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We present a tutorial on the basics of Bayesian probabilistic modeling 

and Gibbs sampling algorithms for data analysis. Particular focus is put 

on explaining detailed steps to build a probabilistic model and to derive 

Gibbs sampling algorithm for the model. The tutorial begins with basic 

concepts that are necessary for understanding the underlying principles 

and notations often used in generative models. Latent Dirichlet 

Allocation (LDA) is then explained in details regarding both steps to 

build the model and to derive its collapsed Gibbs sampling algorithm. 

Following this LDA case study one can further develop either simple or 

more complex generative models for a variety of applications. 
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Introduction:- 
Employing generative probabilistic modeling approach in data analysis has become quite popular nowadays. More 

and more problems in di erent elds have been successfully solved using this approach. Examples include object 

extraction and pattern recognition [1, 2], topic models [3], and social community detection [4, 5]. There are two 

main advantages of this approach compared to others. First, it would be easy to postulate complex latent structures 

underlying the observed data into a mathematical model. Second, correlations among structures can be realized by 

conditional probability distributions. 

 

Among three main tasks to develop a complete probabilistic model, as pointed out in [6], knowing how to build a 

model and to estimate posterior distributions for hidden variables are thought more important for people who are 

new to this approach. This tutorial aims at providing important background for probabilistic modeling tasks and 

examining the Latent Dirichlet Allocation (LDA) [3] as a case study to detail the steps to build a model and to derive 

Gibbs sampling algorithms. 

 

In the context of topic extraction from documents and other related applications, LDA is known to be the best model 

to date. Since its publication in 2003, LDA has been quickly adopted as a powerful tool for extracting clusters of 

objects in many application domains. These include the topical analysis in text mining [7, 8, 9], object extraction in 

computer vision [10, 2], and community detection in social network analysis [4, 11, 12, 13]. Even though several 

models have been introduced as an extension of LDA, it is interesting to note that research communities tend to 

employ LDA mostly as a blackbox. There are few studies contributing to the explanation of the model [14, 15] but 

still, the authors skipped most of the detailed steps especially for the posterior estimation. 
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Basic Background: 

By employing a statistical modeling approach to analyzing data, a given dataset consisting of data points (also called 

observations) D = {x1,  x2, …, xN} is assumed to be generated from some probability distribution having parameter  . 

Such an assumption is represented by a likelihood function P(D|). Even though  is unknown, one can give some 

prior knowledge to the model by considering that the values of  are generated by some distribution P (;α), where 

is known-value parameter called hyperparameter. This is the under lying key idea of Bayesian statistics approach 

compared to classical statistics where the parameter is assumed to have a fixed value. The joint distribution of the 

observed data and the parameters de nes a probabilistic model. 

 

P(D,;α) =  P(D|)P(|α)        (1) 

 

Thus, under Bayesian statistics point of view, both the dataset D and the parameter  are considered random 

variables. One can, therefore, apply Bayes’ theorem to compute the posterior distribution of the parameter  as 

follows. 

 

P(|D;α) = 
P D θ P(|α)

P(D|α)
             (2) 

 

It is intuitive that one can again model α as to be generated by some distribution having possibly unknown 

parameters. This leads to a possibility to create a hierarchical Bayesian model. Such a probabilistic model represents 

the underlying generative process of how the dataset D has been produced, given the de ned distributions of the 

variables in the model. All parameters in a probabilistic model except hyperparameters and variables representing 

observed data are called hidden variables. 

 

By integrating both sides of Eq. 2 with respect to , the marginal distribution P(D|α) of the dataset D can be 

represented in terms of the likelihood function P(D|) and the prior distribution P(|α). 

 

P(D|α) =  P D θ P θ α dθ
θ

                        (3) 

 

In addition to the computation of the posterior distribution of the parameters in the model for explaining the 

observed data in the dataset D, one can also derive a prediction for a new coming observation. Specifically, the joint 

probability of a new observation xnew and the parameter  given the observed data in the dataset D is computed as 

follows. 

P(xnew ,|D;α) = P(xnew|)P(|D;α) (4) 

 

By integrating over the parameter , the probability of a new data point given the previous ones is computed. 

