
Substitution Attacks against
Message Authentication∗

Marcel Armour1 and Bertram Poettering2

1 Royal Holloway, University of London, London, United Kingdom
marcel.armour.2017@rhul.ac.uk

2 IBM Research Labs Zurich, Rüschlikon, Switzerland
poe@zurich.ibm.com

Abstract. This work introduces Algorithm Substitution Attacks (ASAs) on message
authentication schemes. In light of revelations concerning mass surveillance, ASAs
were initially introduced by Bellare, Paterson and Rogaway as a novel attack class
against the confidentiality of encryption schemes. Such an attack replaces one
or more of the regular scheme algorithms with a subverted version that aims to
reveal information to an adversary (engaged in mass surveillance), while remaining
undetected by users. While most prior work focused on subverting encryption systems,
we study options to subvert symmetric message authentication protocols. In particular
we provide powerful generic attacks that apply e.g. to HMAC or Carter–Wegman
based schemes, inducing only a negligible implementation overhead. As subverted
authentication can act as an enabler for subverted encryption (software updates can
be manipulated to include replacements of encryption routines), we consider attacks
of the new class highly impactful and dangerous.
Keywords: Algorithm Substitution Attacks · Authentication · Mass Surveillance

1 Introduction
Message authentication schemes are designed to provide a guarantee of integrity: that
is, the assurance that a message really was sent by its purported sender. Symmetrically
keyed message authentication is a well-studied problem, and there exist many reliable and
provably secure solutions (the most popular likely being HMAC). These solutions rely on
the assumption that the software or hardware in which they are implemented behaves as
expected. However, we know that in the real world this assumption does not necessarily
hold. Powerful adversaries have the means to insert unreliability into cryptography via
external (“real-world”) infrastructure: whether by influencing standards bodies to adopt
“backdoored” parameters, inserting exploitable errors into software implementations, or
compromising supply chains to interfere with hardware. The Snowden revelations showed
that this is indeed the case, and that large and powerful adversaries (interested in mass
surveillance) have sought to circumvent cryptography. The reader is referred to the survey
by Schneier et al. [SFKR15], which provides a broad overview of subversion of cryptography,
with some useful case studies detailing known subversion attempts.

The idea that an adversary may embed a backdoor or otherwise tamper with the
implementation or specification of a cryptographic scheme or primitive predates the

∗The research of Armour was supported by the EPSRC and the UK government as part of the Centre
for Doctoral Training in Cyber Security at Royal Holloway, University of London (EP/P009301/1). The
research of Poettering was supported by the European Union’s Horizon 2020 project FutureTPM (779391).
The full version of this article is available at [AP19a].

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Symmetric Cryptology ISSN 2519-173X, Vol. 2019, No. 3, pp. 152–168
DOI:10.13154/tosc.v2019.i3.152-168

mailto:marcel.armour.2017@rhul.ac.uk
mailto:poe@zurich.ibm.com
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tosc.v2019.i3.152-168


Marcel Armour and Bertram Poettering 153

Snowden revelations, and was initiated in a line of work by Young and Yung that they
named kleptography [YY96, YY97]. This area of study can be traced back to Simmons’ work
on subliminal channels, e.g. [Sim83], undertaken in the context of nuclear non-proliferation
during the Cold War. In the original conception [YY96], kleptography considered a saboteur
who designs a cryptographic algorithm whose outputs are computationally indistinguishable
from the outputs of an unmodified trusted algorithm. The saboteur’s algorithm should
leak private key data through the output of the system, which was achieved using the
same principles as Simmons’ earlier subliminal channels. Post-Snowden, work in this
area was reignited by Bellare, Paterson and Rogaway (BPR) [BPR14], who formalised
study of so-called algorithm substitution attacks (ASAs) through the specific example of
symmetric encryption schemes. In abstract terms, the adversary’s goal in an ASA is to
create a subverted implementation of a scheme that breaks some aspect of security (such
as IND-CPA in the case of encryption) while remaining undetected by the user(s).

1.1 Our Work
In this work, we examine the consequences of ASAs to message authentication. In essence,
a message authentication scheme provides a message authentication code or tag for a given
message. Furthermore, given a message and a tag, the message authentication scheme
provides verification that the tag was generated from the message (that is, that the tag is
genuine). The security of a message authentication scheme is determined by the difficulty
of forging tags. If no adversary can forge a tag, then a message with a correct tag must
have been generated by the sender. An ASA against a message authentication scheme
replaces either the tagging function (the generation of message authentication codes) or the
verification function (checking that tags have been honestly generated) in such a way as to
be able to leak information to an adversary. We provide formal definitions for subversion
attacks against message authentication schemes whose syntax allows for both sender and
receiver subversion. Previous work in this area considered only subversion of the sender;
our main contribution is to show that this assumption misses an important class of attack
that targets the receiver. We believe that this class of Algorithm Substitution Attack,
or at least the insight that the receiver rather than the sender may be targeted, can be
applied to other cryptographic primitives.

Our attack is designed to leak the secret key, as this is the most devastating attack
from the point of view of an adversary. Once the secret key is known, any tag can be
forged. Although considering a message authentication scheme in isolation is a useful
perspective from which to analyse, drawing borders in such a way hides the complexity
of the real world, in particular the ways in which various (cryptographic) schemes or
services are used together. Once integrity has been compromised, an adversary can often
leverage this to perform any number of other attacks, for example: enabling attacks against
(“encrypt-then-MAC”) confidentiality; getting users to accept compromised (authenticated)
software updates; injecting malicious packets into (secured) communication streams to
de-anonymise users. Whilst we consider key recovery as the ultimate goal of an adversary,
a more general attack could hide arbitrary information (for example the user’s encryption
key for their messaging application, or the internal state of its random number generator).
We note that allowing arbitrary information to be exfiltrated rather than user keys is a
straight-forward extension of our definitions. We consider such a general attack to be less
realistic, as an algorithm that interacts with other applications (such as accessing secret
keys stored on disk) would risk detection.

