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Abstract 

Linking dictionaries at the sense level is highly beneficial because it facilitates the mutual enhancement of the linked datasets or the 
possibility of deriving new products from the combination of the two. However, one of the greatest challenges in cross-dictionary 
sense linking is that linked senses, although referring to the same meaning, may actually differ in their semantic extent due to 
dictionary distinctions of sense granularity. Not every pair of linked senses is therefore qualitatively the same. However, being able to 
identify and classify these differences is a crucial step towards enabling the comprehensive exploitation of sense-linked datasets. In 
this paper, we present a system to automatically identify the relation of sense links between a bilingual and a monolingual dictionary. 
Using sense granularity annotations by lexicographers as the gold standard, we trained a machine learning model to classify the 

relation between cross-dictionary linked senses as one of the following categories: perfect, where each sense fully covers the other 
sense; wider/narrower, where one sense fully encloses the other but not vice versa; partial, where each sense partially covers the other 
sense. Cross-validation shows the machine learning model to yield an overall accuracy of 86%, with a macro precision of 83% and a 
macro recall of 65% across the different classes. The model significantly outperforms a rule-based algorithm serving as the baseline. 

Keywords: Sense granularity, word sense linking, word sense mapping, lexical resources, language data generation, multilingual 

data, data integration across languages 

1   Introduction 

This paper presents XD-SemOver (Cross-Dictionary Semantic Overlap Classifier), a machine learning-based tool for 

automatically predicting the type of the relationship between two senses from different dictionaries that have been linked 

as referring to the same meaning.  

A sense link consists of a pair of senses, each from one of the linked dictionaries, belonging to the same lexeme and 

referring to the same meaning. Different dictionaries, however, may diverge in how they split the meaning of the words 

into different senses, that is, in the sense granularity criteria they apply. As a result, the two senses in a sense link may 

not be fully equivalent; rather, the following can hold: 
● Sense inclusion. One sense has a wider (or narrower) semantic extent than the other. That is, one sense fully 

includes the other one. 

● Partial overlap. The two senses overlap to some degree, but each of them includes a meaning component which 

is not covered by the other.  

● Perfect match. The two senses refer exactly to the same meaning. 

These distinctions are essential to ensure accuracy and completeness of information when inferring new multilingual data 

from chains of senses across languages. Otherwise, there is the risk of omitting important information that may be 

present in one of the senses, but not on the other. Assume for example the following chain of equivalent senses StA – StB 

– StC, as presented in the dictionaries for languages A, B and C. Each of these senses is associated with a term in its 

corresponding language: tA, tB, and tC. If sense StA for term tA in language A has a narrower semantic extent than sense 

StB, and StB is also semantically wider than StC, then it is not possible to safely infer that term tC in language C is a 

translation of term tA in language A.  
This paper presents a component for automatically classifying differences in sense granularity between two senses from 

different dictionaries that refer to the same meaning, thereby establishing how the senses diverge with regards to their 

semantic extension. It has been developed as a component in a suite of tools for rich sense linking across dictionaries, 

which also includes: the sense linking system described in Saurí et al. (2019), a quality estimator tool that generates 

certainty values for automatically linked pairs (Grosse & Saurí 2020), and an annotation tool supporting the creation of 

manually labelled data for developing those resources (Gonzàlez, Buxton & Saurí 2020). On top of these tools, we are 

currently developing a system for automatically inferring new bilingual content from cross-dictionary sense links.1 Thus, 

our purpose is to take previous work on sense linking one step further, therefore contributing to a higher quality for new 

bilingual content generation.  

The paper is structured as follows. Section 2 reviews previous work that relates to the one presented here. Then, section 3 

presents the overall project methodology, which is further detailed in sections 4 to 6. Results are discussed in section 7. 
Section 8 closes with final remarks and suggestions for future work. 

                                                        
1 This project as a whole is part of a wider programme aiming to create multilingual data by combining Linguistic Linked Open Data 

and language technologies (Prêt-à-LLOD: https://www.pret-a-llod.eu/). 

https://www.pret-a-llod.eu/


 

2   Related Work 

The goal of this project is to determine the semantic overlap between two dictionary senses that refer to the same 

meaning, which directly touches on the notion of word polysemy and one of its central issues, namely, sense granularity. 

