Scalar)

Jasmin (AVX2)

Figure 16: Comparison to verified code.

for large messages (note we report cycles per byte) and one can see
that there is an improvement for the scalar implementation due to
fine-tuning of the Jasmin implementation, and essentially the same
performance for the vectorized implementation.

In Figure 16 we give a comparison to the verified C implementa-
tion in EverCrypt, which contains the only formally verified imple-
mentation of SHA-3 that we could find. Note that the benchmarked
assembly is only high-assurance if one trusts the compiler that was
used to produce it. Even so, the advantages of the Jasmin approach
are clear: by allowing formal reasoning about correctness at the
same level of abstraction as over C code and, at the same time,
giving assembly-like control to the programmer, it was possible to
improve performance by a factor of 3.

6 CONCLUSION

In this paper, we give concrete evidence that it is feasible to certify
standards, from provable security of algorithms to provable and side-
channel security of both human-readable and high-performance
reference implementations. Although we give this evidence on
an already-established standard, we believe that the tools used
to produce proofs of functional correctness and implementation
security for implementations are accessible enough to be used in
ongoing competitions.

Tools and techniques for the formalization of provable security,
on the other hand, still require both intense effort and a deep un-
derstanding of the mathematical arguments involved in the proof.
The process of gaining such understanding in this case has allowed
us to develop two contributions of independent interest: i. a new
methodology—that we believe could be applied in pen-and-paper
proofs—for decomposing proofs of indifferentiability for complex
constructions; and ii. an extension of the traditional formal view of
random oracles to better support reasoning about patching queries.

ACKNOWLEDGMENTS

This work received support from the National Institute of Standards
and Technologies under agreement number 60NANB15D248.

This work was partially supported by Office of Naval Research
under projects N00014-12-1-0914, N00014-15-1-2750 and N00014-
19-1-2292.

This work was partially funded by national funds via the Por-
tuguese Foundation for Science and Technology (FCT) in the con-
text of project PTDC/CCI-INF/31698/2017. Manuel Barbosa was
supported by grant SFRH/BSAB/143018/2018 awarded by the FCT.

This work was supported in part by the National Science Found-
ation under grant number 1801564.

This work was supported in part by the FutureTPM project of
the Horizon 2020 Framework Programme of the European Union,
under GA number 779391.

This work was supported by the ANR Scrypt project, grant num-
ber ANR-18-CE25-0014.

This work was supported by the ANR TECAP project, grant
number ANR-17-CE39-0004-01.

REFERENCES

[1] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin
Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and
Pierre-Yves Strub. 2017. Jasmin: High-Assurance and High-Speed Cryptography.
In ACM CCS 2017: 24th Conference on Computer and Communications Security,
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.).
ACM Press, 1807–1823. https://doi.org/10.1145/3133956.3134078

[2] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and François Dupressoir.
2013. Certified computer-aided cryptography: efficient provably secure machine
code from high-level implementations. In ACM CCS 2013: 20th Conference on

Computer and Communications Security, Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung (Eds.). ACM Press, 1217–1230. https://doi.org/10.1145/2508859.
2516652

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and François Dupressoir.
2016. Verifiable Side-Channel Security of Cryptographic Implementations:
Constant-TimeMEE-CBC. In Fast Software Encryption – FSE 2016 (Lecture Notes in
Computer Science), Thomas Peyrin (Ed.), Vol. 9783. Springer, Heidelberg, 163–184.
https://doi.org/10.1007/978-3-662-52993-5_9

[4] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and
Michael Emmi. 2016. Verifying Constant-Time Implementations. In USENIX

Security 2016: 25th USENIX Security Symposium, Thorsten Holz and Stefan Savage
(Eds.). USENIX Association, 53–70.

https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1145/2508859.2516652
https://doi.org/10.1145/2508859.2516652
https://doi.org/10.1007/978-3-662-52993-5_9

CCS ’19, November 11–15, 2019, London, United Kingdom
José Bacelar Almeida, Cécile Baritel-Ruet, Manuel Barbosa, Gilles Barthe, François Dupressoir, Benjamin Grégoire, Vincent Laporte, Tiago

Oliveira, Alley Stoughton, and Pierre-Yves Strub

[5] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien
Koutsos, Vincent Laporte, Tiago Oliveira, and Pierre-Yves Strub. 2019. The Last
Mile: High-Assurance and High-Speed Cryptographic Implementations. CoRR
abs/1904.04606 (2019). arXiv:1904.04606 http://arxiv.org/abs/1904.04606

[6] Andrew W. Appel. 2012. Verified Software Toolchain. In NASA Formal Meth-

ods - 4th International Symposium, NFM 2012, Norfolk, VA, USA, April 3-5, 2012.