1.2 Preceding work
BPR [BPR14] demonstrate an attack against certain randomised encryption schemes that
relies on influencing the randomness generated in the course of encryption. Their attack



154 Substitution Attacks against Message Authentication

applies to the sub-class of schemes satisfying a property they call ‘coin-injectivity’. Their
result was later generalised by Bellare, Jaeger and Kane (BJK) [BJK15] whose attack
applies to all randomised schemes. Furthermore, whereas the attack of BPR is stateful
and so vulnerable to detection through state reset, the BJK attack is stateless.

There is a tension for ‘Big Brother’ between mounting a successful attack and being
detected; clearly an attack that simply replaces the encryption algorithm with one that
outputs the messages in plaintext would be devastating yet trivially detectable. BPR
stipulate that subverted schemes should at the very least decrypt correctly (according to
the unmodified specification) in order to have some measure of resistance to detection,
going on to define the success probability of a mass surveillance adversary in carrying out a
successful attack, as well as the advantage of a user in detecting that a surveillance attack
is taking place. BJK [BJK15] later formalised the goal of key recovery as the desired
outcome of an ASA from the point of view of a mass surveillance adversary. Lastly, BPR
also establish a positive result that shows that under certain assumptions, it is possible for
authenticated encryption schemes to provide resistance against subversion attacks.

Degabriele, Farshim and Poettering (DFP) [DFP15] critiqued the definitions and
underlying assumptions of BPR. Their main insight is that the perfect decryptability —a
condition mandated by BPR— is a very strong requirement and artificially limits the
adversary’s set of available strategies. In practice, a subversion with negligible detection
probability, say 2−128, should be considered undetectable.1 As DFP note, decryption
failures may happen for reasons other than a subverted encryption algorithm, and if
they occur sporadically may easily go unnoticed. Thus a subverted encryption scheme
that exhibits decryption failure with a very low probability is a good candidate for a
practical ASA that is hard to detect. DFP demonstrate how this can be achieved with
an input-triggered subversion, where the trigger is some message input that is difficult to
guess, making detection practically impossible.

None of the above-mentioned works considers the cryptographic subversion of MAC
schemes. The only prior work on that topic that we are aware of is by Al Mansoori,
Baek, and Salah [ABS16] who explore how a MAC component in the EAP-PSK wireless
protocol could be subverted. While this might sound precisely like what our article offers,
there is actually surprisingly little overlap between their results and ours: In their article,
after first arguing [ABS16, §II.D] that randomised MAC schemes offer better protection
against a kind of birthday attack, they restrict attention to precisely one corresponding
construction (two-key CBC-MAC with a random translation of the second key, a scheme
that already turned out to be broken in [KK03]) and show that the rejection-sampling
based key-extraction techniques from [BPR14] are applicable in this setting as well. We
emphasise that our results reach far beyond this: our subversion attacks are generic
(rather than being focused on one specific MAC) and we don’t require exotic technical
conditions like randomised tag generation.2 We believe that the increased generality that
our techniques offer make them more suitable to backdoor EAP-PSK implementations in
practice.

Related Work. We outlined the key antecedent publications on ASAs against symmetric
encryption schemes above. Other works, briefly described here, consider subversion on
different primitives and in different contexts. Berndt and Liskiewicz [BL17] reunite the fields
of cryptography and steganography. Ateniese, Magri and Venturi [AMV15] study ASAs on
signature schemes. In a series of work, Russell, Tang, Yung and Zhou [RTYZ16a, RTYZ16b,
RTYZ17, RTYZ18] consider ASAs on one-way functions, trapdoor one-way functions and
key generation as well as defending randomised algorithms against ASAs. Goh, Boneh,
Pinkas and Golle [GBPG03] show how to add key recovery to the SSL/TLS and SSH

1This is analogous to the fundamental notion in cryptography that a symmetric encryption scheme be
considered secure even in the presence of adversaries with negligible advantage.

2We are not aware of any randomised MAC of practical relevance.



Marcel Armour and Bertram Poettering 155

protocols. Dodis, Ganesh, Golovnev, Juels and Ristenpart [DGG+15] provide a formal
treatment of backdooring PRGs, another form of subversion. Camenisch, Drijvers and
Lehmann [CDL17] consider Direct Anonymous Attestation in the presence of a subverted
Trusted Platform Module. Cryptographic reverse firewalls [MS15, DMS16, MZY+18]
represent an architecture to counter ASAs via trusted code in network perimeter filters.
Fischlin and Mazaheri show how to construct ASA-resistant encryption and signature
algorithms given initial access to a trusted base scheme [FM18]. Fischlin, Janson and
Mazaheri [FJM18] show how to immunise hash functions against subversion. Bellare, Kane
and Rogaway [BKR16] explore using large keys to prevent key exfiltration in the symmetric
encryption setting. Bellare and Hoang [BH15] give public key encryption schemes that
defend against the subversion of random number generators.

In concurrent work, we study the effects of subverting decryption in the setting of
AEAD schemes (authenticated encryption with associated data) [AP19b]. Using similar
techniques, we provide ASAs that result in successful key exfiltration, ultimately leading
to a full breach of confidentiality.

Cryptographic vs. non-cryptographic subversion. In the literature on cryptogra-
phy, the notion of an ASA (against an authentication scheme or otherwise) assumes the
malicious replacement of one or more algorithms of a scheme by a backdoored version, with
the goal to leak key material or at least to weaken some crucial security property. Different
types of substitution attack appear in other areas of computing and communication. We
discuss some examples in the following.

Program code in the domain of computer malware routinely modifies system functions
to achieve its goals, where the latter comprises delivering some damaging payload, ensuring
non-detection and thus survival of the malware on the host system, and in some cases even
self-reproduction. Uncountable techniques towards suitably modifying a host system have
been developed and reported on by academic researchers and hackers. Standard examples
include redirecting interrupt handlers, changing the program entry point of an executable
file, and interfering with the OS kernel by overwriting its data structures [Gol11].