 

P(xnew|D;α) =  P xnew  θ P θ D; α dθ
θ

          (5) 

2.1. Conjugate Prior 

 

There are two leaning problems regarding a probabilistic model presented in Eq. 1 for an observed dataset D. These 

include the estimation of the parameter  to best explain the underlying patterns existing in the dataset (Eq. 2), and 

the prediction for a new observation (Eq. 5). Bayesian approach computes the posterior distribution of parameters 

and uses some statistics (e.g., the expectation and variance) of the derived distribution as the estimation quality or 

con dence of the parameters. Therefore, it is required to marginalize (i.e., to compute the summation or the integral) 

over the whole of parameter space, which often becomes quite di cult in terms of computation. The common 

strategy to get the computation tractable and also to build a framework for prediction is to employ conjugate prior 

distributions. A prob-ability distribution P(|α ) is called conjugate prior of a likelihood function P(D|) if the 

posterior distribution P(|D;α) has the same functional form as the prior. A detailed discussion of the existence of a 

prior distribution for a likelihood function built from a probability density in exponential family probability 

distributions is presented in [16, Section 2.4]. 
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In a probabilistic model, the likelihood function represents our view about the observed dataset (i.e., from which 

distribution the dataset is generated), which is xed under the application. Therefore, one tries to seek a prior 

distribution that is conjugate to the de ned likelihood. For a further explanation, we represent the posterior 

distribution of the probabilistic model in Eq. 1 as follows. 

P(|D;α) = 
P D θ P(θ|α)

 P D θ P θ α dθθ

          (6) 

 

The underlying principle of using a conjugate prior to the likelihood is that it makes the calculation of the integral in 

the denominator (i.e., the marginal distribution of the dataset) become simple. In particular, each product 

P(D|)P(|α) returns an expression of the same form as of the prior distribution with the information from the dataset 

D added to the hyperparameter α. Therefore, the denominator is thus the integral of the unnormalized density 

function of the updated prior distribution over the parameter space. Consequently, this integral results in an 

inversion of the normalizing constant of the updated prior distribution with respect to the dataset D. As an example, 

we consider in the following the conjugacy between the Dirichlet distribution and the Multinomial distribution, 

which is used later in this paper for explaining examples and applications. 

 

Multinomial variable: 

A random variable X that can take one of K categorical values, so that DOM(X) = {1, …, K}, is called a 

multinomial variable. If we denote the probability that “X has the value k” by a parameter  k (k≥ 0 and  θk =K
k=1

1), then the probability distribution of X is given as follows [17]. 

P(X|1, 2, …, k) =  θk
δ(X,k)K

k=1   where  (X,k) =  
1  if X = k
0  if X ≠ k

      (7) 

 

Consider a dataset D = (x1, x2, …, xN} that is generated by taking N independent trials on the multinomial variable X 

defined by = (1, 2, …, K) then the likelihood function of the dataset is 

 

P(D|) =  P xi θ =    θk
δ(xi ,k)K

k=1 = N
i=1  θ

k

 δ(xi ,k)N
i−1 =   θk

ckK
k=1

K
k=1

N
i=1     (8) 

where ck is the number of data points in the dataset that has the value k. The likelihood function of a dataset 

generated as described is the unnormalized Multinomial probability distribution [18, 16]. 

 

Dirichlet distribution: 

To complete a probabilistic model for the Multinomial dataset D as described, we need to specify a prior distribution 

for the multinomial parameter . The Dirichlet probability distribution is selected because it is conjugate prior to the 

Multinomial distribution. The Dirichlet distribution is defined as 

Dirichlet(|α) = 
( αk )K

k=1

 (αk )K
k =1

 θk

αk−1K
k=1         (9) 

where α = (α1, α2, …, αK) is a K-dimensional hyperparameter and each αk is a positive real number indicating the 

prior belief that one puts on the corresponding component k of the multinomial parameter . 

 

Dirichlet distribution has a number of interesting properties. For example, if all components of the hyperparameter α 

are assigned a small value (i.e.,  αk  → 0K
k=1 ) then the distribution can be simpli ed as in Eq. 10, which leads to a 

phenomenon that the s with many zero-components are heavily favored. 