Proceedings. 2. https://doi.org/10.1007/978-3-642-28891-3_2
[7] AndrewW. Appel. 2015. Verification of a Cryptographic Primitive: SHA-256. ACM

Trans. Program. Lang. Syst. 37, 2 (2015), 7:1–7:31. https://doi.org/10.1145/2701415
[8] Michael Backes, Gilles Barthe, Matthias Berg, Benjamin Grégoire, César Kunz,

Malte Skoruppa, and Santiago Zanella-Béguelin. 2012. Verified Security of Merkle-
Damgård. In 25th IEEE Computer Security Foundations Symposium, CSF 2012,

Cambridge, MA, USA, June 25-27, 2012. 354–368. https://doi.org/10.1109/CSF.
2012.14

[9] Cecile Baritel-Ruet, François Dupressoir, Pierre-Alain Fouque, and Benjamin
Grégoire. 2018. Formal Security Proof of CMAC and Its Variants. In 31st IEEE

Computer Security Foundations Symposium, CSF 2018, Oxford, United Kingdom,

July 9-12, 2018. 91–104. https://doi.org/10.1109/CSF.2018.00014
[10] Gilles Barthe, Marion Daubignard, Bruce M. Kapron, and Yassine Lakhnech. 2010.

Computational indistinguishability logic. In Proceedings of the 17th ACM Confer-

ence on Computer and Communications Security, CCS 2010, Chicago, Illinois, USA,

October 4-8, 2010, Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov
(Eds.). ACM, 375–386. https://doi.org/10.1145/1866307.1866350

[11] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt
Schmidt, and Pierre-Yves Strub. 2013. EasyCrypt: A Tutorial. In Foundations of

Security Analysis and Design VII - FOSAD 2012/2013 Tutorial Lectures. 146–166.
https://doi.org/10.1007/978-3-319-10082-1_6

[12] Mihir Bellare. 2006. New Proofs for NMAC and HMAC: Security without
Collision-Resistance. In Advances in Cryptology – CRYPTO 2006 (Lecture Notes in

Computer Science), Cynthia Dwork (Ed.), Vol. 4117. Springer, Heidelberg, 602–619.
https://doi.org/10.1007/11818175_36

[13] Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W. Appel. 2015.
Verified Correctness and Security of OpenSSL HMAC. In 24th USENIX Security

Symposium, USENIX Security 15, Washington, D.C., USA, August 12-14, 2015. 207–
221. https://www.usenix.org/conference/usenixsecurity15/technical-sessions/
presentation/beringer

[14] Guido Bertoni, JoanDaemen,Michael Peeters, and Gilles VanAssche. 2008. On the
Indifferentiability of the Sponge Construction. In Advances in Cryptology – EURO-
CRYPT 2008 (Lecture Notes in Computer Science), Nigel P. Smart (Ed.), Vol. 4965.
Springer, Heidelberg, 181–197. https://doi.org/10.1007/978-3-540-78967-3_11

[15] Benjamin Beurdouche, Franziskus Kiefer, and Tim Taubert. 2017. Verified
cryptography for Firefox 57. https://blog.mozilla.org/security/2017/09/13/
verified-cryptography-firefox-57/ Accessed May 14, 2019.

[16] Benoît Cogliati, Yevgeniy Dodis, Jonathan Katz, Jooyoung Lee, John P. Stein-
berger, Aishwarya Thiruvengadam, and Zhe Zhang. 2018. Provable Security
of (Tweakable) Block Ciphers Based on Substitution-Permutation Networks. In
Advances in Cryptology – CRYPTO 2018, Part I (Lecture Notes in Computer Science),
Hovav Shacham and Alexandra Boldyreva (Eds.), Vol. 10991. Springer, Heidelberg,
722–753. https://doi.org/10.1007/978-3-319-96884-1_24

[17] Pierre Corbineau, Mathilde Duclos, and Yassine Lakhnech. 2011. Certified Secur-
ity Proofs of Cryptographic Protocols in the Computational Model: An Applica-
tion to Intrusion Resilience. In Certified Programs and Proofs - First International

Conference, CPP 2011, Kenting, Taiwan, December 7-9, 2011. Proceedings (Lec-

ture Notes in Computer Science), Jean-Pierre Jouannaud and Zhong Shao (Eds.),
Vol. 7086. Springer, 378–393. https://doi.org/10.1007/978-3-642-25379-9_27