Malicious modifications of implemented functionality are also a recognised threat in
the hardware world. It is widely understood that circuit designers who do not possess the
technical means to produce their own chips but instead out-source the production process
to external foundries, risk that the chips produced might actually implement a maliciously
modified version of what is expected. A vast number of independent options are known for
when (within the production cycle) and how (functionally) subversions could be conducted.
For instance, the survey provided in [BHBN14] reports that circuit design software (CAD)
could be maliciously altered, that foundries could modify circuits before production, and
that after production commercial suppliers could replace legitimate chips by modified ones.
Further, [BHBN14] suggests that appealing types of functionality modification include
deviating from specification when particular input trigger events are recognised, and/or to
leak values of vital internal registers via explicitly implemented side channels. Any such
technique (or combination thereof) has an individual profile regarding the involved costs
and detectability of attack. Which of the many options is the most preferable depends on
the specific attack scenario and target.

We refer to the software and hardware based subversion techniques discussed above
as “technology driven”. This is in contrast to the techniques considered in this paper
which we refer to as “semantics driven”. We consider the two approaches orthogonal:
Our (semantics driven) subversion proposals can be implemented using the techniques
from e.g. [Gol11, BHBN14] (but likewise also through standard methods), and technology
driven subversion proposals can be applied against cryptographic implementations (but
likewise also against any other interesting target functionality). Our semantics driven
approach in fact aims to maximise technology independence. As a consequence, the line
of attacks proposed in this paper can be implemented easily in software (e.g. in libraries



156 Substitution Attacks against Message Authentication

or drop-in code), in hardware (e.g. in ASICs and FPGAs), and in mixed forms (e.g.
firmware-programmed microcontrollers). The strategy to achieve this independence is to
base the attacks and corresponding notions of (in)security on nothing but the abstract
functionalities of the targeted scheme (in our case: authentication systems) as they are
determined by their definitions of syntax and correctness.

As the technology driven and semantics driven approaches are independent, they can
in particular be combined. This promises particularly powerful subversions. For instance,
consider that virtually all laptops and desktop PCs produced in the past decade are
required to have an embedded trusted platform module (TPM) chip that supports software
components (typically boot loaders and operating systems) with trusted cryptographic
services which amongst others includes symmetric message authentication. In detail,
software can interact with a TPM chip through standardised API function calls and
have cryptographic operations applied to provided inputs, with all key material being
generated and held exclusively in the TPM. As TPMs are manufactured in hardware, it
seems that the (technology driven) subversion options proposed in [BHBN14] would be
particularly suitable. However, as most of the attacks from [BHBN14] require physical
presence of the adversary (e.g., to provide input triggers via specific supply voltage jitters
or for extracting side channel information by operating physical probes in proximity of the
attacked chip), only those options seem feasible where all attack conditions and events
can be controlled and measured via the software interface provided by the API. This is
precisely what our semantics driven attacks provide. We thus conclude by observing that
dedicated cryptographic hardware like TPMs can only be trusted if extreme care is taken
during design and production. While our article lays open the most general and clean line
of attack, other attacks might exist as well.

2 Preliminaries

2.1 Notation

We refer to an element x ∈ {0, 1}∗ as a string, and denote its length by |x|. The set of
strings of length l is denoted {0, 1}l. For x ∈ {0, 1}∗ we let x[i] denote the i-th bit of x,
with the convention that we count from 0, i.e., we have x = x[0] . . . x[|x| − 1]. For a bit
value b ∈ {0, 1} we write ! b for its inverse, i.e., the value 1− b. We use Iverson brackets [·]
to derive bit values from Boolean conditions: For a condition C we have [C] = 1 if C holds;
otherwise we have [C] = 0.

We use code-based notation for probability and security experiments. We write ←
for the assignment operator (that assigns a right-hand-side value to a left-hand-side
variable). If S, S′ are sets, we write S ∪← S′ shorthand for S ← S ∪ S′. If S is a finite
set, then s←$ S denotes choosing s uniformly at random from S. We denote a α-biased
Bernoulli trial by B(α), i.e., a random experiment with possible outcomes 0 or 1 such
that Pr[b ← B(α) : b = 1] = α. The assignments b ←$ {0, 1} and b ← B(1/2) are
thus equivalent. We use superscript notation to indicate when an algorithm (typically an
adversary) is given access to specific oracles. An experiment terminates with a “Stop with x”
instruction, where value x is understood as the outcome of the experiment. We write
“Win” (“Lose”) as shorthand for “Stop with 1” (“Stop with 0”). We write “Require C”, for
a Boolean condition C, shorthand for “If not C: Lose”. (We use Require clauses typically
to abort a game when the adversary performs some disallowed action, e.g. one that would
lead to a trivial win.) The “:=” operator creates a symbolic definition; for instance, the
code line “A := E” does not assign the value of expression E to variable A but instead
introduces symbol A as a new (in most cases abbreviating) name for E.



Marcel Armour and Bertram Poettering 157

2.2 Combinatorics: Coupon Collection
In the course of this article we expose subversion attacks of various types. Although we
used different design principles when constructing them, the attacks share as a common
property that they exfiltrate secret key material one bit at a time. The following lemma
recalls a standard coupon collector statement that will help analysing the efficiency of this
approach, in particular how long it takes until all bits are extracted. For a proof of the
lemma, see e.g. [Isa13, §8.4], or any introductory text to probability.

Lemma 1. Fix a finite set S (of “coupons”) and a probability 0 ≤ α ≤ 1. Experiment
CC(S, α) in Fig. 1 measures the number of iterations it takes to visit all elements of S
(“collect all coupons”) when picked uniformly at random and considered with probability α.
The expected number of iterations is given by O(n logn), where n = |S|. More precisely we
have

E[CC(S, α)] = |S|
α

(
1
1 + 1

2 + . . .+ 1
|S|

)
= O(n logn).

Note that parameter α is fully absorbed by the O(·) notation.

Exp CC(S, α)
00 S′ ← ∅; l← 0
01 While S′ ( S:
02 s←$ S
03 If B(α):
04 S′ ∪← {s}
05 l← l + 1
06 Stop with l

Figure 1: Coupon collector experiment (see Lemma 1). See Section 2.1 for the meaning of
“B(·)”.