The critical question is how to split the different uses of a polysemous word into discrete senses. Within the lexical 

semantics field, much discussion has revolved around the notion of the meaning of a word and its analysis into different 

senses (e.g. Apresjan 1973; Cruse 1986; Pustejovsky 1995, Hanks & Pustejovsky 2005, Hanks 2013). From the more 

applied view of lexicography, the criteria for splitting senses as part of the dictionary creation process has also been an 

important topic of debate. Among many others, see for instance, Shcherba 1940/1995; Stock 1984; Wierzbicka 1985; 

Geeraerts 1990; Sinclair 1991; Fillmore & Atkins 1994, Kilgarriff 1997, Atkins & Rundell 2008.  

At the computational arena, sense granularity has an impact in at least two areas of work: word sense disambiguation 

(WSD) on the one hand, and sense linking (or alignment) on the other. Within WSD, a task that in the past decades has 

been mostly tackled using machine learning-based approaches, sense granularity poses challenges when a word is split 
into excessively granular senses. The greater the granularity, the higher the complexity of the system's learning job. One 

solution comes from clustering senses to obtain more coarse-grained sense inventories (Navigli 2006; Navigli et al. 2007; 

Cinková, Holub & Kríž 2012). More recently, a data-driven approach grounded in distributional semantics (e.g. Erk 

2010) and which is now benefiting from recent advances in deep learning (e.g. Pilehvar & Camacho-Collados 2019; Breit 

et al. 2020), has been moving away from defining senses a priori, thus circumventing the problem of sense granularity.  

Within the computational framework, sense granularity also poses challenges to the activity around automatic sense 

linking (or alignment), which is precisely the area of work of our project. The overall goal of this area is to connect 

lexical databases (including dictionaries) at the sense level. Doing so enriches lexical content and enables the creation of 

new resources. There has been much research on this topic over the past two decades. Some work has been applied to the 

linking of lexical knowledge bases such as WordNet (Miller 1998) or Wikipedia2, which as opposed to traditional 

dictionary datasets, organise their content in a graph-based structure representing lexical relations among senses 
(Gurevych, Eckle-Kohler & Matuschek 2016). Other sense linking approaches have focused on word overlap, i.e. the 

number of common words among sense definitions (Ponzetto & Navigli 2010), while others have taken advantage of 

similarity distance measures (Ruiz-Casado, Alfonseca & Castells 2005; Ahmadi, Arcan & McCrae 2019). More recently, 

other approaches have explored using machine learning techniques to align senses between two dictionaries (Saurí et al. 

2019).  

Sense linking (or alignment) has also taken place across lexical resources of different languages in order to support cross-

lingual information retrieval tasks (e.g., Gollins & Sanderson 2001; Massó et al. 2013) or to facilitate the rapid creation 

of new bilingual or multilingual lexicons, thus touching on the area of lexical translation (Varga, Yokoyama & 

Hashimoto 2009; Mausam et al. 2009; Wushouer et al. 2014; Villegas et al. 2016; Ordan et al. 2017; Gracia et al. 2019, 

among others).  

Most of those approaches to sense linking, however, do not take into account the issue of sense granularity; namely, the 

possibility that the senses from two different sources that have been aligned as corresponding to the same meaning differ 
in their semantic extension (i.e. one has a wider or narrower semantic reference than the other). As argued in the 

introduction, these distinctions are critical because when generating new content from the alignment of two senses, there 

is a risk of leaving out crucial semantic information that is only present in one of the two senses. Nevertheless, to the best 

of our knowledge, there is only one sense linking project that has modelled these distinctions as part of the knowledge to 

be learnt: the ELEXIS Monolingual Word Sense Alignment Shared Task.3 Aware of the relevance of this information, 

our sense linking project also includes a component for automatically identifying these distinctions. To date, however, 

there is no information published on the ELEXIS task for us to compare approaches or results.  

3 Methodology 

We developed XD-SemOver from a supervised machine learning approach following the standard methodology: 

1. Delimiting the problem, i.e. determining the relevant distinctions that need to be learnt by the classifier. 

2. Developing the dataset to be used for training and testing the system. For this, lexicographers annotated sense 

links using the categories determined in the previous step. The annotation was carried out using XD-AT, a 
Cross-Dictionary Annotation Tool supporting the manual categorisation of differences in sense granularity 

between two linked senses (Gonzàlez, Buxton & Saurí 2020). 

3. Training and evaluating a classifier. We experimented with several models, namely a boosted decision trees 

algorithm, a multi-layer perceptron, and a pre-trained BERT-model. We also evaluated different settings (i.e. 

data balancing and parameter tuning) to identify the best approach.   

The following sections detail the development carried out towards each of these aspects.  

4 Delimiting the Problem 

We distinguished the different types of sense links based on two kinds of relationships that may hold: 

                                                        
2 https://www.wikipedia.org/ 
3 https://competitions.codalab.org/competitions/22163#learn_the_details-overview 

https://www.wikipedia.org/
https://competitions.codalab.org/competitions/22163#learn_the_details-overview


 

Overlapping: Determined by the extension of the meaning expressed by sense SA that aligns with sense SB. It can be: 

● Full: SA fully overlaps with SB when SA expresses the entire meaning of SB. 

● Partial: SA partially overlaps with SB when SA only expresses part of the meaning of SB. 

Enclosing: Determined by whether SA covers the entire extension of sense SB. It can be: 

● True: SA encloses SB if SA covers the entire extension of SB. 

● False: SA does not enclose SB if SA covers not all but only part of SB. 

These two levels of description can be orthogonally combined, generating a 4-fold distinction: perfect, narrower-than, 

wider-than, and partial. Perfect indicates that each sense aligns completely throughout the full extension of the other one. 

In other words, each sense fully covers the other. In contrast, narrower-than and wider-than account for sense pairs 
where a sense in one dictionary has a broader meaning than the sense in the other dictionary. It occurs when the meaning 

of one sense fully overlaps with the other one but does not fully enclose it (narrower-than), or the other way around 

(wider-than). Finally, partial denotes that each sense extends beyond the reference of the other. In this case, each sense 

includes a meaning that is not covered by the other. Table 1. illustrates the four relations that can occur between two 

linked senses. For the annotation task, we used these four sense link type classes. 

The idea and the vocabulary for this distinction relate to the way the Simple Knowledge Organization System (SKOS) 

(Miles & Bechhofer 2009) expresses exact or fuzzy matching of concepts from one scheme to another using broader-

narrower, or associative relationships. They also show strong similarities to the 5-fold categorisation in the ELEXIS 

Monolingual Word Sense Alignment Task (McCrae 2020), where the categories used are: exact, broader, narrower, 

related, or none. In our case, the none category is irrelevant, because we omitted from the classification process any 

sense pairs that are not linked. 

 

 

  
Perfect match Different sense granularity Different sense 

boundaries 

 

Meaning alignment 

SA  

SB  

SA  

SB  

SA  

SB  

SA  

SB               

Grounding relationships 

 SA overlapping with SB  fully fully partially partially 

SA enclosing SB  yes no yes no 

Sense link types Perfect Narrower-than Wider-than Partial 

Symbol = < > ~ 

Table 1: Types of sense links. 

5 Gold Standard 

5.1 Dataset Sampling 

The dataset used to create the gold standard for developing the system includes the sense links between The Oxford 

Dictionary of English and three bilinguals published by Oxford University Press: English to Spanish, English to Russian, 

and English to Chinese (EN-ES, EN-RU, and EN-ZH). This set consists of 210,148 sense pairs that had been previously 

linked by human annotators.  

Lexemes in this collection were split according to: 

1) Their lexical category (noun, verb, adjective, adverb/preposition, or other). We could observe that each of these 

classes present a different behaviour in what refers to polysemy, and therefore pose different issues to sense link 
annotation.  

2) Their polysemy degree (single-sense, small-size, medium-size, and large-size entry). Similar to above, senses in 

highly polysemous lexemes are more challenging to align than those in, e.g., monosemous entries. 

With this classification, we aimed to help annotators focus on similar cases at a time, presumably with a similar degree of 

difficulty and similar features. Thus, for the manual annotation effort, we created batches of 100 sense links with the 

same lexical category and polysemy degree. Also, all sense links belonging to a lexeme were put together into the same 

batch. 



 

Due to resource constraints, we could only annotate a subsample of the original dataset. For subsampling, we calculated 

the percentage of links for each combination of lexical category and polysemy degree and extracted 5% of the full 

collection of links. The sample sums up to 10,919 links (3,965 from EN-ES, 2,445 from EN-RU, and 4,403 from EN-

ZH). Furthermore, we added additional batches that were annotated by several annotators (so-called shared batches) to 

compute inter-annotation agreement (IAA).  

5.2 Manual Annotation Effort 

Four annotators carried out the granularity classifications, and a fifth one acted as the judge to resolve disagreements in 

the shared batches, all of them expert lexicographers. Resolving disagreements was essential to obtain the labels 

conforming to the gold standard. 

Sense links were classified according to the 4-fold distinction presented in section 4: perfect match, wider-than, 

narrower-than, and partial match. Additionally, annotators could use the tag unlink, if they considered that the sense pair 

did not correspond to a link, and donotknow, if they were uncertain about it.  
The lexicographers annotated a total of 15,577 sense links, organised into 160 batches. Of these batches, 146 were 

annotated by one person (52, 40 and 54 batches from the EN-ES, EN-RU and EN-ZH dictionaries respectively). The 

remaining 14 batches were shared batches annotated by multiple annotators (5 EN-ES, 4 EN-RU and 5 EN-ZH), 

resulting in a total of 20,628 annotations.4  

5.3 Inter-annotation Agreement 

We used the annotations in the shared batches to analyse inter-annotator agreement as a proxy for the difficulty of the 

task. Since we are using the annotations as the gold standard for training the classifier, the inter-annotator agreement also 

represents the upper-bound for the classifier's performance. We measured the inter-annotator agreement using Fleiss' 

kappa metric (Fleiss 1971). The data consisted of the sense links annotated by all lexicographers involved, and included 

sense links labelled donotknow and unlink. Table 2. shows the results by dictionary, polysemy degree and lexical 

category.5 Note that a kappa score of 0 signifies agreement that is fully explained by chance while a kappa score of 1 

implies perfect agreement. According to Landis & Koch (1977), kappa scores between 0.41 and 0.60 denote moderate 
agreement and scores between 0.61 and 0.80 show substantial agreement. 

  EN-ES EN-RU EN-ZH 

Polysemy degree: S M L S M L S M L 

 

adjective 0.62     0.55     0.64     

adverb/preposition 0.72     0.64     0.66     

noun   0.67     0.59     0.59   

verb     0.48     0.50     0.42 

other 0.61           0.60     

Table 2: Fleiss' kappa inter-annotator agreement by lexical category, polysemy degree and dictionary. 

Batches containing lexemes with lower polysemy degree show higher agreement, which suggests that these sense links 
were easier to classify. Likewise, the disagreement increases as the polysemy degree gets higher in all three languages. In 

addition, all three languages obtain similar kappa scores on average, but we observe differences for lexical categories. 

Adverb/prepositions get the highest values across the 3 datasets. Kappa values for adjectives drop significantly in EN-ES 

and EN-RU compared to adverb/preposition, while they are similar in EN-ZH. Verbs seem to carry less complexity in 

EN-RU: they only lose 9.28 points with respect to the average, compared to 18.15 loss in EN-ZH and 15.39 in EN-ES. 

6 Building the Classifier 

6.1 Models Explored 

To develop our classifier, we experimented with three different approaches: using an AdaBoost ensemble of decision 

trees (Hastie et al. 2009), building a neural network (Glorot & Bengio 2010), and fine-tuning a pre-trained BERT model 

                                                        
4 Before clean-up, the set comprised 14,178 unique annotations, 1,397 quadruple annotations (5,588 in total), and 862 judge reviews. 
5 Note that shared batches did not include links from monosemous lexemes, but only those in the polysemy degree classes of small (S), 

medium (M), and large (L). 



 

(Devlin et al. 2018).6 We also implemented a baseline model to be used as a benchmark in the evaluation of results. The 

following paragraphs outline each of these models.  

6.1.1 AdaBoost 

The first classification model we trained was an AdaBoost ensemble of decision trees. The main advantages of decision 

trees are that they are highly interpretable, they allow both numerical and categorical input data, and they are 
computationally efficient. 

The implementation of AdaBoost selected for our task makes use of the meta-estimator AdaBoostClassifier7, provided by 

sklearn. The AdaBoost classifier uses an ensemble of DecisionTreeClassifiers8 as base estimators. We experimented with 

a variety of parameters using grid search (GridSearchCV9), as described in section 6.2.  

6.1.2 Neural Network 

The second classification model we trained was a feedforward neural network. Neural networks are known to perform 
well with high dimensionality data, and they can model complex, non-linear relations between input variables. 

For the implementation, we chose the MLPClassifier from sklearn.10 Again, we employed grid search to fine-tune the 

hyperparameters, as described in section 6.2. Due to the MLPClassifier's sensitivity to feature scaling, we further 

experimented with feature normalisation and standardisation. 

6.1.3 Deep Learning with BERT 

The third model was developed by fine-tuning a pre-trained BERT model for the sense granularity classification task. 
BERT generates different word embeddings for the same word depending on its context, and words in the same context 

generate similar word embeddings. For this reason, BERT is a viable candidate for predicting the granularity of sense 

links. 

An essential part of BERT is Next Sentence Prediction (NSP), where the model learns to understand sentence relations 

by learning whether or not a given sentence follows another (Devlin et al. 2018). Accordingly, we treat the sense link 

granularity task as an NSP task. By representing each sense as a sentence made up of its lexical information (e.g. its 

definition), we train the model to classify sense links based on the chained sentences representing the two senses. 

6.1.4 Baseline 

Finally, we also created a baseline classification method against which to compare the above models. The baseline model 

is a rule-based algorithm employing the method described in Table 3, which takes into account the number of times each 

sense is linked to a sense in the other dictionary.  

Situation Graphical  

representation 
Resulting link type 

Neither SA nor SB are linked to any other sense in the 
other dictionary  

perfect (=) 

In addition to SB_1, SA is linked to one or more other 
senses (in blue) in the bilingual dictionary 

 

wider-than (>) 
(i.e. SA is wider than SB_1) 

In addition to SA_1, SB is linked to one or more other 
senses (blue) in the monolingual dictionary 

 

narrower-than (<) 
(i.e. SA_1 is narrower than SB) 

Both SA_i and SB_j are linked to multiple senses in the 
other dictionary 

 

partial (~) 

Table 3: Baseline classification heuristics. 

The algorithm works as follows: For senses SA and SB, it assigns the label: i) perfect if the number of links for both 

senses is equal to 1, ii) wider-than if the number of links is larger than 1 in SA and equal to 1 in SB, iii) narrower-than if 

the number of links is equal to 1 in SA and larger than 1 in SB, and iv) partial if the number of links for both senses is 

larger than 1. 

                                                        
6 We used the Base, Uncased model, which can be downloaded from https://github.com/google-research/bert. 
7 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html 
8 https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html 
9 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html 
10 https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html 

https://github.com/google-research/bert
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html


 

The rationale behind this method is that when a sense in one dictionary is linked to several senses in the other, it should 

have a wider semantic extension than any of those senses in the other dictionary. Thus, this one-to many relation is 

labelled as wider-than. Inversely, many-to-one cases are labelled as narrower-than. One-to-one relations are instances 

where both senses should refer to the same extent of meaning, thus being labelled perfect. Finally, many-to-many 

relations suggest that both senses include a meaning component not present in the other, therefore receiving the label  

partial. 

6.2 Evaluation Method 

To find the best hyperparameters for the two machine learning models, AdaBoost and NN, we used sklearn's 

GridSearchCV. The choice of values to test, shown in Tables 4 and 5, results from research on the algorithms and 

includes the default plus neighbouring orders of magnitude. The experimental results were evaluated using 10-fold cross-

validation and compared against the baseline model's performance. 

 

AdaBoost parameters values 

n_estimators 10, 100, 1000 

learning_rate 1, 0.1, 0.01, 0.001 

base_estimator__criterion gini, entropy 

base_estimator__max_depth 1, 10, None 

random_state 999 

Table 4: Hyperparameters grid for AdaBoost and Decision tree estimators. 

 

Neural Network MLP 

parameters 
values 

hidden_layer_sizes (100,), (72, 36), (72, 36, 18) 

activation tanh, relu 

solver adam 

alpha 0.001, 0.0001, 0.00001 

batch_size 10, 100, 1000 

learning_rate_init 0.01, 0.001, 0.0001 

early_stopping True 

random_state 999 

Table 5: Hyperparameters grid for Neural Network (MLP). 

6.3 Experiments 

The experiments were organised in four rounds of iterations with different goals: The first three incrementally built on 

top of each other and focused on the machine learning algorithms (AdaBoost and NN), while the fourth involved fine-
tuning a pre-trained BERT model. The following is a summary of the main characteristics of each round.  

6.3.1 Round 1: Ground Base  

In our initial experiment, we used the same 42 dictionary-based features that had been employed for training XD-

BaSeLink, the sense linking classifier, to gain initial insights into the feasibility of the classification task. The features 

used for this round appear listed in the appendix of Saurí et al. (2019).  

6.3.2 Round 2: Optimising Features and Hyperparameters  

In this iteration, we introduced 56 additional features. These features were both binary and categorical, and they relate to 

the sense order, domain, register, region, definition/indicators, and examples of the senses in each pair. Furthermore, we 

added as a feature the number of links for each sense in the sense pair. This feature is used in creating the baseline model 

(see section 6.1.4), and it is intuitively informative for the classification task. Consider, for example, a sense pair 

(Smono,Sbil) between a sense in the monolingual dictionary and another in the bilingual dictionary. Knowing that Smono has 



 

been linked to three senses in the bilingual dictionary and that Sbil has been linked twice intuitively makes it less likely 

that the sense link is perfect. Instead, and in agreement with the baseline algorithm, we may expect the link to fall into the 

partial category. 

6.3.3 Round 3: Dataset Balancing  

The dataset was highly imbalanced across the four classes, which can introduce a bias towards the majority classes. To 
counteract this bias, we experimented with several sampling techniques that balance out the classes. 

Oversampling. The advantage of oversampling is that no observations (i.e. sense links) are lost. We used the Synthetic 

Minority Oversampling Technique for Nominal and Continuous (SMOTE-NC), which is a variation of SMOTE (Chawla 

et al. 2002) tailored for datasets with continuous and categorical features. By synthetically generating more instances of 

the minority class, inductive learners, like decision trees, can broaden their decision regions for that class. We assessed 

two variations of oversampling: Oversampling the minority classes to the full number of data points in the majority class 

and oversampling the minority classes to half of the number of data points in the majority class. 

Undersampling. Similarly, we also experimented with undersampling the dataset, reducing the size of the majority class. 

For this, we used the Random Under Sampling (RUS) technique, which randomly selects and removes data points from 

the majority classes, while leaving the minority classes' samples intact, until a balanced distribution is achieved.    

Hybrid resampling and boosting. The results for the previous iterations did not show a significant change in performance 

for the AdaBoost classifier, and thus we decided to experiment with a further classification strategy. We used two 
different implementations that combine the SMOTE oversampling and the random undersampling with the boosting 

techniques, instead of resampling the dataset first and then using the AdaBoost classifier. The first algorithm used, called 

SMOTEBoost (Chawla et al. 2003), is a hybrid sampling/boosting algorithm that creates synthetic examples from the 

minority class, thus indirectly changing the updating weights and compensating for skewed distributions. The second 

classifier, called RUSBoost (Seiffert et al. 2009), is a combination of a boosting algorithm that uses RUS to randomly 

remove examples from the majority class, giving a clear advantage in training time, in comparison to SMOTEBoost. 

6.3.4 Round 4: BERT Experiments 

We fine-tuned the pre-trained BERT model to the classification task. This approach requires text as input rather than 

features; hence we defined 7 different combinations of text input to represent both senses in the link. We selected that 

approach after the promising results obtained by Breit et al. (2020) in identifying the sense of a word as used in context. 

In their experiments, they try to determine whether the meaning of a word used in a particular context matches the target 

sense represented by either its definition or its hypernyms. This setup is related to ours since we also represented senses 

using their definition. We put words in context using sense examples, and we further characterise senses with their 

collocates, domain labels, and more. Also, we consider BERT as a proper representation model since it is a bidirectional 

neural network that learns to distinguish the meaning of a word depending on its context, hence it represents words 

appearing in similar contexts through similar word embeddings vectors. 

7 Results and Discussion 

We evaluated the classifiers using the following evaluation metrics: accuracy, precision, recall, and f1-score. We further 
differentiated these scores between macro (equal weight per class, higher relevance to the results for small classes), and 

weighted (weight-adjusted by class, greater relevance to larger classes).11 Macro and weighted averages respectively 

provide lower and upper bounds to the true average of these metrics. We also looked at Cohen's kappa score (Cohen 

1960) to measure agreement between the human annotation and the predicted labels. The best performing model consists 

of an AdaBoost ensemble of decision trees, which clearly outperformed both the neural network and the fine-tuned 

BERT model.12 We trained it with the features used in Saurí et al. (2019) and additional features encoding the lexical 

category of the sense link lexeme and the number of links for each sense in the sense link. Table 6 and Table 7 show the 

results of this model compared to the baseline model presented in section 6.1.4. 

The AdaBoost classifier outperforms the baseline model in global terms, with a macro averaged f1 score of 71% 

compared to the baseline of 65%. It also yields a higher overall accuracy of 86% compared to 80% for the baseline. 

Unsurprisingly, the majority class perfect consistently scores highest, whereas the minority class partial scores lowest. 
This tendency is also represented by the weighted metrics, which receive higher scores than the macro averages, 

indicating an overrepresentation of the majority class in prediction. 

 

 

                                                        
11 We used weighted instead of micro because the task is a multiclass classification problem, for which the micro average would yield 

the same values for precision, recall and subsequently f1. Refer to: https://simonhessner.de/why-are-precision-recall-and-f1-score-
equal-when-using-micro-averaging-in-a-multi-class-problem/ (05/2020) 
12 The best model, chosen based on weighted f1-score, was obtained with the following parameters: base_estimator_criterion=entropy, 

base_estimator_max_depth=1, learning_rate=0.05, n_estimators=100.  

 

https://simonhessner.de/why-are-precision-recall-and-f1-score-equal-when-using-micro-averaging-in-a-multi-class-problem/
https://simonhessner.de/why-are-precision-recall-and-f1-score-equal-when-using-micro-averaging-in-a-multi-class-problem/


 

 Precision recall f1 score class 

size  baseline AdaBoost  Baseline AdaBoost  baseline AdaBoost  

Performance by class 

narrower-than 0.81 0.94 0.65 0.65 0.73 0.77 2979 

partial 0.31 0.70 0.43 0.27 0.36 0.39 494 

perfect 0.88 0.85 0.89 0.99 0.89 0.92 8826 

wider-than 0.58 0.84 0.72 0.70 0.64 0.76 1416 

Overall performance 

macro avg 0.65 0.83 0.67 0.65 0.65 0.71 N/A 

weighted avg 0.82 0.87 0.80 0.86 0.81 0.85 N/A 

Table 6: Overall and per class performance scores for baseline and AdaBoost models. The last column (GS class size) provides an 
indication of the biased nature of the gold standard (GS) 

 

 Baseline AdaBoost classifier 

accuracy 0.80 0.86 

kappa 0.63 0.71 

Table 7: Overall accuracy and kappa scores for baseline and AdaBoost models. 

The confusion matrix in Figure 1 visualises the data bias: most incorrect classifications had the label wider-than or 

narrower-than, but were predicted perfect. The bias stems from the skewed training data, with the majority class perfect 

having almost 18 times as many samples as the minority class partial. The classes wider-than and narrower-than 
perform a bit better than partial, but worse than perfect. We attempted to address the present bias by synthetically 

resampling the training data. However, doing so decreased the overall performance unjustifiably in terms of accuracy and 

macro averaged f-1 score, which is why we chose to stick to the original dataset. 

Figure 1: Heatmap showing the confusion matrix of predicted vs correct labels for the AdaBoost classifier. 

As mentioned above, the training data is heavily imbalanced, posing the question whether the overall performance of our 

classifier could be improved by introducing additional (non-synthetic) data points, especially for the less represented 

classes. Alternatively, the algorithm may benefit from the introduction of additional features, which may aid in the 

identification of data points from the minority classes. Both of these approaches may prove viable alternatives to the 

sampling methods explored in this paper to decrease the algorithm's bias towards the majority class. 

Overall, these results can be assessed as positive. We consider the macro precision, weighted precision and weighted 

recall values as quite good given that they are above 0.85 and reaching towards a 0.9, whereas the macro recall results 

are lower but still within a decent range. The lower macro recall was, however, expected, since the macro average 

metrics are very sensitive to class imbalance and assign greater prevalence to the smallest classes, for which we observed 

particularly low scores.  

8 Conclusion 

In this paper, we motivated the need for identifying distinctions of sense granularity between linked senses from different 
dictionaries to support automatic tasks in different areas, most significantly the creation and enhancement of multilingual 

lexical resources. As a solution, we proposed an automatic classifier that uses a standard supervised machine learning 

approach for multiclass classification. The resulting model performs convincingly, and can, therefore, be used for tagging 

linked senses with a reasonable degree of confidence. A limitation of the model is that it shows a bias towards predicting 



 

the majority classes, due to the imbalanced nature of the training dataset. Future work can address this shortcoming in 

two ways: Firstly, by obtaining more manual annotations, especially for the minority classes, to have a balanced training 

dataset and thus improve the classifier's performance. And secondly, by enriching the training dataset with additional 

features that can help the classifier to distinguish among classes more accurately. 
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