[18] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
2005. Merkle-Damgård Revisited: How to Construct a Hash Function. InAdvances
in Cryptology – CRYPTO 2005 (Lecture Notes in Computer Science), Victor Shoup
(Ed.), Vol. 3621. Springer, Heidelberg, 430–448. https://doi.org/10.1007/11535218_
26

[19] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
and Boris Yakobowski. 2012. Frama-C - A Software Analysis Perspective. In
Software Engineering and Formal Methods - 10th International Conference, SEFM

2012, Thessaloniki, Greece, October 1-5, 2012. Proceedings. 233–247. https://doi.
org/10.1007/978-3-642-33826-7_16

[20] Dana Dachman-Soled, Jonathan Katz, and Aishwarya Thiruvengadam. 2016. 10-
Round Feistel is Indifferentiable from an Ideal Cipher. In Advances in Cryptology

– EUROCRYPT 2016, Part II (Lecture Notes in Computer Science), Marc Fischlin
and Jean-Sébastien Coron (Eds.), Vol. 9666. Springer, Heidelberg, 649–678. https:
//doi.org/10.1007/978-3-662-49896-5_23

[21] Yuanxi Dai and John P. Steinberger. 2016. Indifferentiability of 8-Round Feistel
Networks. In Advances in Cryptology – CRYPTO 2016, Part I (Lecture Notes in Com-

puter Science), Matthew Robshaw and Jonathan Katz (Eds.), Vol. 9814. Springer,
Heidelberg, 95–120. https://doi.org/10.1007/978-3-662-53018-4_4

[22] Marion Daubignard, Pierre-Alain Fouque, and Yassine Lakhnech. 2012. Generic
Indifferentiability Proofs of Hash Designs. In 25th IEEE Computer Security Founda-

tions Symposium, CSF 2012, Cambridge, MA, USA, June 25-27, 2012, Stephen Chong
(Ed.). IEEE Computer Society, 340–353. https://doi.org/10.1109/CSF.2012.13

[23] Morris J. Dworkin. 2015. SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions. http://dx.doi.org/10.6028/NIST.FIPS.202

[24] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala.
2019. Simple High-Level Code for Cryptographic Arithmetic - With Proofs,
Without Compromises. In IEEE Security & Privacy. To appear. Retrieved from
http://adam.chlipala.net/papers/FiatCryptoSP19/FiatCryptoSP19.pdf.

[25] Xavier Leroy. 2009. A Formally Verified Compiler Back-end. J. Autom. Reasoning

43, 4 (2009), 363–446. https://doi.org/10.1007/s10817-009-9155-4
[26] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. 2004. Indifferentiability,

Impossibility Results on Reductions, and Applications to the Random Oracle
Methodology. In TCC 2004: 1st Theory of Cryptography Conference (Lecture Notes

in Computer Science), Moni Naor (Ed.), Vol. 2951. Springer, Heidelberg, 21–39.
https://doi.org/10.1007/978-3-540-24638-1_2

[27] Adam Petcher and Greg Morrisett. 2015. The Foundational Cryptography
Framework. In Principles of Security and Trust - 4th International Conference,

POST 2015, Held as Part of the European Joint Conferences on Theory and Prac-

tice of Software, ETAPS 2015, London, UK, April 11-18, 2015, Proceedings. 53–72.
https://doi.org/10.1007/978-3-662-46666-7_4

[28] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz, Chris Hawblitzel, Marina
Polubelova, Karthikeyan Bhargavan, Benjamin Beurdouche, Joonwon Choi, Ant-
oine Delignat-Lavaud, Cédric Fournet, Tahina Ramananandro, Aseem Rastogi,
Nikhil Swamy, Christoph Wintersteiger, and Santiago Zanella-Beguelin. 2019.
EverCrypt: A Fast, Verified, Cross-Platform Cryptographic Provider. Cryptology
ePrint Archive, Report 2019/757. https://eprint.iacr.org/2019/757.