2.3 Message Authentication Schemes
Cryptographic message authentication is typically achieved with a message authentication
code (MAC). Given a key k and a message m, a tag t is deterministically derived as
per t ← tag(k,m). The (textbook) method to verify the authenticity of m given t is
to recompute t′ ← tag(k,m) and to consider m authentic iff t′ = t. If this final tag
comparison is implemented carelessly, a security issue might emerge: A natural yet naive
way to perform the comparison is to check the tag bytes individually in left-to-right order
until either a mismatch is spotted or the right-most bytes have successfully been found
to match. Note that, if tags are not matching, such an implementation might easily give
away, as timing side-channel information, the length of the matching prefix, allowing for
practical forgery attacks via step-wise guessing.

This issue is understood by the authors of major cryptographic libraries, which thus
contain carefully designed constant-time string comparison code. A consequence is that
services for tag generation and verification are routinely split into two separate functions
tag and vfy.3 Our notion of a message authentication scheme, formalised next, follows this
approach. It comprises MAC based authentication as a special case, but it also comprises
the more exotic randomised MACs as considered in [ABS16].

Formally, a scheme Π providing message authentication consists of algorithms tag, vfy
and associated spaces K,M, T . The tagging algorithm tag takes a key k ∈ K and a

3See https://nacl.cr.yp.to/auth.html for an example.

https://nacl.cr.yp.to/auth.html


158 Substitution Attacks against Message Authentication

Game UF(A)
00 k ←$ K
01 C ← ∅
02 ATag,Vfy

03 Lose

Oracle Tag(m)
04 t← tag(k,m)
05 C ∪← {(m, t)}
06 Return t

Oracle Vfy(m, t)
07 v ← vfy(k,m, t)
08 If v ∧ (m, t) /∈ C:
09 Win
10 Return v

Game subUF(A)
11 k ←$ K; i←$ I; j ←$ J
12 C ← ∅
13 ATag,Vfy

14 Lose

Oracle Tag(m)
15 t← tagi(k,m)
16 C ∪← {(m, t)}
17 Return t

Oracle Vfy(m, t)
18 v ← vfyj(k,m, t)
19 If v ∧ (m, t) /∈ C:
20 Win
21 Return v

Figure 2: Games modelling the unforgeability (UF) and subverted unforgeability (subUF)
of a message authentication scheme.

message m ∈ M, and returns a tag t ∈ T . The verification algorithm vfy takes a key
k ∈ K, a message m ∈M, and a tag t ∈ T , and returns a bit value v. If the bit is set we
say the algorithm accepts; otherwise we say it rejects. A shortcut notation for this syntax
is

K ×M→ tag→ T and K ×M× T → vfy→ {0, 1} .

For correctness we require that for all k ∈ K, m ∈ M, t ∈ T we have that tag(k,m) = t
implies vfy(k,m, t) = 1. We formalise the (strong) unforgeability of a message authentica-
tion scheme via the game UF in Fig. 2 (left). For any adversary A we define the advantage
Advuf(A) := Pr[UF(A)] and say that scheme Π is (strongly) unforgeable if Advuf(A) is
negligibly small for all realistic A.

3 Notions of Subversion against Message Authentication
We consider subversions of the algorithms of message authentication schemes. Depending
on whether the tagging algorithm, the verification algorithm, or even both are subverted,
three attack classes could in principle be distinguished. However, as tagging and verification
are typically performed by distinct, remote parties, successfully conducting attacks of the
third kind would require unnoticedly replacing implementations of two participants, which
we think is considerably less feasible than replacing only one implementation. In this
article we thus focus on single-algorithm substitution attacks. If only the tagging algorithm
is subverted we say the subversion is verification-intact, while if only the verification
algorithm is subverted we say the subversion is tagging-intact.

In the following we give formal definitions for the two types of subversion. In each
case we also formalise a corresponding notion of undetectability (UD). In a nutshell, a
subversion is undetectable if distinguishers with black-box access to either the original
scheme or to its subverted variant cannot tell the two apart. We note that in our models the
distinguishers have full control over the keys to be used. This is in contrast to prior work
like [BPR14, DFP15] where undetectability is defined with respect to uniform keys. As
code auditors and other security researchers looking for subversion attacks can specify keys
during black-box testing according to their preferred distribution, we consider uniform-key
constraints a rather severe limitation of undetectability notions. Note further that our
security models assume purely black-box access to the subverted functions, i.e., that



Marcel Armour and Bertram Poettering 159

distinguishing adversaries don’t have access to the code or circuitry of the subversion but
only to its modified functionality. Detection methods that look out for implementation
artefacts like execution time and memory consumption (for software subversions), or
changed circuit layouts and doping patterns (for hardware subversions), are thus not
excluded by our definitions.

A subversion should exhibit a dedicated functionality for the subverting party, but
simultaneously be undetectable for all others. This seeming contradiction is resolved by
parameterising the subverted algorithm with a secret subversion key, knowledge of which
enables the extra functionality. (The same technique is used in most prior work, starting
with [BPR14].) In what follows we denote the corresponding subversion key spaces with I
and J .

In this section we also specify, by introducing notions of key recoverability, how we
measure the quality of a subversion from the point of view of the subverting adversary
(who is assumed to know the subversion keys).

3.1 Undetectable Subversion

Subverted Tagging. A subversion of the tagging algorithm of a message authentication
scheme consists of a finite index space I and a family Tag = {tagi}i∈I of algorithms

K ×M→ tagi → T .

That is, for all i ∈ I the algorithm tagi can syntactically replace the algorithm tag.
As a security property we require that also the observable behaviour of tag and tagi
be effectively identical (for uniformly chosen i ∈ I). This is formalised via the games
UDT0,UDT1 in Fig. 3 (left). For any adversary A we define the advantage Advudt(A) :=
|Pr[UDT1(A)]−Pr[UDT0(A)]| and say that family Tag undetectably subverts algorithm tag
if Advudt(A) is negligibly small for all realistic A.

Subverted Verification. A subversion of the verification algorithm of a message
authentication scheme consists of a finite index space J and a family Vfy = {vfyj}j∈J of
algorithms

K ×M× T → vfyj → {0, 1} .

