
Modelling, simulation, and planning for the
MoleMOD system

Michaela Brejchová1, Miroslav Kulich2[0000−0002−0997−5889], Jan Petrš3, and
Libor Přeučil2

1 Faculty of Electrical Engineering
Czech Technical University in Prague, Prague, Czech Republic

brejcmi3@fel.cvut.cz
2 Czech Institute of Informatics, Robotics, and Cybernetics,

Czech Technical University in Prague, Prague, Czech Republic
kulich@cvut.cz, preucil@cvut.cz

http://imr.ciir.cvut.cz
3 Faculty of Architecture

Czech Technical University in Prague, Prague, Czech Republic
petrjan@fa.cvut.cz

+

Abstract. MoleMOD is a heterogeneous self-reconfigurable modular
robotic system to be employed in architecture and civil engineering. In
this paper we present two components of the MoleMOD infrastructure -
a test environment and a planning algorithm. The test environment for
simulation and visualization of active parts as well as passive blocks of
MoleMOD is based on Gazebo - a powerful general-purpose robotic sim-
ulator. The key effort has been put into preparation of realistic models of
passive and active components taking into account their physical char-
acteristics. Moreover, given a starting configuration of the MoleMOD
system and a final configuration an approach to plan collision-free tra-
jectories for a fleet of active parts is introduced.

Keywords: modelling, simulation, planning, self-reconfiguration, mod-
ular robotic systems

1 Introduction

MoleMOD is a unique self-reconfigurable modular robotic system developed at
Czech Technical University in Prague [4,3]. The system is heterogeneous as it
consists of active robots and passive modular building blocks and it is inspired
by colonies like termites, ants or bees, which permanently rebuild and adapt
their “houses” to surroundings and current conditions.

The robots are flexible, can rotate, and are able to connect to the passive
blocks as well as pick up and carry them along a given trajectory. This approach
offers extensive possibilities of reconfiguration and adaption due to separated
mobile and passive units. The two parts separation gave the system its acronym
Mole (animal) + MOD (module). The passive part can be imagined as units

In: Modelling and Simulation for Autonomous Systems (MESAS 2018). Cham:
Springer International Publishing AG, 2019. p. 3-15. ISSN 0302-9743. ISBN

978-3-030-14983-3.

ar
X

iv
:2

00
7.

10
03

6v
1

 [
cs

.R
O

]
 2

0
Ju

l 2
02

0

http://imr.ciir.cvut.cz

2 Michaela Brejchová, Miroslav Kulich, Jan Petrš, and Libor Přeučil

Fig. 1. The MoleMOD system.

of regular 3D lattice, just like individual crystals or voxels, respectively, in a
crystalline lattice or virtual digitized volume.

The active part, as it is now, is further decomposed to three essential parts:
soft/flexible body, revolving heads and a rotator in the centre. The head is pri-
marily used for screwing the passive units to hold together and the secondary
function is to ride over the construction site1. The flexible body allows for the
peristaltic movement, through the trajectories within the passive block conglom-
erate. A secondary function of the body, not least important, is the manipulation
with the blocks, so picking up and carrying. Finally, the rotator allows rotation
of the blocks as is typical for majority of modular robotic systems.

The MoleMOD system is very adaptable and can be used in many various
situations, especially at locations that are not safe for people, or there is a
problem to build – places like deserts, mountains or polar regions, which cannot
be inhabited, but it can be necessary to build there. MoleMOD may not be used
only for building houses, but also for bridges, pylons or research stations.

The system does not need cranes or other external construction machines.
Therefore it is quite easy to transport it to the building site. It will even be
possible to transfer only robots; building modules will be created by a 3D printer
from local materials. This way the system could be used for the colonization of
another planet.

Other uses may be for example temporary constructions. Tribunes for sports
events, such as the Olympic Games or the World Cup races, markets, exhibitions,
festivals, events that last only a few days or weeks. No less important is the
possibility of using the system in case of a disaster. It can be building of bridges
after a flood, shelters for people who have lost their homes due to a catastrophe
and so on. Also, it can be used after a nuclear disaster, when the presence of
humans is not possible because of radiation.

Modelling, simulation, and planning for the MoleMOD system 3

Fig. 2. Structure of the system.

The rest of the paper is organized as follows. Section 2 is dedicated to the
description of the simulation environment for MoleMOD based on the Gazebo
simulator, while the planning approach is presented in Section 3. The final com-
ments and future work are described in Section 4.

2 Simulation environment

This section provides a description of the Gazebo simulator and design of mod-
els (both passive blocks and active parts) for testing the MoleMOD system in
Gazebo. Gazebo is an open-source robotics simulator, which can be used to
design robots, test algorithms and artificial intelligence systems using realistic
scenarios. The simulator offers indoor and outdoor environments with the possi-
bility of setting several properties, such as wind, gravitation, friction and so on.
Gazebo includes multiple physics engines (ODE,Bullet, Simbody and DART), a
library of robot models and environments, several types of sensors and functional
graphical and programmatic interfaces [1].

A simulation environment in Gazebo is described in so called world files,
which include specification of elements such as robots, lights, sensors or static
objects. The files use SDF (Simulation Description Format), an XML format
originally developed for Gazebo.

Model files are similar to world files but contain only specifications for a
model. The model created by this file can be included in a world file, so it is
possible to use one model several times without rewriting the entire code. Also,
there is the online model database.

SDF models can be just simple shapes but also complex robots. Basically, a
model consists of links, joints, sensors, collision objects, visuals and plugins [2].
A link contains the physical properties. It is a body of the model or its part. It
may have many collision and visual elements. A collision element is a geometry
that is used to check collisions. A link can contain many collisions. A visual
element visualize parts of a link. A link can have many visuals or none. A joint
connects two links. Each joint has a parent and a child, an axis of rotation and

4 Michaela Brejchová, Miroslav Kulich, Jan Petrš, and Libor Přeučil

some other properties. A sensor collects data from the world and these are then
used by plugins.

2.1 Modelling passive blocks

As passive blocks do not move, only their shape needs to be defined in the form
of a triangular mesh – a collection of triangles. Even simplest blocks, cubes
with two straight circular tunnels, consist of many triangles, when a precise
approximation is needed, see Fig. 3 (left). We, therefore, assume square-shaped
tunnels for which only a fraction of triangles is needed, Fig.3 (right).

Fig. 3. A cube-shaped block with two tunnels. Precise approximation of a cube-shaped
block with circular tunnels contains 6174 triangular faces (left), while a description of
a block with squared tunnels contains 352 faces.

Triangular meshes can be defined in Collada (Collaborative Design Activity)
files (.dae), which can be created either manually or using some modelling tool
like MeshLab (www.meshlab.net/) or Blender (www.blender.org). This can be
imported into a world file similarly to Listing 1.1.

<sdf version ="1.4" >

<world name=" default">

<include >

<uri >model ://sun </uri >

</include >

<include >

<uri >model :// ground_plane </uri >

</include >

<model name=" my_mesh">

<pose >0 0 .2 0 0 0</pose >

<link name=’tunnel ’>

<visual name=’visual ’>

www.meshlab.net/
www.blender.org

Modelling, simulation, and planning for the MoleMOD system 5

<transparency >0.5</ transparency >

<geometry >

<mesh >

<uri >file ://1.dae </uri >

<scale >1 1 1</scale >

</mesh >

</geometry >

</visual >

<collision name=’collision ’>

<geometry >

<mesh >

<uri >file ://1.dae </uri >

<scale >1 1 1</scale >

</mesh >

</geometry >

</collision >

</link >

</model >

</world >

</sdf >

Listing 1.1. A world file with mesh importing

2.2 Modelling active parts

Active parts – robots – consist of three components: a soft body, revolving heads
and a rotator. Precise moddeling of these will be unnecessarily complex which
will significantly slow down simulation of the whole MoleMOD system. Gazebo
has, moreover, no ways how to simulate soft components. We thus model the
robots making use of components available in Gazebo – links and joints. To de-
scribe the modelling process, we start with a simple model with limited function-
ality and make the model more complex and powerfull subsequently in several
steps.

The basic model The basic model is constructed from two cubes connected by
a prismatic joint, see Fig. 4. The model is limited to move only in one direction
forwards or backwards by expanding and contracting the joint and changing the
frictions of the links.

The forward motion of the model consists of four parts:

1. setting frictions
2. the joint expansion
3. setting frictions
4. the joint contraction

The frictions of the links are set in a model plugin. Before moving itself, it is
necessary to lower the friction of the front cube (the first cube in the direction

6 Michaela Brejchová, Miroslav Kulich, Jan Petrš, and Libor Přeučil

Fig. 4. The basic model

of the movement). For expanding the joint, a positive velocity is set to the joint
in the plugin which leads to movement of the front cube.

The simulator updates in fixed intervals. When a predefined number of it-
erations is done, the plugin changes the sign of the velocity and swaps frictions
higher for the front cube and lower for the back cube. After repeating the same
number of iterations, the joint position is set to the initial (contracted) state.

The rotating model For turning, it is needed to add a revolute joint in the
middle of the model. Because the simulator cannot connect two joints, it is
necessary to add two links and one more prismatic joint. Now the model is made
of two head cubes, two small middle cubes, two prismatic joints and one revolute
joint, Fig. 5.

The first prismatic joint connects the first head cube with the first middle
cube. This cube is joined with the second middle cube by the revolute joint.
These both cubes are immaterial and they are placed on themselves. The second
middle cube is connected to the second cube with the second prismatic joint.

After these changes, the code of the plugin has to be adapted. For translation,
both prismatic joints expand and contract at the same time.

Rotation is similar to translation. The four parts of motion are:

1. setting frictions

2. the joint rotation to the direction, where we want to turn

3. setting frictions

4. the joint rotation to the different direction

Fig. 5. The rotating model

Modelling, simulation, and planning for the MoleMOD system 7

At first, the friction of the cube to be shifted is reduced. The plugin then
sets an input velocity to the revolute joint. This velocity can be positive or
negative depending on the direction of the turn. Finally, frictions are swapped
and velocity with an opposite sign is set to the joint. In contrast to the moving
ahead, this motion stops after one step and will never be repeated, because the
model would spin on the same place.

Translation/rotation controller Unfortunately, the movements of the pre-
vious models are not precise enough. The joints move for the same time, but
it does not guarantee that their final position is the same. To make the motion
more accurate, a simple controller has been designed. The input to the controller
is a position of the joint - the length of the prismatic joint or the angle of the
rotation of the revolute joint.

1 if(position < required_value - accuracy) {

2 setVel(vel);

3 } else if(position > required_value + accuracy) {

4 setVel(-vel);

5 } else {

6 setVel (0.0);

7 }

Listing 1.2. A joint controller

Listing1.2 shows a primitive controller that sets a positive velocity to the
joint, if its position is lower than the required one, negative if larger or zero if it
is in the interval determined by the deviation.

For better control, we can divide the possible positions into more intervals.
The result will be similar to the example above; it will only contain more con-
ditions. The controller used in the simulator is divided into five intervals. At
the beginning of the motion, the joint is set to an initial speed. When the joint
position is close to the required position, the speed is decreased to half the value.

The controller accuracy is 50 micrometres. In this range, the joint is set to
zero velocity. If the position is larger or smaller (depending on the direction of the
motion) the plugin sets a negative speed to the joint. Thanks to this condition
there is no need to set the reverse speed for the contracting, the controller will
solve it. Also, it is not necessary to count updates; one step consists of expanding
to input length and contracting back to the initial state.

The second input for ahead motion is a number of iterations, but in this case,
it is not the number of updates, but the number of calls of the controller (the
total sum of all expanding and contracting). The distance the model moves is
equal to the product of one step length and the number of iterations.

The final model The model with just one revolute joint is not sufficient. To
turn in a tunnel or lift a building unit, at least two revolute joints are needed.
It is also not convenient to use a simple revolute joint, because it can rotate

8 Michaela Brejchová, Miroslav Kulich, Jan Petrš, and Libor Přeučil

Fig. 6. Moving in a tunnel - the final model

only around one axis. With the joints, the robot could rotate sideways or up
and down, but could not do both of these operations. A solution to this problem
is to use another joint. The joint is called universal in the simulator and it can
rotate around two axes.

The final model consists of three main cubes, four prismatic joints, two uni-
versal joints and four little immaterial cubes that are between joints as depicted
in Fig. 7.

Fig. 7. The final model

2.3 Experiments

The models for the simulator have been made; the next step is to test them. In
the previous chapter, the model of the MoleMOD robot was introduced and two
simple moves (forward moving and rotation) were described.

Forward movement works on the same principle that has been described pre-
viously, see Fig. 8. The only difference is that the final model has four prismatic
joints instead of two. The model could use all four joints when moving, but it
is simpler to use only two, for example, the first and the fourth joint. That will
spare us larger changes in the code and also the motion will be more accurate.

The rotation remains practically the same with only two minor changes. The
last model contains two universal joints, so it is needed to decide which joint
will rotate. Then the rotation axis has to be set because the universal joint can
rotate around two axes. An example of rotation is depicted in Fig. 9.

Modelling, simulation, and planning for the MoleMOD system 9

Fig. 8. Forward moving

Fig. 9. Turning right

However, for simulating the work of the system, these two motions are not
sufficient. For the basic version of the planning, it is essential to add lifting
(putting a module on a next block or lifting a module just up), shifting modules
and moves of robots in tunnels.

Robot movement in a straight tunnel is exactly the same as the forward
moving. The length of the motion is adjusted according to the size of the block,
see Fig. 10.

Fig. 10. Moving in the straight tunnel

Turning in a tunnel is more complicated. Because the robot is only a little
bit smaller than the tunnel, it is impossible to turn around at once. It is needed
to combine both types of moves - rotation and translation. This can be achieved
by using a joint controller, see an example in Fig. 11

Lifting is, similarly to turning, a combination of translational and rotational
motion, see Fig. 12.

10 Michaela Brejchová, Miroslav Kulich, Jan Petrš, and Libor Přeučil

Fig. 11. Turning in the module

Fig. 12. Lifting

3 Planning

Planning in MoleMOD is based on the A* algorithm – an informed method for
state-space search. A state is represented by an arrangement of passive blocks
and robots positions. We assuming two-dimensional space, which can be de-
scribed as a two-dimensional matrix, where each cell stores the information
whether the corresponding space is empty, it contains a block, or a block with a
robot.

An action is performed by movement of robots, which can relocate some
blocks. The simplest action is moving from one block to another. The natural
condition for this action is that the position, where the robot moves to, is neigh-
boring to the current robot position, lies inside a given area and also it contains
an empty block. The robot can move to the right, to the left, up and down this
way.

Another type of movement is lifting of a block. In reality, the model expands
and partially inserts into the blocks beside. After that, the robot lifts one block
up and place it on the top of the second one. Finally, the model retracts into
one of the two blocks. To reduce the number of possibilities, we assume that
the robot picks up the block, where it originally was, and remains in the block
after the movement. To the motion can be executed, there has to be a free space
around the moving block.

Putting down is similar to lifting. The robot expands into the block under
its position and then contracts with the top one. For simplicity, the model starts
and finishes again in the moved block.

The last motion that is possible with only one robot is moving a block to the
right or the left. The model is in the block that we want to shift. If the place
next to the block is free and under it, there is another block, the robot expands

Modelling, simulation, and planning for the MoleMOD system 11

to this block. Then it moves the block to the empty position and contracts. The
moving finishes again in the shifted block.

All movements, which were mentioned above, are valid also for the case with
more robots. The advantage is that they can be performed in parallel, so the
entire construction is done faster.

Fig. 13. Cooperation of two robots

Besides, robots can work on a movement together. A block is lifted by one
robot to a certain position, where a second robot takes it and completes the
move as shown in Fig.13.

The planning algorithm applies one action, where cooperation of two robots
is used. When the block is lifted by one robot, it is like stairs, the block moves
not only up but also to a side. In some cases, however, it is necessary to move
just upwards. The movement starts identically as lifting. The robot in the block
expands to the block beside and then elevates the block one position up. The
second robot has to be in the block that lies on the block where the robot
stretched to before. The second robot expands and “catches” the block and the
first robot contracts to the underlying block.

3.1 Cost calculation

The evaluation function of A* has a standard form f(x) = g(x) + h(x), where
g(x) is the cost of the path from the start node to x, and h(x) is a heuristic
function that estimates the cost of the cheapest path from x to the goal.

One possibility of computing a value of the cost g is based on distance of the
start and current states: the distance of a robot or a block moving is equal to
|i′− i|+ |j′− j|, where (i, j) are coordinates of the robot or the robot in the first
state and (i′, j′) are its coordinates in the second state. However, computing the
distance in every step means to find the robot or block that has just been moved,
and calculate how far has shifted. That is senselessly complicated. Because the
number of movements is limited and each has a specific distance that never
changes, it is much simpler to assign a value d to every movement m:

g(xn) = g(xn−1) + d(m).

12 Michaela Brejchová, Miroslav Kulich, Jan Petrš, and Libor Přeučil

While the case of one robot is simple as the robot can perform only one move-
ment in one step, the case with more robots is more complicated. For example,
two robots can shift two blocks at the same time or gradually in two steps. The
second option does not have any advantages, it only prolongs the building, so it
is necessary to obviate it. That can be done by adding 1 to the distance in every
step:

g(xn) = g(xn−1) + d(m) + 1,

where d(m) is the sum of costs of the motions that have been made to get
from the state xn−1 to the state xn.

Counting the distance to the goal state is more difficult. A robot moves to
a block, shifts it, moves to another block, shifts it and so over and over again
until the goal state is reached. It is almost impossible to calculate the real cost.

When a block moves between two states, the cost is equal to |i′− i|+ |j′− j|.
If more blocks are moved, the cost is

∑N
n=1 |i′n − in|+ |j′n − jn|, where N is the

number of blocks that have been moved, and [in, jn] and [i′n, j
′
n] are coordinates

of n-th block before and after the movement.
Costs of robots movement have to be added to the total cost, but it is hard

to reckon them in advance. It depends on the number of robots and blocks and
their positions. Every time a robot moves a block to a correct location,it has to
move to the position next to the block. The minimal cost of the path from a
block to another is one and the total cost of the way between blocks is equal to
nwrong, where nwrong is the number of the blocks in the wrong positions which
do not contain an robot. Therefore, the estimation of the cost of the path from
the current state x to the goal state xG is:

h(x) =

nwrong∑
n=1

(|iGn − in|+ |jGn − jn|) + nwrong − nrobot,

where [iGn, jGn] is a goal position of n-th block.

3.2 Experiments

Several experiments have been performed to demonstrate feasibility and time
complexity of the planning algorithm. Six planning tasks depicted in Fig. 14
were run. In each pair, the upper state represents the initial layout of the blocks
and the state below the goal arrangement. All tasks have been successively solved
for different numbers of robots and for all cases the time of the planning was
measured.

Table 1 shows that the time needed to find a solution, if the system contains
more robots, is significantly higher than the case of one robot. However, the ratio
of blocks and robots is also important. Robots need sufficient amount of space
to move, so in the case that most blocks are occupied, the number of options
is reduced. The other case is, if the quantity of blocks is quite higher than the
number of robots, so the robots have plenty of space for moving. Each robot

Modelling, simulation, and planning for the MoleMOD system 13

Fig. 14. Planning tasks for time measurement

Table 1. Time of planning

time [ms]

1 robot 2 robots 3 robots 4 robots 5 robots 6 robots

task 1 0.24

task 2 1.87 2.02

task 3 3.08 18.23 5.10

task 4 9.00 75.60 117.95 9.91

task 5 15.50 224.10 614.93 332.15 18.63

task 6 35.64 1212.75 4390.14 4000.69 706.35 22.48

can perform some movements, the number of moves depends on the specific
conditions. One more robot adds its motions and combinations of its moves and
moves of others. The larger space and the more blocks it contains, the more
movements will be possible.

4 Conclusion

In this paper we presented MoleMOD – heterogeneous self-reconfigurable mod-
ular robotic system and two software parts of it – the simulation environment
and the planning algorithm. The system is still in the first phase of develop-
ment and thus only first results were presented which can be further improved.
Especially the planning algorithm has a potential for next improvements. First,
better heuristics, which more precisely estimates the cost to the goal, needs to
be designed. This will guide the A* algorithm to search the state space more
effectively by expanding less states. Secondly, we will investigate more advanced
planning algorithms (e.g., hierarchical) which will further improve computational
complexity of the planning. Finally, extension of the algorithm into the 3D case
will be done. Regarding the simulation environment, we would like to equip
robots with sensors to accelerate development of control algorithms for robots.

14 Michaela Brejchová, Miroslav Kulich, Jan Petrš, and Libor Přeučil

Acknowledgement

This work has been supported by the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 688117, and by the Eu-
ropean Regional Development Fund under the project Robotics for Industry 4.0
(reg. no. CZ.02.1.01/0.0/0.0/15 003/0000470).

References

1. Open Source Robotics Foundation: Gazebo. http://gazebo.org/ (2018)
2. Open Source Robotics Foundation: SDF. http://sdformat.org/ (2018)
3. Petrš, J.: MoleMOD. http://www.studioflorian.com/projekty/

347-jan-petrs-molemod (2017)
4. Petrš, J., Havelka, J., Florián, M., Novák, J.: MoleMOD - on design specification and

applications of a self-reconfigurable constructional robotic system. In: Fioravanti, A.,
Cursi, S., Elahmar, S., Gargaro, S., Loffreda, G., Novembri, G., Trento, A. (eds.)
ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe
Conference. vol. 2, pp. 159–166. Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S,
Loffreda, G, Novembri, G, Trento, A (eds.) (2017)

http://gazebo.org/
http://sdformat.org/
http://www.studioflorian.com/projekty/347-jan-petrs-molemod
http://www.studioflorian.com/projekty/347-jan-petrs-molemod

	Modelling, simulation, and planning for the MoleMOD system
	1 Introduction
	2 Simulation environment
	2.1 Modelling passive blocks
	2.2 Modelling active parts
	The basic model
	The rotating model
	Translation/rotation controller
	The final model

	2.3 Experiments

	3 Planning
	3.1 Cost calculation
	3.2 Experiments

	4 Conclusion