[29] Jonathan Protzenko, Jean Karim Zinzindohoué, Aseem Rastogi, Tahina Raman-
anandro, Peng Wang, Santiago Zanella-Béguelin, Antoine Delignat-Lavaud,
Catalin Hritcu, Karthikeyan Bhargavan, Cédric Fournet, and Nikhil Swamy. 2017.
Verified low-level programming embedded in F*. PACMPL 1, ICFP (2017), 17:1–
17:29. https://doi.org/10.1145/3110261

[30] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. 2011. Careful with
Composition: Limitations of the Indifferentiability Framework. In Advances in

Cryptology – EUROCRYPT 2011 (Lecture Notes in Computer Science), Kenneth G.
Paterson (Ed.), Vol. 6632. Springer, Heidelberg, 487–506. https://doi.org/10.1007/
978-3-642-20465-4_27

[31] Phillip Rogaway and Thomas Shrimpton. 2004. Cryptographic Hash-Function
Basics: Definitions, Implications, and Separations for Preimage Resistance,
Second-Preimage Resistance, and Collision Resistance. In Fast Software Encryp-

tion – FSE 2004 (Lecture Notes in Computer Science), Bimal K. Roy and Willi
Meier (Eds.), Vol. 3017. Springer, Heidelberg, 371–388. https://doi.org/10.1007/
978-3-540-25937-4_24

[32] Victor Shoup. 2004. Sequences of games: a tool for taming complexity in security
proofs. Cryptology ePrint Archive, Report 2004/332. http://eprint.iacr.org/2004/
332.

[33] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-
Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub,
Markulf Kohlweiss, Jean-Karim Zinzindohoué, and Santiago Zanella-Béguelin.
2016. Dependent Types and Multi-Monadic Effects in F*. In 43rd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL). ACM, 256–
270. https://www.fstar-lang.org/papers/mumon/

[34] Aaron Tomb. 2016. Automated Verification of Real-World Cryptographic Imple-
mentations. IEEE Security & Privacy 14, 6 (2016), 26–33. https://doi.org/10.1109/
MSP.2016.125

[35] Katherine Q. Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer, Adam
Petcher, and Andrew W. Appel. 2017. Verified Correctness and Security of
mbedTLS HMAC-DRBG. In ACM CCS 2017: 24th Conference on Computer and

Communications Security, Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu (Eds.). ACM Press, 2007–2020. https://doi.org/10.1145/3133956.
3133974

[36] Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and
Benjamin Beurdouche. 2017. HACL*: A Verified Modern Cryptographic Library.
In ACM CCS 2017: 24th Conference on Computer and Communications Security,
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.).
ACM Press, 1789–1806. https://doi.org/10.1145/3133956.3134043

http://arxiv.org/abs/1904.04606
http://arxiv.org/abs/1904.04606
https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1145/2701415
https://doi.org/10.1109/CSF.2012.14
https://doi.org/10.1109/CSF.2012.14
https://doi.org/10.1109/CSF.2018.00014
https://doi.org/10.1145/1866307.1866350
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/11818175_36
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/beringer
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/beringer
https://doi.org/10.1007/978-3-540-78967-3_11
https://blog.mozilla.org/security/2017/09/13/verified-cryptography-firefox-57/
https://blog.mozilla.org/security/2017/09/13/verified-cryptography-firefox-57/
https://doi.org/10.1007/978-3-319-96884-1_24
https://doi.org/10.1007/978-3-642-25379-9_27
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-662-49896-5_23
https://doi.org/10.1007/978-3-662-49896-5_23
https://doi.org/10.1007/978-3-662-53018-4_4
https://doi.org/10.1109/CSF.2012.13
http://dx.doi.org/10.6028/NIST.FIPS.202
http://adam.chlipala.net/papers/FiatCryptoSP19/FiatCryptoSP19.pdf
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-662-46666-7_4
https://eprint.iacr.org/2019/757
https://doi.org/10.1145/3110261
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-540-25937-4_24
https://doi.org/10.1007/978-3-540-25937-4_24
http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332
https://www.fstar-lang.org/papers/mumon/
https://doi.org/10.1109/MSP.2016.125
https://doi.org/10.1109/MSP.2016.125
https://doi.org/10.1145/3133956.3133974
https://doi.org/10.1145/3133956.3133974
https://doi.org/10.1145/3133956.3134043

	Abstract
	1 Introduction
	2 Technical Overview
	2.1 The Sponge Construction
	2.2 SHA-3, hash functions and XOFs
	2.3 Security of the Sponge Construction
	2.4 Security Implications
	2.5 Secure and efficient implementations

	3 Machine-checked security proof
	3.1 Proof Outline
	3.2 Background on EasyCrypt
	3.3 Decomposing Indifferentiability proofs
	3.4 The Sponge simulator
	3.5 Eager Sampling in the Programmable ROM
	3.6 Completing the Proofs

	4 Machine-checked correctness
	5 Performance Evaluation
	6 Conclusion
	Acknowledgments
	References