That is, for all j ∈ J the algorithm vfyj can syntactically replace the algorithm vfy. As a
security property we require that also the observable behaviour of vfy and vfyj be effectively
identical (for uniformly chosen j ∈ J ). This is formalised via the games UDV0,UDV1 in
Fig. 3 (centre). For any adversaryA we define the advantage Advudv(A) := |Pr[UDV1(A)]−
Pr[UDV0(A)]| and say that family Vfy undetectably subverts algorithm vfy if Advudv(A)
is negligibly small for all realistic A.

While we argued above that cases where the tagging and the verification algorithms are
simultaneously subverted are less realistic, for completeness we also give a joint definition
of undetectability.

Subversion of Tagging and Verification. Games UDb in Fig. 3 (right) combine
games UDTb and UDVb into one. We define Advud(A) := |Pr[UD1(A)] − Pr[UD0(A)]|.
By a hybrid argument, for all adversaries A there exist adversaries A′,A′′ such that
Advud(A) ≤ Advudt(A′) + Advudv(A′′).

The above undetectability notions demand that subversions do not change the observable
behaviour of tagging and verification algorithms. A consequence of this is that neither
the correctness nor the security properties of the affected authentication scheme are
considerably harmed (assuming random and unknown subversions keys).



160 Substitution Attacks against Message Authentication

Game UDTb(A)
00 i←$ I
01 tag0 := tagi
02 tag1 := tag
03 b′ ← ATag,Vfy

04 Stop with b′

Oracle Tag(k,m)
05 t← tagb(k,m)
06 Return t

Oracle Vfy(k,m, t)
07 v ← vfy(k,m, t)
08 Return v

Game UDVb(A)
00 j ←$ J
01 vfy0 := vfyj
02 vfy1 := vfy
03 b′ ← ATag,Vfy

04 Stop with b′

Oracle Tag(k,m)
05 t← tag(k,m)
06 Return t

Oracle Vfy(k,m, t)
07 v ← vfyb(k,m, t)
08 Return v

Game UDb(A)
00 i←$ I; j ←$ J
01 (tag0, vfy0) := (tagi, vfyj)
02 (tag1, vfy1) := (tag, vfy)
03 b′ ← ATag,Vfy

04 Stop with b′

Oracle Tag(k,m)
05 t← tagb(k,m)
06 Return t

Oracle Vfy(k,m, t)
07 v ← vfyb(k,m, t)
08 Return v

Figure 3: Games UDT and UDV and UD modelling subversion undetectability. See
Section 2.1 for the meaning of “:=”. Note that the Vfy oracle in UDT and the Tag oracle
in UDV are redundant.

Effects of Subversion on Correctness and Unforgeability. Undetectably
subverting the tagging and/or verification algorithm of a message authentication scheme
has only a limited negative effect on the resulting scheme’s correctness: For all k,m, t and
uniformly chosen i, j the probability that tagi(k,m) = t does not imply vfyj(k,m, t) = 1
is bounded by Advud(A) for an adversary A. Similarly, if we consider the subverted
unforgeability game subUF from Fig. 2 (right) and define for any adversary A the advantage
Advsubuf(A) := Pr[subUF(A)], by a hybrid argument we obtain that for all adversaries A
there exist adversaries A′,A′′ such that Advsubuf(A) ≤ Advuf(A′) + Advud(A′′).

3.2 Subversion Leading to Key Recovery
We observed above that if the tagging and/or verification algorithm of an authentication
scheme is undetectably subverted, with uniformly chosen indices i, j that remain unknown
to all participants, then the unforgeability guarantees are preserved from the original
scheme. This may be different if i, j are known to an attacking party, and indeed we
assume that mass-surveillance attackers leverage such knowledge to conduct forgery attacks.
An attack goal that represents a particularly attractive option to enable message forgery
is key recovery (KR): Users pick symmetric keys k according to their preferred method
(hidden from the adversary), and the adversary aims at recovering these keys through the
subversion.

We formalise this attack goal in two versions. The KRP game in Fig. 4 (left) assumes
a passive attack in which the adversary cannot manipulate messages or tags, and the KRA
game in Fig. 4 (right) assumes an active attack in which the adversary can inject and test
arbitrary message-tag pairs. In both cases, with the aim of closely modelling real-world
settings, we (slightly) restrict the adversary’s influence on the messages that are tagged by
assuming a stateful message sampler MS that produces the messages used throughout the
game. The syntax of this message sampler is

Σ×A→ MS→ Σ×M×B (σ, α) 7→ MS(σ, α) = (σ′,m, β) ,

where σ, σ′ ∈ Σ are old and updated state, input α ∈ A models the influence that the
adversary may have on message generation, and output β ∈ B models side-channel outputs.
In Fig. 4 we write � for the initial state. Note that while we formalise the inputs α and
the outputs β for generality (so that our models cover most real-world applications), our



Marcel Armour and Bertram Poettering 161

Game KRP(A)
00 C ← ∅
01 k ←$ K; σ ← �
02 i←$ I; j ←$ J
03 k′ ← ATag,Vfy(i, j)
04 Stop with [k′ = k]

Oracle Tag(α)
05 (σ,m, β)← MS(σ, α)
06 t← tagi(k,m)
07 C ∪← {(m, t)}
08 Return (m, t, β)

Oracle Vfy(m, t)
09 Require (m, t) ∈ C
10 v ← vfyj(k,m, t)
11 Return v

Game KRA(A)
12 C ← ∅
13 k ←$ K; σ ← �
14 i←$ I; j ←$ J
15 k′ ← ATag,Vfy(i, j)
16 Stop with [k′ = k]

Oracle Tag(α)
17 (σ,m, β)← MS(σ, α)
18 t← tagi(k,m)
19 C ∪← {(m, t)}
20 Return (m, t, β)

Oracle Vfy(m, t)
21 Require (m, t) ∈ C
22 v ← vfyj(k,m, t)
23 Return v

Figure 4: Games KRP and KRA modelling key recoverability for passive and active
attackers, respectively.

subversion attacks are independent of them.4
For any message sampler MS and adversary A we define the advantages Advkrp

MS(A) :=
Pr[KRP(A)] and Advkra

MS(A) := Pr[KRA(A)]. We say that subversion families Tag,Vfy are
key recovering for passive attackers if for all practical MS there exists a realistic adversary A
such that Advkrp

MS(A) reaches a considerable value (e.g., 0.1). The key recovery notion for
active attackers is analogue.

4 Subversion Attacks via Acceptance vs. Rejection
We propose two key-recovering subversion attacks on message authentication schemes.
While both attacks are tagging-intact, i.e., subvert only the verification routine, they
differ in that our first attack is passive (can be mounted by an exclusively observing
mass surveillance adversary) and our second attack is active (requires testing specific
message-tag pairs for validity). The driving principles behind the two attacks are closely
related: In both cases the verification algorithm of the attacked scheme is manipulated
such that it marginally deviates from the regular accept/reject behaviour; by making these
deviations depend on the authentication key, the bits of the latter are leaked one by one.

Our passive attack rejects a sparse subset of the message-tag pairs that the unmodified
algorithm would accept. Our active attack does the opposite by accepting certain specially-
crafted inauthentic message-tag pairs as valid. A property of the former attack is that the
scheme’s correctness is slightly reduced; we believe however that in settings where rejected
messages are automatically retransmitted by the sender (e.g. in low-level network encryption
like IPSec), this attack is still very practical and impactful. Our active attack does not
influence correctness. However, as key bits are leaked only when the verification algorithm
is exposed to inauthentic tags, successful adversaries are necessarily active. The active
attack furthermore has the following attractive property: The messages corresponding to
the injected inauthentic tags are not arbitrary (and thus unexpected to the processing
application), but identical with messages previously seen by the tagging algorithm. This
allows keeping attacks ‘under the radar’: The adversary can suppress the (correct) tags

4. . . meaning that the reader can safely ignore them.



162 Substitution Attacks against Message Authentication

of real messages and replace them with crafted tags; the receiver will not realise, as all
accepted messages they receive will be those sent by the sender.

While our attacks are very effective in practice, we note that most prior academic
formulations of ASAs, like [BPR14, DFP15] (in the domain of symmetric encryption)
or [ABS16] (in the domain of message authentication), do not consider subversion on the
receiver side. By consequence, by the notions proposed and used in these articles, our
attacks are trivially absolutely undetectable. Our notions from Section 3, which cover also
the receiving end, allow for a more realistic assessment of the situation. According to our
notions, our passive attack could be detected with at least a noticeable probability, while
our active attack remains undetectable.

In this section we consistently refer to the algorithms and spaces of a targeted message
authentication scheme with tag, vfy,K,M, T . We further assume that the key space has
the form K = {0, 1}κ for some κ ∈ N.

4.1 Passive Attack
We define our passive subversion of the verification algorithm of an authentication scheme
in Fig. 5 (left). It is parameterised by a probability 0 ≤ γ ≤ 1, a large index space J , a
PRF (Fj)j∈J , and a family (Gj)j∈J of random constants. (That we use the same index
space J for two separate primitives is purely for notational convenience; our analyses will
actually assume that (Fj) and (Gj) are independent.5) For the PRF we require that it be a
family Fj : T → [0 .. κ− 1] for all j (that is: a pseudo-random mapping from the tag space
to the set of bit positions of a key), and for the constants we require that Gj ∈ {0, 1}κ for
all j (that is: a pseudo-random element of the key space).

Proc vfyj(k,m, t)
Initial state: k′ ← Gj
00 v ← vfy(k,m, t)
01 If v = 0: Return v
02 If B(γ):
03 ι← Fj(t)
04 If k′[ι] 6= k[ι]:
05 v ← 0
06 k′[ι]← !Gj [ι]
07 Return v

Proc A(i, j)
08 k′ ← Gj
09 While k′ incorrect:
10 Pick any α for MS
11 (m, t, β)← Tag(α)
12 v′ ← Vfy(m, t)
13 If v′ = 0:
14 ι← Fj(t)
15 k′[ι]← !Gj [ι]
16 Return k′

Figure 5: Passive tagging-intact subversion. See Section 2.1 for the meaning of “B(·)”
and “!”. Left: Verification subversion as of Section 3.1. Right: Key recovering adversary
for game KRP as of Section 3.2.

We provide details on our attack. Note that the specification in Fig. 5 assumes that
the vfyj algorithm can maintain state between invocations (but see the discussion below).
The idea is that state variable k′ is initialised as the random string Gj and then, during
vfyj invocations, bits of this string that are different from the corresponding bit of the
target key k (line 04) are updated (line 06) until eventually the condition k′ = k (implicit)
is reached. The Bernoulli trial (line 02) controls the rate with which such updates happen,
and the PRF (line 03) controls which bit position ι is affected in each iteration. By PRF
security, these bit positions can be assumed uniformly distributed (though knowledge of
the subversion index j allows tracing which tag is mapped to which position). Any bit flip
is communicated to the adversary by artificially rejecting (line 05) the message-tag pair,
although it is actually valid.

5At the expense of introducing more symbols we could also have formally separated the index spaces of
(F ) and (G). We believe that our concise notation adds significantly to readability.



Marcel Armour and Bertram Poettering 163

We specify a corresponding KRP adversary in Fig. 5 (right). It starts with the same
random string Gj as the subversion and traces the bit updates of vfyj until eventually the
full key k is reconstructed. We assume that A can tell whether the key has been recovered
(line 09), e.g. testing the key by verifying one or many recorded authentic message-tag
pairs with it.

Note that our adversary does not need to know the messages m emerging throughout
the experiment. While a corresponding variable does appear in lines 11,12, this is only to
formally express a fully passive attack. The core of the attack, in lines 13–15, is independent
of m. This considerably adds to the practicality of our attack: While messages are not
always secret information, in practice they might be hard to obtain. Conducting mass-
surveillance attacks will definitely become easier if the attacks depend exclusively on the
knowledge of tags (like in our case, line 14).

While we present our subversion attack as stateful, it also works if the vfyj algorithm
forgets its state between any two invocations (i.e., resets k′ to Gj upon each invocation
of vfyj). With respect to the detectability and key recovery notions from Section 3, the
attack’s performance is the same whether the subversion is stateful or not. The reason
for presenting the stateful version here is that the latter offers better correctness after a
subversion is detected. (This case is practically less relevant and not covered by our formal
models.)

We establish the following statements about the key recoverability and undetectability
of our passive subversion attack.

Theorem 1. Let A be defined as in Fig. 5 (right) and vfyj as defined in Fig. 5 (left). If
Fj behaves like a random function and constants Gj are uniformly distributed, then for any
message sampler MS, the key recovery advantage Advkrp

MS(A) is expected to reach value 1
once the adversary A has processed O(κ log κ) messages.

Proof. We model algorithm A(i, j) by the experiment CC(S, α) from Fig. 1, with S =
[0 .. κ− 1] and α = γ/2. The (pseudo-)randomness of Fj ensures that elements of s ∈ S,
here representing the possible values of the index ι (line 03), are picked uniformly at
random. The probability α = γ/2 arises through success of the CC experiment being
equivalent to the condition v′ = 0 in line 12 (Fig. 5) and that for any tag t the probability
Pr[k′[ι] 6= k[ι]] (line 04) for ι← Fj(t) is 1/2; success is conditional on B(γ). We now apply
Lemma 1, which gives the expected number of messages to be sent as O(κ log κ).

Theorem 2. Let A be an adversary playing the UDV game (as in Fig. 3, centre), such
that A makes at most q queries to the verification oracle Vfy. The undetectability advantage
of the subversion vfyj , as defined in Fig. 5 (left), is bounded by Advudv(A) ≤ 1− (1− γ)q.

Proof. Any detection adversary playing Game UDV against the subverted vfyj must, in
order to win, trigger v = 0 with a correct pair (m, t). More precisely, adversary A must
find a pair (m, t) such that vfy(k,m, t) = 1 but vfyj(k,m, t) = 0. Figure 6 (left) shows the
(obviously) best adversarial strategy. Even if the adversary can submit (m, t) such that ι←
Fj(t) is assigned in line 03 (Fig. 5), it still requires that B(γ) succeeds; thus Pr[v = 0] ≤ γ
in line 05 (Fig. 6). Clearly, adversary A (Fig. 6) always returns 1 when interacting with the
unsubverted verification algorithm. Thus, Advudv(A) = |Pr[UDV1(A)]−Pr[UDV0(A)]| ≤
1− (1− γ)q.

4.2 Active Attack
We define our active subversion of the verification algorithm of an authentication scheme
in Fig. 7 (left). It is parameterised by a large index space J , a PRF (Fj)j∈J , a PRP
(Pj)j∈J , and a family (Gj)j∈J of random constants. (As in Section 4.1, our analyses will



164 Substitution Attacks against Message Authentication

Proc A
00 Pick any k ∈ K
01 Pick any m ∈M
02 t← tag(k,m)
03 Repeat q times:
04 v ← Vfy(k,m, t)
05 If v = 0:
06 Return 0
07 Return 1

Proc A
00 Pick any k ∈ K
01 Pick any m ∈M
02 t← tag(k,m)
03 S ← {t}
04 Repeat q times:
05 t′ ←$ T \ S
06 v ← Vfy(k,m, t′)
07 S ∪← {t′}
08 If v = 1:
09 Return 0
10 Return 1

Figure 6: Detection adversaries for Game UDV. Left: For the passive attack from Fig. 5.
Right: For the active attack from Fig. 7.

assume that (Fj) and (Pj) and (Gj) are independent.) For the PRF we require that it
be a family Fj : T → [0 .. κ− 1] for all j (that is: a pseudo-random mapping from the tag
space to the set of bit positions of a key), for the PRP we require that it be a family of
permutations Pj : T → T for all j, (that is: a pseudo-random bijection on the tag space),
and for the constants we require that Gj ∈ {0, 1}κ for all j (that is: a pseudo-random
element of key space).

Proc vfyj(k,m, t)
00 v ← vfy(k,m, t)
01 If v = 1: Return v
02 t′ ← Pj(t)
03 v′ ← vfy(k,m, t′)
04 If v′ = 0: Return 0
05 ι← Fj(t)
06 If k[ι] 6= Gj [ι]:
07 Return 1
08 Return 0

Proc A(i, j)
09 k′ ← Gj
10 While k′ incorrect:
11 Pick any α for MS
12 (m, t, β)← Tag(α)
13 t′ ← P−1

j (t)
14 v′ ← Vfy(m, t′)
15 If v′ = 1:
16 ι← Fj(t)
17 k′[ι]← !Gj [ι]
18 Return k′

Figure 7: Active tagging-intact subversion. See Section 2.1 for the meaning of “!”. Left:
Verification subversion as of Section 3.1. Right: Key recovering adversary for game KRA
as of Section 3.2.

The idea of our attack is as follows. Lines 00,01 of vfyj ensure that valid message-tag
pairs are always accepted (no limitation on correctness). If however a tag t is identified
as not valid, then a secret further check is performed: The original tag t is mapped to
an unrelated tag using the random permutation (line 02), and the result t′ is checked
for validity for m (line 03). For standard (invalid) tags t also this second verification
should fail, and in this case algorithm vfyj rejects as expected (line 04). The normally
not attainable case that the second verification succeeds is used to leak key bits. The
mechanism for this (lines 05–08) is as in our passive attack from Section 4.1, namely by
communicating via accept/reject decisions the positions where the bits of a pseudo-random
value Gj and the to-be-leaked key k differ.

We construct a corresponding key recovering adversary A in Fig. 7 (right). Exploiting
that it has access to subversion index j, it takes authentic tags t (line 12) and maps
them to auxiliary tags t′ (line 13) such that when verifying the latter (line 14) the first
verification in vfyj (line 00) will fail but the second verification (line 03) will succeed. The



Marcel Armour and Bertram Poettering 165

information thus leaked by the verification routine is used to reconstruct target key k in
the obvious way (lines 15–17).

We establish the following statements about the key recoverability and undetectability
of our active subversion attack.

Theorem 3. Let A be defined as in Fig. 7 (right) and vfyj as defined in Fig. 7 (left). If
Fj and Pj behave like random functions, constants Gj are uniformly distributed, and the
MAC scheme is unforgeable, then for any message sampler MS, the key recovery advantage
Advkra

MS(A) is expected to reach value 1 once the adversary A has processed O(κ log κ)
messages.

Proof. By the unforgeability of the MAC scheme, each invocation of algorithm vfyj in an
execution of attack A(i, j) can be assumed to have v = 0 in line 01 (Fig. 7), and thus
line 02 is reached. By the (pseudo-)randomness of Pj , in line 02 the condition t′ 6= t holds
with probability β = 1− 1/|T |. We model algorithm A(i, j) by the experiment CC(S, α)
from Fig. 1, with S = [0 .. κ− 1] and α = β/2. The (pseudo-)randomness of Fj ensures
that elements of s ∈ S, here representing the possible values of the index ι (line 05),
are picked uniformly at random. The probability α = β/2 arises through success of the
CC experiment being equivalent to the condition v′ = 1 in line 15. This occurs precisely
when vfyj returns 1 in line 07, which is conditional on vfyj reaching past line 02. The
probability that v′ = 1 in line 15 is 1/2 as this is the probability that for any tag t and
ι← Fj(t), k[ι] 6= Gj [ι] (line 06). We now apply Lemma 1, which gives the expected number
of messages to be sent as O(κ log κ).

Theorem 4. Let A be an adversary playing the UDV game (as in Fig. 3, centre), such
that A makes at most q queries to the verification oracle Vfy. Suppose that Advuf(A′) ≤ ε
for all UF adversaries A′ (as in Fig. 2, left). If Pj behaves like a random function then
the undetectability advantage of the subversion vfyj, as defined in Fig. 7 (left), is given by
Advudv(A) ≤ 1− (1− ε)q.

Proof. Any detection adversary playing Game UDV against the subverted vfyj must, in
order to win, trigger v = 1 with a bogus (m, t). That is, a message-tag pair (m, t) with
vfy(k,m, t) = 0 but vfyj(k,m, t) = 1. This will occur if t = Pj(t′), where vfy(k,m, t′) = 1.
As j is chosen uniformly randomly from J and P is a (pseudo-)random function, the
only strategy is to sample values of t′ and test whether Vfy(k,m, t′) = 1. Algorithm A
in Fig. 6 (right) shows this strategy. When A interacts with the unsubverted verification
algorithm, by the unforgeability of the MAC scheme we can assume that Vfy(k,m, t′)
never returns 1. Thus Pr[UDV1(A)] = 1. When interacting with the subverted verification
algorithm, A returns 0 by either triggering line 01 or line 07 of vfyj . We assume that line 01
is not triggered, by the unforgeability of the MAC scheme. Triggering line 07 happens
with probability ≤ ε. Thus we have Advudv(A) = |Pr[UDV1(A)] − Pr[UDV0(A)]| ≤
1− (1− ε)q.

References
[ABS16] Fatema Al Mansoori, Joonsang Baek, and Khaled Salah. Subverting MAC:

How authentication in mobile environment can be undermined. In 2016 IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS),
pages 870–874, April 2016.

[AMV15] Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. Subversion-resilient
signature schemes. In Indrajit Ray, Ninghui Li, and Christopher Kruegel,
editors, ACM CCS 2015: 22nd Conference on Computer and Communications
Security, pages 364–375. ACM Press, October 2015.



166 Substitution Attacks against Message Authentication

[AP19a] Marcel Armour and Bertram Poettering. Substitution attacks against message
authentication. Cryptology ePrint Archive, Report 2019/989, 2019. http:
//eprint.iacr.org/2019/989.

[AP19b] Marcel Armour and Bertram Poettering. Subverting decryption in AEAD.
Cryptology ePrint Archive, Report 2019/987, 2019. http://eprint.iacr.
org/2019/987.

[BH15] Mihir Bellare and Viet Tung Hoang. Resisting randomness subversion: Fast
deterministic and hedged public-key encryption in the standard model. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology – EU-
ROCRYPT 2015, Part II, volume 9057 of Lecture Notes in Computer Science,
pages 627–656. Springer, Heidelberg, April 2015.

[BHBN14] Swarup Bhunia, Michael S Hsiao, Mainak Banga, and Seetharam Narasimhan.
Hardware trojan attacks: threat analysis and countermeasures. Proceedings
of the IEEE, 102(8):1229–1247, 2014.

[BJK15] Mihir Bellare, Joseph Jaeger, and Daniel Kane. Mass-surveillance without
the state: Strongly undetectable algorithm-substitution attacks. In Indrajit
Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS 2015: 22nd
Conference on Computer and Communications Security, pages 1431–1440.
ACM Press, October 2015.

[BKR16] Mihir Bellare, Daniel Kane, and Phillip Rogaway. Big-key symmetric en-
cryption: Resisting key exfiltration. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology – CRYPTO 2016, Part I, volume 9814
of Lecture Notes in Computer Science, pages 373–402. Springer, Heidelberg,
August 2016.

[BL17] Sebastian Berndt and Maciej Liskiewicz. Algorithm substitution attacks from
a steganographic perspective. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017: 24th Conference
on Computer and Communications Security, pages 1649–1660. ACM Press,
October / November 2017.

[BPR14] Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Security of sym-
metric encryption against mass surveillance. In Juan A. Garay and Rosario
Gennaro, editors, Advances in Cryptology – CRYPTO 2014, Part I, volume
8616 of Lecture Notes in Computer Science, pages 1–19. Springer, Heidelberg,
August 2014.

[CDL17] Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous attestation
with subverted TPMs. In Jonathan Katz and Hovav Shacham, editors, Ad-
vances in Cryptology – CRYPTO 2017, Part III, volume 10403 of Lecture
Notes in Computer Science, pages 427–461. Springer, