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This material supplements article Hand muscles attachments: A Geometrical model and serves
as dataset documentation as well. It summarizes data collected and describes in detail methods
used. The dataset consists of two separate datasets: morphological and morphometric and dataset
of positions of muscle lines origins, insertions and CSAs points. Methods described include Matlab
code used to calculate lines end- and via-points and details on extractions of origin, insertion and
CSA surfaces.
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1 Morphological and morphometric dataset based on dis-
sections

The morphological and morphometric dataset consist of morphological drawings (Figure 1 to 4)
and tables 1 to 4 of morphometric dimensions available in xlsx files.

In Figure 1 trajectories and attachments of short flexors of thenar and hypothenar groups are
shown, the abductor pollicis brevis is in the most lateral position of the thenar group and covers
the opponens pollicis muscle. The adductor pollicis is the deepest and the most medial muscle of
this group. The two heads (superficial and deep) of the flexor pollicis brevis are located at the
centre of the group, separated by the tendon of flexor pollicis longus descending from the forearm.

In Figure 2 the origins, insertions and CSAs of the opponens pollicis and opponens digiti
minimi are depicted. In the hypothenar group, the abductor digiti minimi is the most superficial
and medial muscle. Flexor digiti minimi brevis is located at the centre of the group and covers
the narrower belly of the opponens digiti minimi.

Figure 3 displays the long forearm muscles producing flexion at the wrist joint: the flexor carpi
radialis and flexor carpi ulnaris. Flexor carpi ulnaris is the only muscle attached to the proximal
row of carpal bones.

Figure 5 shows dimension of carpals bones complex measured based on MRI scan.
Table 1 summarizes the intrinsic muscles of the hand – four muscles of the thenar and six of the

hypothenar group. Table 2 shows the central group of hand muscles – four dorsal interossei, three
palmar interossei and four lumbricales. The origin areas of the dorsal interossei muscles are not
clearly distinguishable, their fibres are located in narrow spaces between the metacarpal bones.
Table 3 presents a selection of flexors and extensors from the extrinsic group of hand muscles.
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Table 4 summarizes lengths of finger bones.
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Table 1: dimensions of intrinsic hand muscle thenar and hypothenar group

See table1.xlsx

Table 2: dimensions of intrinsic hand muscle central group

See table2.xlsx

Table 3: dimensions of extrinsic hand muscles selected flexors and extensors

See table3.xlsx

Table 4: Lengths of finger bones

See table8.xlsx
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Figure 1: Origins and insertions of two short flexors of the thenar and hypothenar muscle group.
Notes: L – muscle length, P – pisiform bone, H – hamate bone, C – capitate bone, Sc – scaphoid
bone, o – muscle origin, i – muscle insertion, SPF – superficial muscle head, PROF – deep muscle
head.
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Figure 2: Origins and insertions of two muscles opposing the thumb (opponens pollicis) and
the little finger (opponens digiti minimi). Notes: H – hamate bone, Sc – scaphoid bone, Tr –
triquetrum bone, 1 Mt – first metacarpal bone, o – muscle origin, i – muscle insertion, L – muscle
length.
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Figure 3: Origins and insertions of two extrinsic hand muscles – flexor pollicis longus and flexor
carpi ulnaris. Notes: L – muscle length, t – tendon, o – origin, i – insertion, P – pisiform bone,
CFT – common flexor tendon, Im – interosseous membrane, R – radius, U – ulna, Dp – distal
phalanx.
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Figure 4: Measurements of length and biological cross section area for four lumbricales, tendons
in green
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Figure 5: Dimensions of carpal bones complex, A = 37.10mm, B = 55.83mm

8



2 Placing muscle action lines

After obtaining the muscle origin surface, optional CSA surfaces and insertion surface, placing
muscle action lines was undertaken in two stages:

(1) placing the required number of end points on origin and insertion surfaces and the same
number of via-points on CSA surfaces [2, 5, 7] followed by

(2) pairing these points in order to specify individual action lines.

For the first task, modified k-means algorithm was used. Given a finite set of points ω ⊂ RN

and natural number k original k-means method [4] iteratively tries to approximate solution to
k-partition problem. That is to partition set ω into k classes ω1, . . . ωk each corresponding with
point ci ∈ RN , i = 1 . . . k called centroid, in such way that the expression

k∑
i=0

∑
x∈ωi

‖ci − x‖2, (1)

is minimal. In this setting, a set of centres of gravity of the triangles in the mesh is interpreted as
the set ω. As the method is iterative it requires choosing initial set of centroids, in this case, the
initial points are placed in centroids of largest triangles. The basic k-means method was modified
in two ways. First, by ensuring that each centroid is always a point from ω by placing it in the
closest point in ω after each iteration. Second, assigning a weight w(x) equal to the surface volume
of the corresponding triangle to each point x ∈ ω The generalized algorithm iteratively minimizes
expression [1]

k∑
i=0

∑
x∈ωi

w(x)‖ci − x‖2 (2)

This ensures that the partition does not depend on density of points of the mesh, which might be
affected by data acquisition process. Moreover, it ensures that the surface of the muscle attachment
or CSA is divided between muscle elements so that the variation of surface volumes assigned to
elements is minimal. Figure 6 (A) illustrates this partitioning, with triangles coloured according
to the centroid their COG is assigned to.

Muscle elements’ end or via-points were calculated separately for each surface. In order to
place the muscle elements, corresponding points were connected so that lines of action neither
intersect nor are entangled. Our approach was based on Euclidean matching problem in two
dimensions. It can be proven that the minimality of total pairing distance ensures that no two
line segments connecting paired points intersect and vice versa. This can be extrapolated to
three dimensions. Nonetheless, It does not guarantee that action lines do not run over each other
without intersecting. Fortunately, minimal matching still

provides good results in which virtual muscle elements are not tangled with each other. The
minimal pairing was obtained by Hungarian algorithm [3], which computes minimal matching in
weighted bipartite graph. In our study, we were concerned with complete bipartite graph on two
sets of centroids on consecutive surfaces. Euclidean distances were taken as weights of the edges.
This is complete bipartite graph, hence it contains perfect matching and minimal matching always
exists [3].

Every such point was calculated in LCS of the corresponding bone, naturally respecting the
real anatomy. The origin location and also the orientation of axes of the considered LCS are sum-
marized in Table 5 and depicted in Figures 8, 9 and 10, based on previously published parameters
[6].
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Figure 6: Adductor pollicis caput obliquum origin with five muscle elements endpoints and surfaces
assigned to them coloured (A), connectivity of muscle origin and CSA surface with three muscle
elements (B), connectivity of origin, CSA and insertion surface (C).
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3 Dataset of positions of muscle lines origins, insertions and
CSAs

The exact positions of muscle lines origins, insertions and CSAs dataset divided into archive
files muscle paths hand.zip, muscle paths shoulder.zip, muscle paths shoulder deltoideus.
zip, ligament paths.zip contains:

� all the attachment and intermediate surfaces extracted from MRI in binary stl format,

� calculated lines’ end and via points in plain text csv files denoted by extension “.asc”

Data for individual muscles are organized into corresponding folders. Each folder contains:

� origin and insertion surfaces in stl files denoted by “O” and “I” in name respectively

� optionally intermediate CSA surfaces denoted by “T” or “V” resp. “C” in name, to specify
connectivity surfaces are in order O-I, O-T-I or O-V-C-I

Points’ order specifies their connectivity calculated based on Euclidean matching problem i.e. first
points in abductor digiti minimi O 6 cntrds.asc is paired with first point in abductor digiti
minimi T 6 cntrds.asc etc. Coordinates are in centimeters, data for individual axes are sorted
naturally X, Y , Z. Coordinate system origin is illustrated in Figure 7.
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Figure 7: Coordinate system of MRI scans
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Additionally, positions of points for some muscles transformed to local coordinate systems of
appropriate bones are summarized in tables 5 to 6. Coordinate systems for individual segments
can be found in Table 5 and Figures 8, 9 and 10.

Table 5: The LCS of individual segments – position of origin, axes orientation. Notes: COG –
center of gravity; CSA – cross section area.

LCS Position of origin Axes orientation
X Y Z

Carpals COG of segment palmar proximal lateral
Finger phalanx COG of segment palmar proximal lateral

Humerus centre of humeral head lateral proximal posterior

Ulna
trochlear notch,
on the right edge

medial distal posterior

Radius
in the centre of CSA of bone,
in the level of radial tuberosity

proximal medial posterior

Table 6: origins/insertions intrinsic hand muscles thenar and hypothenar group

See table5.xlsx

Table 7: origins/insertions intrinsic hand muscles central group

See table6.xlsx

Table 8: origins/insertions extrinsic hand muscles selected flexors and extensors

See table7.xlsx
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Figure 8: The local coordinate system of carpals and individual bones of the right hand. From
the left: palmar view, pinky side view (medial), thumb side view (lateral). Notes: violet –
distal phalanx, red – middle (intermediate) phalanx, green – proximal phalanx, blue – metacarpal
phalanx, black – carpals.

Figure 9: The local coordinate system of humerus. From the left: front view, right-side view, back
view.

Figure 10: The local coordinate systems of ulna and radius. From the left: back view, right-side
view, front view (transparent view of humerus and radius). Notes: black – ulna, blue – radius
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4 Matlab code for calculating lines end and via points

Matlab code has single entry point main.m where you can specify input file, output folder and
whether you want do display figures with plots of results. The input file is in .yaml format and
contains:

� Name: name of the muscle to be used for output

� K: number of lines to use, can be a list

� Surfs: list of surfaces in desired order of connection saved as stl files, all with common
coordinate system

Example of input file is included, see abductor digiti minimi.yaml.
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