
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 137 (2018) 102–108

1877-0509 © 2018 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the SEMANTiCS 2018 – 14th International Conference on Semantic Systems.
10.1016/j.procs.2018.09.010

10.1016/j.procs.2018.09.010

© 2018 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the SEMANTiCS 2018 – 14th International Conference on Semantic
Systems.

1877-0509

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

SEMANTiCS 2018 – 14th International Conference on Semantic Systems

Adapted TextRank for Term Extraction: A Generic Method of
Improving Automatic Term Extraction Algorithms

Ziqi Zhang∗, Johann Petrak, Diana Maynard

University of Sheffield, 211 Portobello, Sheffield, S1 4DP, UK

Abstract

Automatic Term Extraction is a fundamental Natural Language Processing task often used in many knowledge acquisition pro-
cesses. It is a challenging NLP task due to its high domain dependence: no existing methods can consistently outperform others in
all domains, and good ATE is very much an unsolved problem. We propose a generic method for improving the ranking of terms
extracted by a potentially wide range of existing ATE methods. We re-design the well-known TextRank algorithm to work at corpus
level, using easily obtainable domain resources in the form of seed words or phrases, to compute a score for a word from the target
dataset. This is used to refine a candidate term’s score computed by an existing ATE method, potentially improving the ranking of
real terms to be selected for tasks such as ontology engineering. Evaluation shows consistent improvement on 10 state of the art
ATE methods by up to 25 percentage points in average precision measured at top-ranked K candidates.

c© 2018 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the SEMANTiCS 2018 – 14th International Conference on Semantic
Systems.

Keywords: automatic term extraction; NLP; terminology; ontology engineering

1. Introduction

Automatic Term Extraction (ATE) recognises terms (either single words or word collocations representing domain-
specific concepts) in a collection of domain-specific, usually unstructured texts (target corpus). It is a fundamental step
for many complex text-based knowledge acquisition tasks, such as ontology engineering [6], glossary construction
[22], and improving information access [18]. Despite continued research effort over the years, good ATE is still very
much considered an unsolved problem [24]. In this work, we introduce a novel method addressing two limitations in
the state of the art. First, no single ATE method consistently performs well in all domains [24]. We therefore investigate
a generic method that can potentially improve the accuracy of a wide range of existing ATE methods. Second, while

∗ Corresponding author. Tel.: +44-114-222-2657.
E-mail address: ziqi.zhang@sheffield.ac.uk, johann.petrak@sheffield.ac.uk, d.maynard@sheffield.ac.uk

1877-0509 c© 2018 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the SEMANTiCS 2018 – 14th International Conference on Semantic Systems.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

SEMANTiCS 2018 – 14th International Conference on Semantic Systems

Adapted TextRank for Term Extraction: A Generic Method of
Improving Automatic Term Extraction Algorithms

Ziqi Zhang∗, Johann Petrak, Diana Maynard

University of Sheffield, 211 Portobello, Sheffield, S1 4DP, UK

Abstract

Automatic Term Extraction is a fundamental Natural Language Processing task often used in many knowledge acquisition pro-
cesses. It is a challenging NLP task due to its high domain dependence: no existing methods can consistently outperform others in
all domains, and good ATE is very much an unsolved problem. We propose a generic method for improving the ranking of terms
extracted by a potentially wide range of existing ATE methods. We re-design the well-known TextRank algorithm to work at corpus
level, using easily obtainable domain resources in the form of seed words or phrases, to compute a score for a word from the target
dataset. This is used to refine a candidate term’s score computed by an existing ATE method, potentially improving the ranking of
real terms to be selected for tasks such as ontology engineering. Evaluation shows consistent improvement on 10 state of the art
ATE methods by up to 25 percentage points in average precision measured at top-ranked K candidates.

c© 2018 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the SEMANTiCS 2018 – 14th International Conference on Semantic
Systems.

Keywords: automatic term extraction; NLP; terminology; ontology engineering

1. Introduction

Automatic Term Extraction (ATE) recognises terms (either single words or word collocations representing domain-
specific concepts) in a collection of domain-specific, usually unstructured texts (target corpus). It is a fundamental step
for many complex text-based knowledge acquisition tasks, such as ontology engineering [6], glossary construction
[22], and improving information access [18]. Despite continued research effort over the years, good ATE is still very
much considered an unsolved problem [24]. In this work, we introduce a novel method addressing two limitations in
the state of the art. First, no single ATE method consistently performs well in all domains [24]. We therefore investigate
a generic method that can potentially improve the accuracy of a wide range of existing ATE methods. Second, while

∗ Corresponding author. Tel.: +44-114-222-2657.
E-mail address: ziqi.zhang@sheffield.ac.uk, johann.petrak@sheffield.ac.uk, d.maynard@sheffield.ac.uk

1877-0509 c© 2018 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the SEMANTiCS 2018 – 14th International Conference on Semantic Systems.

2 Z. Zhang et al. / Procedia Computer Science 00 (2018) 000–000

the majority of ATE methods are unsupervised, we argue that it is often possible to use existing lexical resources or
easily generate such resources to support ATE.

Based on these principles, we introduce AdaText1, a generic method that revises the TextRank algorithm [16] to
apply it to an ATE method to improve its performance. Given a target corpus, our method firstly selects a subset of
words extracted from the corpus, based on their semantic relatedness to a set of seed words or phrases considered
relevant to a domain but not necessarily representative of the terms from the target corpus. It then applies an adapted
TextRank algorithm to create a graph for these words, and computes a corpus-level TextRank score for each selected
word. These scores are then used to revise the score of a term candidate previously computed by an ATE method.
AdaText is extensively evaluated with 10 state-of-the-art ATE algorithms on two well-known ATE datasets. We show
it can consistently improve these methods by up to 25 percentage points in average precision measured at top K ranked
candidate terms.

2. Related Work

A typical ATE method consists of two sub-processes: extracting candidate terms using linguistic processors, fol-
lowed by candidate ranking and selection (i.e., filtering) using algorithms that exploit word statistics. Linguistic
processors often make use of domain-specific lexico-syntactic patterns to capture term formation and collocation,
such as noun phrases, n-grams, or sequences based on their Part-of-Speech (PoS) tag chains [15]. Candidate ranking
and selection then computes scores for candidate terms using their statistics gathered from the corpus, to indicate their
likelihood of being a term, and then classifies the candidates into terms and non-terms often based on heuristics such
as a score threshold, or a selection of the top-ranked candidate terms [24].

The ranking algorithms are considered the most important and complicated process in an ATE method [4] as they
are often how an ATE method distinguishes itself from others. These are often based on unithood (the collocation
strength of the lexical components) and termhood (the degree to which a term is relevant to a domain). Methods based
on unithood include word association measures such as the χ2 test and mutual information [7]; while some well-
known termhood-based methods include CValue [2], and more recently topic-modelling based techniques [11]. Many
use a combination of both unithood and termhood [17, 12]. Traditionally, ATE methods are unsupervised, though
supervised machine learning has been adopted recently [4, 13].

ATE is also closely related to keyword extraction [21, 8], where TextRank [16] is one of the most influential
methods. It creates a graph of words based on their collocation in a document, and computes a score using the
PageRank algorithm applied to the graph. The key difference of that task is that it aims to extract only a few (e.g.
10−15) keyphrases within individual document context, while ATE extracts terms that are representative for the entire
corpus, and thus depends on corpus-level statistics.

Research has shown that the performance of state of the art ATE methods is always domain dependent, such that
a high-performing method in one task does not always perform well in another [4, 25]. We thus argue that aiming to
develop a ‘one-size-fit-all’ ATE method for any domain is impractical. It may be more realistic and useful to develop
generic methods to improve performance in any domain when coupled with an existing ATE method. Meanwhile,
although most ATE methods are unsupervised, it is often possible to identify existing lexical resources from a domain
(e.g. gazetteers), or to generate such resources from widely available domain corpora (e.g. author-supplied keywords
for publications in a subject area). Such resources are not necessarily representative of the target corpus and may
contain noise. However, they may be relevant to the task and could be used to support ATE.

3. Methodology

Formally, let D denote the domain specific target corpus. ATE aims to extract a set of candidate terms T =
{t1, t2, ..., tm} from D, compute a score for each candidate ate(ti), then rank T by this score and select a subset to
be considered as true terms. Let S be a set of seed words or phrases, which can be either taken from existing domain
lexicons, or generated in an unsupervised way from available corpora (the creation of S is domain-specific and is de-

1 Adapted TextRank for Automatic Term Extraction

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2018.09.010&domain=pdf

	 Ziqi Zhang et al. / Procedia Computer Science 137 (2018) 102–108� 103
Available online at www.sciencedirect.com

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

SEMANTiCS 2018 – 14th International Conference on Semantic Systems

Adapted TextRank for Term Extraction: A Generic Method of
Improving Automatic Term Extraction Algorithms

Ziqi Zhang∗, Johann Petrak, Diana Maynard

University of Sheffield, 211 Portobello, Sheffield, S1 4DP, UK

Abstract

Automatic Term Extraction is a fundamental Natural Language Processing task often used in many knowledge acquisition pro-
cesses. It is a challenging NLP task due to its high domain dependence: no existing methods can consistently outperform others in
all domains, and good ATE is very much an unsolved problem. We propose a generic method for improving the ranking of terms
extracted by a potentially wide range of existing ATE methods. We re-design the well-known TextRank algorithm to work at corpus
level, using easily obtainable domain resources in the form of seed words or phrases, to compute a score for a word from the target
dataset. This is used to refine a candidate term’s score computed by an existing ATE method, potentially improving the ranking of
real terms to be selected for tasks such as ontology engineering. Evaluation shows consistent improvement on 10 state of the art
ATE methods by up to 25 percentage points in average precision measured at top-ranked K candidates.

c© 2018 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the SEMANTiCS 2018 – 14th International Conference on Semantic
Systems.

Keywords: automatic term extraction; NLP; terminology; ontology engineering

1. Introduction

Automatic Term Extraction (ATE) recognises terms (either single words or word collocations representing domain-
specific concepts) in a collection of domain-specific, usually unstructured texts (target corpus). It is a fundamental step
for many complex text-based knowledge acquisition tasks, such as ontology engineering [6], glossary construction
[22], and improving information access [18]. Despite continued research effort over the years, good ATE is still very
much considered an unsolved problem [24]. In this work, we introduce a novel method addressing two limitations in
the state of the art. First, no single ATE method consistently performs well in all domains [24]. We therefore investigate
a generic method that can potentially improve the accuracy of a wide range of existing ATE methods. Second, while

∗ Corresponding author. Tel.: +44-114-222-2657.
E-mail address: ziqi.zhang@sheffield.ac.uk, johann.petrak@sheffield.ac.uk, d.maynard@sheffield.ac.uk

1877-0509 c© 2018 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the SEMANTiCS 2018 – 14th International Conference on Semantic Systems.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

SEMANTiCS 2018 – 14th International Conference on Semantic Systems

Adapted TextRank for Term Extraction: A Generic Method of
Improving Automatic Term Extraction Algorithms

Ziqi Zhang∗, Johann Petrak, Diana Maynard

University of Sheffield, 211 Portobello, Sheffield, S1 4DP, UK

Abstract

Automatic Term Extraction is a fundamental Natural Language Processing task often used in many knowledge acquisition pro-
cesses. It is a challenging NLP task due to its high domain dependence: no existing methods can consistently outperform others in
all domains, and good ATE is very much an unsolved problem. We propose a generic method for improving the ranking of terms
extracted by a potentially wide range of existing ATE methods. We re-design the well-known TextRank algorithm to work at corpus
level, using easily obtainable domain resources in the form of seed words or phrases, to compute a score for a word from the target
dataset. This is used to refine a candidate term’s score computed by an existing ATE method, potentially improving the ranking of
real terms to be selected for tasks such as ontology engineering. Evaluation shows consistent improvement on 10 state of the art
ATE methods by up to 25 percentage points in average precision measured at top-ranked K candidates.

c© 2018 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the SEMANTiCS 2018 – 14th International Conference on Semantic
Systems.

Keywords: automatic term extraction; NLP; terminology; ontology engineering

1. Introduction

Automatic Term Extraction (ATE) recognises terms (either single words or word collocations representing domain-
specific concepts) in a collection of domain-specific, usually unstructured texts (target corpus). It is a fundamental step
for many complex text-based knowledge acquisition tasks, such as ontology engineering [6], glossary construction
[22], and improving information access [18]. Despite continued research effort over the years, good ATE is still very
much considered an unsolved problem [24]. In this work, we introduce a novel method addressing two limitations in
the state of the art. First, no single ATE method consistently performs well in all domains [24]. We therefore investigate
a generic method that can potentially improve the accuracy of a wide range of existing ATE methods. Second, while

∗ Corresponding author. Tel.: +44-114-222-2657.
E-mail address: ziqi.zhang@sheffield.ac.uk, johann.petrak@sheffield.ac.uk, d.maynard@sheffield.ac.uk

1877-0509 c© 2018 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the SEMANTiCS 2018 – 14th International Conference on Semantic Systems.

2 Z. Zhang et al. / Procedia Computer Science 00 (2018) 000–000

the majority of ATE methods are unsupervised, we argue that it is often possible to use existing lexical resources or
easily generate such resources to support ATE.

Based on these principles, we introduce AdaText1, a generic method that revises the TextRank algorithm [16] to
apply it to an ATE method to improve its performance. Given a target corpus, our method firstly selects a subset of
words extracted from the corpus, based on their semantic relatedness to a set of seed words or phrases considered
relevant to a domain but not necessarily representative of the terms from the target corpus. It then applies an adapted
TextRank algorithm to create a graph for these words, and computes a corpus-level TextRank score for each selected
word. These scores are then used to revise the score of a term candidate previously computed by an ATE method.
AdaText is extensively evaluated with 10 state-of-the-art ATE algorithms on two well-known ATE datasets. We show
it can consistently improve these methods by up to 25 percentage points in average precision measured at top K ranked
candidate terms.

2. Related Work

A typical ATE method consists of two sub-processes: extracting candidate terms using linguistic processors, fol-
lowed by candidate ranking and selection (i.e., filtering) using algorithms that exploit word statistics. Linguistic
processors often make use of domain-specific lexico-syntactic patterns to capture term formation and collocation,
such as noun phrases, n-grams, or sequences based on their Part-of-Speech (PoS) tag chains [15]. Candidate ranking
and selection then computes scores for candidate terms using their statistics gathered from the corpus, to indicate their
likelihood of being a term, and then classifies the candidates into terms and non-terms often based on heuristics such
as a score threshold, or a selection of the top-ranked candidate terms [24].

The ranking algorithms are considered the most important and complicated process in an ATE method [4] as they
are often how an ATE method distinguishes itself from others. These are often based on unithood (the collocation
strength of the lexical components) and termhood (the degree to which a term is relevant to a domain). Methods based
on unithood include word association measures such as the χ2 test and mutual information [7]; while some well-
known termhood-based methods include CValue [2], and more recently topic-modelling based techniques [11]. Many
use a combination of both unithood and termhood [17, 12]. Traditionally, ATE methods are unsupervised, though
supervised machine learning has been adopted recently [4, 13].

ATE is also closely related to keyword extraction [21, 8], where TextRank [16] is one of the most influential
methods. It creates a graph of words based on their collocation in a document, and computes a score using the
PageRank algorithm applied to the graph. The key difference of that task is that it aims to extract only a few (e.g.
10−15) keyphrases within individual document context, while ATE extracts terms that are representative for the entire
corpus, and thus depends on corpus-level statistics.

Research has shown that the performance of state of the art ATE methods is always domain dependent, such that
a high-performing method in one task does not always perform well in another [4, 25]. We thus argue that aiming to
develop a ‘one-size-fit-all’ ATE method for any domain is impractical. It may be more realistic and useful to develop
generic methods to improve performance in any domain when coupled with an existing ATE method. Meanwhile,
although most ATE methods are unsupervised, it is often possible to identify existing lexical resources from a domain
(e.g. gazetteers), or to generate such resources from widely available domain corpora (e.g. author-supplied keywords
for publications in a subject area). Such resources are not necessarily representative of the target corpus and may
contain noise. However, they may be relevant to the task and could be used to support ATE.

3. Methodology

Formally, let D denote the domain specific target corpus. ATE aims to extract a set of candidate terms T =
{t1, t2, ..., tm} from D, compute a score for each candidate ate(ti), then rank T by this score and select a subset to
be considered as true terms. Let S be a set of seed words or phrases, which can be either taken from existing domain
lexicons, or generated in an unsupervised way from available corpora (the creation of S is domain-specific and is de-

1 Adapted TextRank for Automatic Term Extraction

104	 Ziqi Zhang et al. / Procedia Computer Science 137 (2018) 102–108
Z. Zhang et al. / Procedia Computer Science 00 (2018) 000–000 3

scribed in Section 4). Note that S does not need to be representative of the target corpus (i.e., S and T can be disjoint).
We define words(X) as a function returning distinct words (with stopwords removed) from X, and X can be a single
candidate term ti (which can be a single word, or contain multiple words), a document di, or sets of them. We further
define W = words(D) as the set of distinct words from the corpus.

AdaText selects a subset Wsub ⊂ W based on the semantic relatedness of a word wj ∈ W with entries in S (Section
3.1). Next, it creates a corpus level graph of Wsub based on a collocation window size win, and runs PageRank to
derive a ‘corpus level’ TextRank score of the words (Section 3.2). Finally, for each candidate ti ∈ T , we aggregate its
score computed by the ATE method ate(ti) with the TextRank score of its composing words (Section 3.3).

3.1. Seeding

Let sk ∈ S denote an entry in the seed set. We compute pair-wise relatedness rel(sk,wj) for all pairs (sk,wj) ∈
S × W using word embeddings for sk and wj with the cosine similarity function between two vectors. For the word
embeddings, we use the GloVe embeddings pre-trained on the general-purpose Common Crawl data2, but others could
be investigated. For multi-word expressions, we calculate the averaged embedding vectors of all words, following a
method which was previously used in [9, 23] on compositional embeddings. We then calculate the cosine similarity
from the average vectors. Words not present in the embeddings vocabulary are ignored and will have a similarity score
of zero with other words.

Next, for each sk ∈ S , we apply a threshold min to return a subset of W satisfying rel(sk,wj) > min, and concatenate
the selected subsets for all entries in the seed set to create Wsub.

3.2. Corpus Level TextRank

The original TextRank algorithm creates a graph for each individual document by assigning each distinct word
from the document as a node and placing an edge between two words if they appear within each other’s context,
which is defined as a window of win words. We adapt this for corpus-level in two ways. First, the nodes on the graph
consist of distinct words extracted from the entire corpus, but we only use Wsub instead of all words. By focusing on
words that are semantically related to the seed set, we should get a more accurate reflection of their relevance to the
domain. Second, an edge is created for two nodes if they appear in each other’s context within any document. We keep
the remaining part of TextRank, i.e., the use of context window and the PageRank algorithm, unchanged. Thus at the
end of this process, each word wj on the graph is assigned a TextRank score, denoted as tr(wj).

3.3. Combining TextRank and ATE scores

The final refined score of a candidate term ti is a non-linear3 combination of its score computed by an ATE algo-
rithm and the TextRank scores of its composing words:

score(ti) = (1.0 +
∑

wi∈words(ti) tr(wi)
|words(ti)|

) × ate(ti) (1)

4. Experiment Settings

We first run a base ATE method over a corpus to obtain a ranking of candidate terms, and then run AdaText to
compute TextRank scores of words, refining the original term scores to obtain a new ranking.

Base ATE methods. We select the following state of the art ATE methods, which include some best performing
ones based on previous studies, and are chosen to represent different categories including unithood based, termhood
based, hybrid, and learning based methods. We summarise these methods below and refer readers to their original
papers for algorithmic details.

2 http://nlp.stanford.edu/data/glove.840B.300d.zip
3 Although we also experimented with linear combination, empirically results are worse.

4 Z. Zhang et al. / Procedia Computer Science 00 (2018) 000–000

Table 1. The GloVe word embeddings coverage on the datasets.
Dataset candidate terms multi-word candidate terms OOV words candidate terms containing OOVs
GENIA 38,850 38,637 1,512 6,682
ACLv2 5,659 4,101 110 203

• modified TFIDF [24] adapts the classic document-specific TFIDF (term frequency, inverse document fre-
quency) used in information retrieval to work at corpus level by replacing term frequency in each document
with total frequency in the corpus
• CValue [2] focuses on multi-word terms by computing a score that is based on the frequency of a candidate and

its length, then adjusted by the frequency of longer candidates that contain it
• Basic [5] modifies CValue by promoting nested candidate terms, often used for creation of longer terms
• RAKE [20] is based on a similar principle to Basic but uses a graph based model
• Weirdness (WD) [1] compares frequency of a candidate term in the target domain-specific corpus with a refer-

ence corpus
• LinkProbability (LP) [4] uses Wikipedia as a reference corpus and normalises the frequency of a candidate term

as a hyperlink caption by its total frequency in Wikipedia pages
• χ2 [14] measures the degree to which a candidate term co-occurs with some ‘frequent’ terms are biased
• GlossEx [17] linearly combines a modified Weirdness score with a notion of ‘term cohesion’, which measures

the degree to which the composing words tend to occur together as a candidate other than appearing individually
• Positive Unlabeled (PU) learning [4] follows a bootstrapping approach to train a classifier using features such

as CValue scores of candidate terms

For all methods, we use their implementation from the JATE4 and ATR4S5 libraries. The two libraries support
different linguistic processors to extract candidate terms. We configured them to use the domain-specific PoS tag
sequence patterns previously reported in [24] for candidate term extraction.

We also test a method purely based on semantic relatedness between the term and the domain lexicon S . Let S ′ti be
the subset of S where each entry has a non-zero relatedness score with ti, computed as before, then:

avgrel(ti) =

∑
sk∈S ′ti

rel(sk, ti)

|S ′ti |
(2)

This is similar to the idea of ‘key concept relatedness’ introduced in [4], who used words within the target corpus
extracted in a controlled way as reference lexicon for computing semantic relatedness.

AdaText parameters. We implemented AdaText based on an existing TextRank implementation6, and experiment
with two parameters: the semantic relatedness threshold min starting from 0.5 with an increment of 0.05 up to 0.85,
and the context window win using the default value of 5, and 10 which is quite large given the size of each document.

Performance measure. One frequently used approach for measuring ATE performance is Precision at top K
(P@K) ranked candidate terms, instead of the standard Precision, Recall, and F1. This is because in practice, real
terms are often infrequent, and the expected number of correct terms is unknown a priori. In reality, domain experts
would only verify a subset of the candidate terms from the ranked list, and given the large number of candidate terms,
only top K are considered. Thus we calculate P@K, for five different Ks (50, 100, 500, 1k, 2k).

Datasets. We use two standard datasets: GENIA [10], which contains 2,000 semantically annotated Medline ab-
stracts containing some 434k words, and ACLv2 [19], which comprises 300 abstracts from the publications indexed
by ACL, containing some 32k words. Gold standard terms are provided with the two datasets as separate lists, each
containing some 33k and 3k terms. Table 1 shows the GloVe word embeddings coverage on this dataset.7

4 https://github.com/ziqizhang/jate
5 https://github.com/ispras/atr4s
6 https://github.com/summanlp/textrank
7 Note that the two ATE libraries extract slightly different sets of candidate terms on the same dataset. The statistics here are shown based on the

JATE library. The statistics on the ATR4S library have the same trend.

	 Ziqi Zhang et al. / Procedia Computer Science 137 (2018) 102–108� 105
Z. Zhang et al. / Procedia Computer Science 00 (2018) 000–000 3

scribed in Section 4). Note that S does not need to be representative of the target corpus (i.e., S and T can be disjoint).
We define words(X) as a function returning distinct words (with stopwords removed) from X, and X can be a single
candidate term ti (which can be a single word, or contain multiple words), a document di, or sets of them. We further
define W = words(D) as the set of distinct words from the corpus.

AdaText selects a subset Wsub ⊂ W based on the semantic relatedness of a word wj ∈ W with entries in S (Section
3.1). Next, it creates a corpus level graph of Wsub based on a collocation window size win, and runs PageRank to
derive a ‘corpus level’ TextRank score of the words (Section 3.2). Finally, for each candidate ti ∈ T , we aggregate its
score computed by the ATE method ate(ti) with the TextRank score of its composing words (Section 3.3).

3.1. Seeding

Let sk ∈ S denote an entry in the seed set. We compute pair-wise relatedness rel(sk,wj) for all pairs (sk,wj) ∈
S × W using word embeddings for sk and wj with the cosine similarity function between two vectors. For the word
embeddings, we use the GloVe embeddings pre-trained on the general-purpose Common Crawl data2, but others could
be investigated. For multi-word expressions, we calculate the averaged embedding vectors of all words, following a
method which was previously used in [9, 23] on compositional embeddings. We then calculate the cosine similarity
from the average vectors. Words not present in the embeddings vocabulary are ignored and will have a similarity score
of zero with other words.

Next, for each sk ∈ S , we apply a threshold min to return a subset of W satisfying rel(sk,wj) > min, and concatenate
the selected subsets for all entries in the seed set to create Wsub.

3.2. Corpus Level TextRank

The original TextRank algorithm creates a graph for each individual document by assigning each distinct word
from the document as a node and placing an edge between two words if they appear within each other’s context,
which is defined as a window of win words. We adapt this for corpus-level in two ways. First, the nodes on the graph
consist of distinct words extracted from the entire corpus, but we only use Wsub instead of all words. By focusing on
words that are semantically related to the seed set, we should get a more accurate reflection of their relevance to the
domain. Second, an edge is created for two nodes if they appear in each other’s context within any document. We keep
the remaining part of TextRank, i.e., the use of context window and the PageRank algorithm, unchanged. Thus at the
end of this process, each word wj on the graph is assigned a TextRank score, denoted as tr(wj).

3.3. Combining TextRank and ATE scores

The final refined score of a candidate term ti is a non-linear3 combination of its score computed by an ATE algo-
rithm and the TextRank scores of its composing words:

score(ti) = (1.0 +
∑

wi∈words(ti) tr(wi)
|words(ti)|

) × ate(ti) (1)

4. Experiment Settings

We first run a base ATE method over a corpus to obtain a ranking of candidate terms, and then run AdaText to
compute TextRank scores of words, refining the original term scores to obtain a new ranking.

Base ATE methods. We select the following state of the art ATE methods, which include some best performing
ones based on previous studies, and are chosen to represent different categories including unithood based, termhood
based, hybrid, and learning based methods. We summarise these methods below and refer readers to their original
papers for algorithmic details.

2 http://nlp.stanford.edu/data/glove.840B.300d.zip
3 Although we also experimented with linear combination, empirically results are worse.

4 Z. Zhang et al. / Procedia Computer Science 00 (2018) 000–000

Table 1. The GloVe word embeddings coverage on the datasets.
Dataset candidate terms multi-word candidate terms OOV words candidate terms containing OOVs
GENIA 38,850 38,637 1,512 6,682
ACLv2 5,659 4,101 110 203

• modified TFIDF [24] adapts the classic document-specific TFIDF (term frequency, inverse document fre-
quency) used in information retrieval to work at corpus level by replacing term frequency in each document
with total frequency in the corpus
• CValue [2] focuses on multi-word terms by computing a score that is based on the frequency of a candidate and

its length, then adjusted by the frequency of longer candidates that contain it
• Basic [5] modifies CValue by promoting nested candidate terms, often used for creation of longer terms
• RAKE [20] is based on a similar principle to Basic but uses a graph based model
• Weirdness (WD) [1] compares frequency of a candidate term in the target domain-specific corpus with a refer-

ence corpus
• LinkProbability (LP) [4] uses Wikipedia as a reference corpus and normalises the frequency of a candidate term

as a hyperlink caption by its total frequency in Wikipedia pages
• χ2 [14] measures the degree to which a candidate term co-occurs with some ‘frequent’ terms are biased
• GlossEx [17] linearly combines a modified Weirdness score with a notion of ‘term cohesion’, which measures

the degree to which the composing words tend to occur together as a candidate other than appearing individually
• Positive Unlabeled (PU) learning [4] follows a bootstrapping approach to train a classifier using features such

as CValue scores of candidate terms

For all methods, we use their implementation from the JATE4 and ATR4S5 libraries. The two libraries support
different linguistic processors to extract candidate terms. We configured them to use the domain-specific PoS tag
sequence patterns previously reported in [24] for candidate term extraction.

We also test a method purely based on semantic relatedness between the term and the domain lexicon S . Let S ′ti be
the subset of S where each entry has a non-zero relatedness score with ti, computed as before, then:

avgrel(ti) =

∑
sk∈S ′ti

rel(sk, ti)

|S ′ti |
(2)

This is similar to the idea of ‘key concept relatedness’ introduced in [4], who used words within the target corpus
extracted in a controlled way as reference lexicon for computing semantic relatedness.

AdaText parameters. We implemented AdaText based on an existing TextRank implementation6, and experiment
with two parameters: the semantic relatedness threshold min starting from 0.5 with an increment of 0.05 up to 0.85,
and the context window win using the default value of 5, and 10 which is quite large given the size of each document.

Performance measure. One frequently used approach for measuring ATE performance is Precision at top K
(P@K) ranked candidate terms, instead of the standard Precision, Recall, and F1. This is because in practice, real
terms are often infrequent, and the expected number of correct terms is unknown a priori. In reality, domain experts
would only verify a subset of the candidate terms from the ranked list, and given the large number of candidate terms,
only top K are considered. Thus we calculate P@K, for five different Ks (50, 100, 500, 1k, 2k).

Datasets. We use two standard datasets: GENIA [10], which contains 2,000 semantically annotated Medline ab-
stracts containing some 434k words, and ACLv2 [19], which comprises 300 abstracts from the publications indexed
by ACL, containing some 32k words. Gold standard terms are provided with the two datasets as separate lists, each
containing some 33k and 3k terms. Table 1 shows the GloVe word embeddings coverage on this dataset.7

4 https://github.com/ziqizhang/jate
5 https://github.com/ispras/atr4s
6 https://github.com/summanlp/textrank
7 Note that the two ATE libraries extract slightly different sets of candidate terms on the same dataset. The statistics here are shown based on the

JATE library. The statistics on the ATR4S library have the same trend.

106	 Ziqi Zhang et al. / Procedia Computer Science 137 (2018) 102–108
Z. Zhang et al. / Procedia Computer Science 00 (2018) 000–000 5

Table 2. Result of the 10 base ATE methods on all datasets. The highest figures on each dataset under each evaluation metric are in bold.
Basic LP PU CValue GlossEx RAKE TFIDF Weirdness χ2 AvgRel

ACLv2
P@50 .84 .72 .82 .62 .44 .18 .64 .40 .58 .30
P@100 .72 .69 .82 .69 .46 .15 .65 .50 .62 .34
P@500 .56 .56 .60 .67 .34 .29 .53 .36 .48 .39
P@1,000 .49 .51 .43 .56 .36 .29 .47 .40 .45 .35
P@2,000 .39 .39 .40 .45 .38 .32 .43 .40 .41 .33
AvgP@K .60 .57 .61 .60 .40 .25 .54 .41 .52 .34

GENIA
P@50 .80 .38 .74 .86 .88 .68 .68 .78 .66 .16
P@100 .74 .51 .69 .83 .82 .63 .65 .74 .69 .28
P@500 .64 .70 .65 .80 .58 .56 .74 .78 .71 .36
P@1,000 .57 .69 .61 .78 .53 .52 .77 .77 .71 .44
P@2,000 .49 .66 .58 .74 .47 .44 .77 .74 .67 .42
AvgP@K .65 .59 .65 .80 .66 .57 .72 .76 .69 .33

Seed sets. For GENIA, we create a seed set of 5,502 entries by extracting the named entities (e.g. gene, protein
domain) from the Entity Relations Supporting Task dataset in the BioNLP Shared Task 2011.8 Of these, only 25 match
candidate terms exactly. For ACL, we extract noun phrases occurring at least twice in the titles of papers published
since 2000 at ACL, NAACL, and EACL, to create a seed set of 1,301 entries, none of which exactly matches any
candidate term.

5. Results and Discussion

Base ATE results. Table 2 shows that the performance of the base ATE methods can vary significantly depending on
datasets. There is no single, consistently winning method on all five Ks. Considering only the average (Avg P@K),
PU is the best performing method on the ACL corpus, however it becomes the fourth worst performing on the GENIA
corpus.
AdaText results. Figure 1 shows the percentage of words retained under different min thresholds to create the Tex-
tRank graph. Figure 2 shows the results obtained by AdaText under different min thresholds when applied to each
ATE method on the two datasets. We present only the average P@K to focus on the general trend and avoid repeating
information due to the number of Ks.

Fig. 1. Different threshold min values and the corresponding percentage of words selected to create the TextRank graph.

Overall, we notice that in the majority of cases, AdaText is able to further improve any base ATE method, some-
times quite significantly. This suggests that it is a very robust method. In terms of the effect of the min threshold,
we notice that in many cases and particularly on the ACL corpus, a low (e.g. 0.5) or high value (0.85) can harm its

8 http://2011.bionlp-st.org/home/entity-relations

6 Z. Zhang et al. / Procedia Computer Science 00 (2018) 000–000

Fig. 2. Results by AdaText compared against the base ATE methods. y-axis: average P@K for all five K’s considered; x-axis: the different min
threshold values. The horizontal dark line indicates the result obtained by each base ATE method. The columns/bars indicate the results obtained
by AdaText when coupled with the corresponding ATE method.

performance. Relating to Figure 1, these are when we could have selected too many or too few words for graph cre-
ation. The first case could have caused inclusion of irrelevant words, hence ‘diluting’ the scores of words calculated
by TextRank as more nodes and edges are created. The second may create isolated small graphs biased towards the
local focus words, as well as reducing the percentage of candidate terms containing a word from the graph to below
50% or much less (e.g., on ACLv2, at min = 0.8 this is 61%, dropping to 27% with min = 0.85).

The effect of the varying win parameter is much weaker. The difference between win =5 and 10 is at best only
noticed on some individual methods, and cannot be generalised. There is no consistent pattern as to which performs
better than another.

Within the range of min = [0.6, 0.75], AdaText brings consistent improvement in all cases, ranging from about
1 to 25 percentage points, depending on datasets and the base ATE methods. It is worth noting that AdaText is able
to improve both the best and worst performing ATE methods on both datasets. Interestingly, on the GENIA dataset,
AdaText managed to improve the second best performing base method, Weirdness, to 84.6 (76.2 + 8.2), outpeforming
the best base method, CValue (80.2 + 2). However, the patterns of change in performance due to varying min within
[0.6, 0.75] are not strong, as we notice only a few cases of relatively sharp fluctuations out of the 20 cases. This
suggests that overall, the performance of AdaText can be quite robust as long as the min is not at the low and high end
of the spectrum.

	 Ziqi Zhang et al. / Procedia Computer Science 137 (2018) 102–108� 107
Z. Zhang et al. / Procedia Computer Science 00 (2018) 000–000 5

Table 2. Result of the 10 base ATE methods on all datasets. The highest figures on each dataset under each evaluation metric are in bold.
Basic LP PU CValue GlossEx RAKE TFIDF Weirdness χ2 AvgRel

ACLv2
P@50 .84 .72 .82 .62 .44 .18 .64 .40 .58 .30
P@100 .72 .69 .82 .69 .46 .15 .65 .50 .62 .34
P@500 .56 .56 .60 .67 .34 .29 .53 .36 .48 .39
P@1,000 .49 .51 .43 .56 .36 .29 .47 .40 .45 .35
P@2,000 .39 .39 .40 .45 .38 .32 .43 .40 .41 .33
AvgP@K .60 .57 .61 .60 .40 .25 .54 .41 .52 .34

GENIA
P@50 .80 .38 .74 .86 .88 .68 .68 .78 .66 .16
P@100 .74 .51 .69 .83 .82 .63 .65 .74 .69 .28
P@500 .64 .70 .65 .80 .58 .56 .74 .78 .71 .36
P@1,000 .57 .69 .61 .78 .53 .52 .77 .77 .71 .44
P@2,000 .49 .66 .58 .74 .47 .44 .77 .74 .67 .42
AvgP@K .65 .59 .65 .80 .66 .57 .72 .76 .69 .33

Seed sets. For GENIA, we create a seed set of 5,502 entries by extracting the named entities (e.g. gene, protein
domain) from the Entity Relations Supporting Task dataset in the BioNLP Shared Task 2011.8 Of these, only 25 match
candidate terms exactly. For ACL, we extract noun phrases occurring at least twice in the titles of papers published
since 2000 at ACL, NAACL, and EACL, to create a seed set of 1,301 entries, none of which exactly matches any
candidate term.

5. Results and Discussion

Base ATE results. Table 2 shows that the performance of the base ATE methods can vary significantly depending on
datasets. There is no single, consistently winning method on all five Ks. Considering only the average (Avg P@K),
PU is the best performing method on the ACL corpus, however it becomes the fourth worst performing on the GENIA
corpus.
AdaText results. Figure 1 shows the percentage of words retained under different min thresholds to create the Tex-
tRank graph. Figure 2 shows the results obtained by AdaText under different min thresholds when applied to each
ATE method on the two datasets. We present only the average P@K to focus on the general trend and avoid repeating
information due to the number of Ks.

Fig. 1. Different threshold min values and the corresponding percentage of words selected to create the TextRank graph.

Overall, we notice that in the majority of cases, AdaText is able to further improve any base ATE method, some-
times quite significantly. This suggests that it is a very robust method. In terms of the effect of the min threshold,
we notice that in many cases and particularly on the ACL corpus, a low (e.g. 0.5) or high value (0.85) can harm its

8 http://2011.bionlp-st.org/home/entity-relations

6 Z. Zhang et al. / Procedia Computer Science 00 (2018) 000–000

Fig. 2. Results by AdaText compared against the base ATE methods. y-axis: average P@K for all five K’s considered; x-axis: the different min
threshold values. The horizontal dark line indicates the result obtained by each base ATE method. The columns/bars indicate the results obtained
by AdaText when coupled with the corresponding ATE method.

performance. Relating to Figure 1, these are when we could have selected too many or too few words for graph cre-
ation. The first case could have caused inclusion of irrelevant words, hence ‘diluting’ the scores of words calculated
by TextRank as more nodes and edges are created. The second may create isolated small graphs biased towards the
local focus words, as well as reducing the percentage of candidate terms containing a word from the graph to below
50% or much less (e.g., on ACLv2, at min = 0.8 this is 61%, dropping to 27% with min = 0.85).

The effect of the varying win parameter is much weaker. The difference between win =5 and 10 is at best only
noticed on some individual methods, and cannot be generalised. There is no consistent pattern as to which performs
better than another.

Within the range of min = [0.6, 0.75], AdaText brings consistent improvement in all cases, ranging from about
1 to 25 percentage points, depending on datasets and the base ATE methods. It is worth noting that AdaText is able
to improve both the best and worst performing ATE methods on both datasets. Interestingly, on the GENIA dataset,
AdaText managed to improve the second best performing base method, Weirdness, to 84.6 (76.2 + 8.2), outpeforming
the best base method, CValue (80.2 + 2). However, the patterns of change in performance due to varying min within
[0.6, 0.75] are not strong, as we notice only a few cases of relatively sharp fluctuations out of the 20 cases. This
suggests that overall, the performance of AdaText can be quite robust as long as the min is not at the low and high end
of the spectrum.

108	 Ziqi Zhang et al. / Procedia Computer Science 137 (2018) 102–108
Z. Zhang et al. / Procedia Computer Science 00 (2018) 000–000 7

6. Conclusion

In this work, we have introduced a method for improving existing ATE methods. We show that it improves all
methods tested, sometimes quite significantly. However, the main limitation of our work is the lack of understanding
of the relation between the threshold used for selecting words on the TextRank graph (min) and the performance
of the base ATE methods, and how we can optimize this parameter automatically. Future work will explore this
problem along with several other questions, including: whether and how the size and source of the seed lexicon affects
performance; how to adapt TextRank to a graph of both words and phrases, and how this affects results.

References

[1] Ahmad, K., Gillam, L., Tostevin, L., 1999. University of surrey participation in trec 8: Weirdness indexing for logical document extrapolation
and retrieval (wilder), in: Proc. of TREC1999.

[2] Ananiadou, S., 1994. A methodology for automatic term recognition, in: Proc. of COLING1994, ACL, Stroudsburg, PA, USA. pp. 1034–1038.
[3] Astrakhantsev, N., 2015. Methods and software for terminology extraction from domainspecific text collection, in: Ph.D. thesis. Institute for

System Programming of Russian Academy of Sciences.
[4] Astrakhantsev, N., 2016. Atr4s: Toolkit with state-of-the-art automatic terms recognition methods in scala. arXiv preprint arXiv:1611.07804.
[5] Bordea, G., Buitelaar, P., Polajnar, T., 2013. Domain-independent term extraction through domain modelling, in: Proc. of the Conference on

Terminology and Artificial Intelligence.
[6] Brewster, C., Iria, J., Zhang, Z., Ciravegna, F., Guthrie, L., Wilks, Y., 2007. Dynamic iterative ontology learning, in: Proc. of RANLP’07,

Borovets, Bulgaria.
[7] Church, K., Hanks, P., 1990. Word association norms, mutual information, and lexicography. Comput. Linguist. 16, 22–29.
[8] Hasan, K.S., Ng, V., 2010. Conundrums in unsupervised keyphrase extraction: Making sense of the state-of-the-art, in: Proceedings of COL-

ING10 Posters Volume, Association for Computational Linguistics, Stroudsburg, PA, USA. pp. 365–373.
[9] Iyyer, M., Manjunatha, V., Boyd-Graber, J., Daume, H., 2015. Deep unordered composition rivals syntactic methods for text classification, in:

Association for Computational Linguistics. URL: docs/2015_acl_dan.pdf.
[10] Kim, J., Ohta, T., Tateisi, Y., Tsujii, J., 2003. GENIA corpus - a semantically annotated corpus for bio-textmining, in: ISMB (Supplement of

Bioinformatics), pp. 180–182.
[11] Li, S., Li, J., Song, T., Li, W., Chang, B., 2013. A novel topic model for automatic term extraction, in: Proc. of SIGIR’13, ACM, New York,

NY, USA. pp. 885–888.
[12] Lossio-Ventura, J., Jonquet, C., Roche, M., Teisseire, M., 2014. Biomedical terminology extraction: A new combination of statistical and web

mining approaches, in: Journées d’Analyse statistique des Données Textuelles, Paris, France. pp. 421–432.
[13] Maldonado, A., Lewis, D., 2016. Self-tuning ongoing terminology extraction retrained on terminology validation decisions, in: Proc. of

Conference on Terminology and Knowledge Engineering.
[14] Matsuo, Y., Ishizuka, M., 2003. Keyword extraction from a single document using word co-occurrence statistical information. International

Journal on Artificial Intelligence Tools 13, 157–169.
[15] Maynard, D., Funk, A., Peters, W., 2009. Using Lexico-Syntactic Ontology Design Patterns for ontology creation and population, in: WOP

2009 – ISWC Workshop on Ontology Patterns, Washington, USA.
[16] Mihalcea, R., Tarau, P., 2004. TextRank: Bringing order into texts, in: Proc. of EMNLP’04.
[17] Park, Y., Byrd, R., Boguraev, B., 2002. Automatic glossary extraction: Beyond terminology identification, in: Proc. of COLING’02, Association

for Computational Linguistics. pp. 1–7.
[18] Peñas, A., Verdejo, F., Gonzalo, J., 2001. Corpus-based terminology extraction applied to information access, in: Proceedings of the Corpus

Linguistics.
[19] QasemiZadeh, B., Schumann, A., 2016. The acl rd-tec 2.0: A language resource for evaluating term extraction and entity recognition methods.,

in: Proc. of LREC’16.
[20] Rose, S., Engel, D., Cramer, N., Cowley, W., 2010. Automatic keyword extraction from individual documents. John Wiley and Sons.
[21] Turney, P., 2000. Learning algorithms for keyphrase extraction. Inf. Retr. 2, 303–336.
[22] Velardi, P., Navigli, R., D’Amadio, P., 2008. Mining the web to create specialized glossaries. IEEE Intelligent Systems 23, 18–25.
[23] Wieting, J., Bansal, M., Gimpel, K., Livescu, K., 2016. Towards universal paraphrastic sentence embeddings, in: International Conference on

Learning Representations.
[24] Zhang, Z., Gao, J., Ciravegna, F., 2016. Jate 2.0: Java automatic term extraction with apache solr, in: Proc. of LREC’16.
[25] Zhang, Z., Iria, J., Brewster, C., Ciravegna, F., 2008. A comparative evaluation of term recognition algorithms, in: Proc. of LREC’08, Mar-

rakech, Morocco.