Dirichlet(|α) α θk

αk−1
α 

1

θk

K
k=1

K
k=1                    (10) 

 

The expectation of the Dirichlet distribution, i.e., the expectation of a component k in , is computed as follows. 

E[k|α] =
αk

α0
    where    α0 =  αk

K
k=1      (11) 

 

Posterior distribution: 

Having the likelihood function (Eq. 8) and the Dirichlet prior distribution (Eq. 10) described, the posterior 

distribution of the parameter  (Eq. 6) is now computed by 

P(|D;α) = 
 θ

k

ck  θ
k

αk−1K
k =1

K
k =1

  θ
k

ck  θ
k

αk−1K
k=1

K
k =1θ dθ

=  
 θ

k

ck +αk−1K
k =1

  θ
k

ck +αk−1
dθK

k=1θ

           (12) 

By multiplying the denominator of the above equation with 1 represented by 
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 (ck + αk)K
k=1 ( ck + αk)K

k=1

( ck + αk)K
k=1  (ck + αk)K

k=1

 

the denominator becomes 

  𝜃𝑘
𝑐𝑘+𝛼𝑘−1

𝑑𝜃

𝐾

𝑘=1

=
𝜃

 (𝑐𝑘 + 𝛼𝑘)𝐾
𝑘=1 ( 𝑐𝑘 + 𝛼𝑘)𝐾

𝑘=1

( 𝑐𝑘 + 𝛼𝑘)𝐾
𝑘=1  (𝑐𝑘 + 𝛼𝑘)𝐾

𝑘=1

  𝜃𝑘
𝑐𝑘+𝛼𝑘−1

𝑑𝜃

𝐾

𝑘=1𝜃

=
 (𝑐𝑘 + 𝛼𝑘)𝐾

𝑘=1

( 𝑐𝑘 + 𝛼𝑘)𝐾
𝑘=1

 
( c𝑘 + 𝛼𝑘)𝐾

𝑘=1

 (𝑐𝑘 + 𝛼𝑘)𝐾
𝑘=1

 𝜃𝑘
𝑐𝑘+𝛼𝑘−1

𝑑𝜃

𝐾

𝑘=1

=
 (𝑐𝑘 + 𝛼𝑘)𝐾

𝑘=1

( 𝑐𝑘 + 𝛼𝑘)𝐾
𝑘=1𝜃

 

                                                                                                           (13) 

Finally, the posterior distribution of  is 

P(|D;α) = 
( 𝑐𝑘+𝛼𝑘 )𝐾

𝑘=1

 (𝑐𝑘+𝛼𝑘 )𝐾
𝑘=1

 𝜃𝑘
𝑐𝑘+𝛼𝑘−1

= 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝜃|𝑐 + 𝛼)𝐾
𝑘=1         (14) 

where c = (c1, c2,…, cK). Thus, the posterior distribution of the parameter  is the Dirichlet distribution where the 

information from the dataset (i.e., the count of the number of data points for each category) is added to the 

hyperparameter α. One can now, for example, estimate each component of  using the expectation of the Dirichlet 

distribution. 

E[𝜃𝑘 |𝑐 + 𝛼] = 
𝑐𝑘+𝛼𝑘

𝛼0
     where    𝛼0 =  𝑐𝑘 + 𝛼𝑘         (15)𝐾

𝑘=1  

 

Graphical Model 

One of the challenges in presenting a probabilistic model is that it is hard to explain the joint distribution of all 

random variables in the model. This is because of a huge number of combinations of the values of variables in the 

model. Even in the simplest case where the model has N binary valued random variables, the joint distribution 

requires a speci cation of 2
N
 numbers - the probabilities of 2

N
 different assignments of the values of variables X1 ,…, 

XN . Graphical model is a language that uses graph notations for intuitively representing a probabilistic model in a 

compact way and for interpreting the underlying generative process of how the observations in a dataset D are 

generated from the model. The main idea of graphical model is to exploit the independent of variables to factor the 

representation of the model into modular components [19]. 

 

There are two main classes of graphical models, which are called Bayesian networks and Markov networks. A 

Bayesian network is represented by a directed graph and hence it is also called directed graphical model. A Markov 

network is represented by an undirected graph and is called Markov random elds (MRFs) or undirected graphical 

model. In the following paragraph, we brie y give some basics of a Bayesian network that will be employed to 

develop generative probabilistic models. For detailed discussions of graphical models, we refer the reader to [16, 20, 

19, 21]. 

 

A graphical model for a Bayesian network representing the joint distribution P (X1, X2,…, XN ) of random variables 

X1, …, XN is a directed acyclic graph G. Nodes of the graph are random variables in the model. Each directed edge 

is created to connect two variables that have a conditional (probability) distribution relationship in the factorization 

of the joint distribution. Specifically, if there is a conditional distribution P(Xk|PaXk ) in the factorization of the joint 

distribution P(X1, X2,…, XN ) then for each variable XiPaXk there is a directed edge connecting Xi to Xk. Variables 

in PaXk are called parent variables of Xk. Intuitively, each node Xk in a graphical model represents the conditional 

distribution of Xk given its parent variables. An important property of a graphical model is that it encodes the local 

Markov assumption for random variables in the graph. That means each variable Xk in the graph is conditionally 

independent of its non-descendants given its parent variables [19]. Figure 1 shows a graphical model presenting a 

probabilistic model consisting of four random variables X, Y, Z and  where X and Y are conditionally independent 

given Z, and Z depends on . 

 

 

 

 

 

 

Figure 1:- A graphical model representing the joint distribution of X; Y; Z; and factorized based on the 

(assumption) dependency between variables:  P (X, Y, Z; ) = (X|Z)P(Y|Z)P(Z|)P(). 

 Z 

Y 

X P(X, Y, Z, ) =  

P(X|Z)P(Y|Z)P(Z|)P() 
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A graphical model can be represented in a more compact way by using plate notations in which several random 

variables of the same kind are shown in the graph by only one representative node with an index and that node is 

covered by a box labeled with a number indicating the cardinality of such variables [16, Chapter 8]. Another 

notation used in graphical model is that nodes represented for observed random variables (i.e., variables encode the 

observed features of data points in a dataset) are shaded. 

 

As an example, we consider the joint distribution shown in Eq. 16 that represents a generative probabilistic model 

for a dataset D = {x1, x2, ---,  xN}. Here we assume that data points xi are generated by P(xi|) and the prior 

distribution for parameter has some hyperparameter . The corresponding graphical models are shown in Figure 2. 

P(x1, x2, …, xN) = P(;α) 𝑃(𝑥𝑖|𝜃)𝑁
𝑖=1           (16) 

 

 

 

 

                                       α                                                                   α 

 

 

 

 

 

 

 

 

Figure 2:- Two graphical models representing the same probabilistic generative process for a dataset D. The 

graphical model on the right is presented using plate notations. 

 

Gibbs Sampling for Posterior Estimation: 

Computing the posterior distribution of hidden variables, given a dataset and the hyperparameters of the prior 

distribution of hidden parameters, in a probabilistic model is the main goal for explaining the observed data in the 

context described by the model. Such a computation is often intractable because of the marginalization, as described 

above. Note that the integral or summation appears not only in the denominator of Eq. 6 but also in the likelihood 

function P(D|) if one is interested in only some hidden variables and, therefore, needs to integrate out the others. 

 

There are three popular strategies to approximate the posterior distribution of a probabilistic model. These include 

the sampling based on Markov Chain Monte Carlo [22], Expectation Maximization (EM), and variational parameter 

methods (optimizationbased). Gibbs sampling [23], a special form of the Metropolis-Hastings algorithm [24], is 

discussed in this section as we will employ Gibbs sampling in this tutorial. For further details of the EM and 

variational parameter methods, we refer the reader to [25, 26]. 

 

Monte Carlo method: 
The underlying idea for deriving the posterior distribution of hidden variables is that if such a probability 

distribution is computed (or is approximated in most of the cases) then one can use typical statistics such as the 

expectation and the variance of the distribution to summarize the values of hidden variables. Monte Carlo method is 

based on the idea that one can learn a complex distribution by repeatedly drawing samples from it and empirically 

summarizing those samples. For example, the expectation of the posterior distribution de ned in Eq. 6 is analytically 

derived from 

E[|D;α] =  𝜃𝑃 𝜃 𝐷; 𝛼 𝑑𝜃               (17)
𝜃

 

 

However, if it is able to produce a large enough number of samples 
(1)

, 
(2)

, …, 
(N)

 from P(|D;α) then one can 

approximate the expectation of with respect to the given dataset D and the hyperparameter by computing the average 

of such samples. 

 

E[|D;α] =  𝜃𝑃 𝜃 𝐷; 𝛼 𝑑𝜃 ≈
1

𝑁
 𝜃𝑖𝑁

𝑖=1                (18)
𝜃

 

The variance of  is therefore derived from the approximated expectation. 

 

X1 X2 

 

XN 

 

X1 

 

 
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Var(|D;α) = 𝐸 𝜃2 𝐷; 𝛼 − 𝐸 𝜃 𝐷; 𝛼 2      (19) 

 

Gibbs Sampling: 
It is clear that in order to employ the Monte Carlo strategy to summarize a probability distribution one needs to nd a 

method to correctly draw samples from that distribution. In our scenario of approximating the posterior distribution 

P(|D;α) of hidden variables, we need to draw 
(1)

, 
(2)

, …, 
(N)

 from P(|D;α). Gibbs sampling is one of the 

algorithms designed to do so. The basic idea of Gibbs sampling is that it produces a Markov chain of states of 

hidden variables. The value of a variable at each state is drawn conditionally on the values of other variables. 

Assume that we need to draw samples from a distribution P(|D;α) where  consists of K hidden variables ={1, 

2,…, K), then the general schema of a Gibbs sampling for that model is as follows.  

 

Algorithm:  

A genneral Gibbs sampling algorithm 

1. /* State intialization */ 

2. 
(0)
1

(0)
, 2

(0)
,.., K

(0)
; 

3. /* Markov chain */ 

4. For each t = 1..T do 

5. For each i = 1..K do 

6. i
(t+1)

 P(i|1
(t+1)

, 2
(t+1)

,…, i-1
(t+1)

, i+1
(t)

,…, K
(t)

, D;α) 

 

It is important to note that samples drawn frome a Gibbs sampling algorithm only get to a steady state or converge to 

the real distribution after a number of iteration called Burn-in stage [23]. Therefore, one needs to discard the results 

obtained from the first Burn-in steps before collecting samples for summarizing the distribution. 

 

LDA probabilistic model: 

LDA is a probabilistic model originally proposed for extracting semantic topics from a corpus of documents. The 

key idea of the model is that it considers a document as a mixture of topics, a topic being a mixture of terms, and 

topics are shared among documents [3, 27]. Particularly, given a corpus of documents D = {d1, d2, ,,,, d|D|} built from 

a vocabulary set consisting of |V| terms, V = {w1, w2, …, w|V|}, LDA considers words occurring in any document d 

in the corpus to be independently sampled from a common number of topics Z = {z1, z2, …, z|Z|}. One can, therefore, 

assume that the topics Z are shared among documents. Another assumption employed in LDA is that documents as 

well as words within each document are considered to be exchangeable, respectively. To learn the mixture of topics 

in a document and the mixture of terms in a topic, a probabilistic framework was introduced, which works as 

follows. 

 

The mixture of terms in a topic z  Z is modeled as a multinomial dis-tribution speci ed by a multinomial parameter 

z = {z,w1 , z,w2 , …, z,w|V|}. Each z,w is the probability that term w belongs to topic z, denoted P(w|z), such that 

 𝑃(𝑤|𝑤∈𝑉 wz) = 1. The mixture of topics in a document d, usually referred to as the topic proportion of the 

document, is also modeled as a multinomial parameter  d = {d,z1 , d,z2 ,…, d,z|Z|}. Each  d,z indicates the 

likelihood of topic z in document d, denoted P(z|d), such that  𝑃(𝑧|𝑧∈𝑍 d) = 1.  

 

Obviously, if one knows th distribution of term in topic z and the topic proportion of document d beforehand, then 

the probability that a word w in d belongs to topic z would be 

P(w, z|z , d) = P(z|d)P(w|z) = d,z z,w (20) 

 

However, generally, we are given a corpus of documents and asked to nd some topics in these documents without 

having knowledge about the distribution of terms in topics and the proportion of topics in documents. In other 

words, not only the topic that a word should be assigned to but also the distribution of terms in any topic (z) and the 

topic proportion of any document (d) are hidden. One therefore has to learn such hidden variables from the 

occurrences of terms in the corpus. 

 

Suppose each of the two variables z and d is generated by a probability distribution, denoted P(z| ) and P(d|α), 

respectively, where α and  are the hyperparameters of the corresponding distribution; then the joint probability of 

word w and topic z in document d is 
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P(w, z, z, d|α,) = P(z|)P(d|α)P(z|d)P(w|z) (21) 

 

and the joint distribution of all words and topics in document d becomes 

P(d, z, , d|α,) =  𝑃(
𝑧

|)𝑃(𝑑|𝛼)𝑧∈𝑍  𝑃(𝑧𝑧 |𝜃𝑑)𝑃(𝑤|∅𝑧𝑤 )𝑤∈𝑑       (22) 

where = {z}, z = {zw}, w  d. Each zw z is a topic index (i.e., 1..|Z|) indicating the topic assignment of word w in 

document d. Finally, the joint distribution of words and topics in the entire corpus, which is referred to as the joint 

distribution of the LDA model, is 

P(D, z, , |α,) =  𝑃(
𝑧

|) 𝑃(𝑑 |𝛼𝑑∈𝑑 )𝑧∈𝑍  𝑃(𝑧𝑤 |𝜃𝑑)𝑃(𝑤|∅𝑧𝑤 )𝑤∈𝑑        (23) 

where = {d}, d  D. 

Substituting P(zw|d) and P(w|zw) in Eq. 23 by the respective multinomial components, i.e., d,zw of the topic 

proportion d, and zw,w of the distribution zw of terms in topic zw, we have 

P(D, z, , |α,) =  𝑃(
𝑧

|) 𝑃(𝑑 |𝛼𝑑∈𝑑 )𝑧∈𝑍  𝜃𝑑,𝑧𝑤∅𝑧𝑤 ,𝑤)    (24)𝑤∈𝑑  

 

To complete the model, one needs to specify the probability distributions that generate samples of the distribution z 

of terms in a topic, and the topic proportion d of a document. As presented above, both z and d are modeled as 

multinomial parameters. Therefore, the Dirichlet distribution is used as prior of z and d. This is due to the 

conjugacy between the Dirichlet and Multinomial distributions [16]. 

 

Thus, one can now present the joint distribution of the LDA model in a more specific way as 

P(D, z, , |α,) =  𝐷𝑖𝑟(
𝑧
|) 𝐷𝑖𝑟(𝑑|𝛼𝑑∈𝑑 )𝑧∈𝑍  𝜃𝑑,𝑧𝑤∅𝑧𝑤,𝑤

      (25)𝑤∈𝑑  

where α = (α1, α2, …, α|Z|) and   = (1, 2, …, |V|) are the hyperparameters of the Dirichlet distributions, which 

present prior knowledge for the topic proportion of a document and the distribution of terms in a topic respectively.  

Figure 3 shows the graphical models explaining three main joint distributions in the LDA model. (a) and (b) are the 

graphical models of Eq. 21 and Eq. 22, respectively; (c) is the complete graphical model of LDA represented by Eq. 

23. 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                             (b)                                             (c) 

Figure 3:- Graphical models representing selected joint distributions in the LDA model. (a) is the joint distribution 

of word w in topic z of document d; (b) is the joint distribution of all words and topics in document d; (c) is the 

complete graphical model of LDA. 

 

Generative process: 

Having the graphical model shown in Figure 3(c), the generative process of the LDA model is as follows. 

Sample the distribution of term in topic 

 = {z Dir|V|()}, zZ 

For each document d: 

sample topic proportion d Dir|Z|(α) 

 

For each word w in document d: 

1. sample a topic index z  Mult(d) 

2. sample term w in th selected topic z, i.e., w  Mult(z) 

d 

z 

w z 

d 

z 

w z 

d 

z 

w z 
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In the following section, the detailed steps to derive the Gibbs sampling rules for estimating the distributions of 

hidden variables in LDA are presented. 

 

Gibbs Sampling for LDA: 

There are hidden variables represented by z (topic assignments),  (distributions of terms in topics), and  (topic 

proportions of documents) in the LDA model. The posterior distribution of such variables is analytically obtained 

using Bayes’ theorem as in Eq. 26. This distribution is, however, intractable to compute due to the marginalization 

over the hidden variables [3]. 

P(z, , |D; α, ) = 
𝑃(𝐷,𝑧,∅,𝜃 |𝛼,𝛽)

𝑃(𝐷|𝛼,𝛽)
=  

𝑃(𝐷,𝑧,∅,𝜃|𝛼,𝛽)

   𝑃(𝐷,𝑧,∅,𝜃 |𝛼,𝛽)𝑑𝜃𝑑∅𝑧∈𝑍𝜃∅

       (26) 

 

By applying sampling, the posterior distribution is approximated through the samples of the joint distribution as 

shown in Eq. 27. 

P(z, , |D; α, ) = 
𝑃 𝐷,𝑧,∅,𝜃  𝛼,𝛽 

𝑃 𝐷 𝛼,𝛽 
𝛼𝑃(𝐷, 𝑧,, |𝛼,       (27) 

 

Generally, implementing a Gibbs sampling algorithm for all variables in the LDA model is straightforward. 

However, it is ine cient due to the sam-pling for the multinomial parameters  and , which can be computed from 

the topic assignment variables z. In other words, it is better to make use of the conjugacy between the Dirichlet and 

the Multinomial distributions to integrate out the multinomial parameters  and  in Eq. 27 and build a collapsed 

Gibbs sampling for z from which  and  are then derived. In the following, the detailed steps to integrate out  and 

 are given. 

 

First, from Eq. 27, the joint distribution of the topic assignments of all words in the corpus is obtained by 

P(z|D; α,) =   𝑃 𝑧, ∅, 𝜃 𝐷;  𝛼, 𝛽 𝑑𝜃𝑑∅ 𝛼
𝜃∅

  𝑃 𝐷, 𝑧, ∅, 𝜃 𝛼, 𝛽 𝑑𝜃𝑑∅ 
𝜃

      (28)
∅

 

It is noted that the second term in Eq. 23 can be represented as 

 𝑃(𝑑|𝛼

𝑑∈𝑑

)  𝑃(𝑧𝑤 |𝜃𝑑)𝑃(𝑤|∅𝑧𝑤 )

𝑤∈𝑑

=   𝑃(𝑤|∅𝑧𝑤)

𝑤∈𝑑

 𝑃(𝑑 |𝛼

𝑑∈𝑑

)

𝑑∈𝐷

 𝑃 𝑧𝑤  𝜃𝑑 

𝑤∈𝑑

 

                                                                                                                                  (29) 

 

Therefore, the joint distribution of the LDA model (Eq. 23) can be rewritten as follows. 

𝑃 𝐷, 𝑧,,  𝛼;  =  𝑃(∅𝑧 |𝛽) ×𝑧∈𝑍   𝑃(𝑤|∅𝑧𝑤)𝑤∈𝑑  𝑃(𝑑 |𝛼𝑑∈𝑑 )d∈𝐷  𝑃 𝑧𝑤  𝜃𝑑 𝑤∈𝑑    (30) 

 

Summary: 

We have presented a tutorial for people who are new to the eld of applying generative probabilistic modeling 

approach to detecting hidden structures in the data. Basic ideas and concepts of Bayesian statistics were rst recalled. 

We then particularly motivated the Gibbs sampling method for estimating the posterior distribution of a probabilistic 

model. LDA, the most well-known probabilistic model, was studied and explained in detail. In terms of applications, 

LDA was initially designed for the extraction of topics from a corpus of documents. However, it can be employed to 

cluster observations in a dataset from various applications, often applying these three assumptions: 

1. observations are organized in groups (e.g., a group is a document); 

2. it is desirable to share clusters among groups (e.g., topics are shared among documents); 

3. both groups as well as observations in each group are exchangeable [27]. Based on such principles, one can 

 

Develop more complex probabilistic models for applications where each data point is described by multiple features. 

That is, for each observation, more than one feature needs to be jointly considered to compute the likelihood of the 

observation in a cluster. 
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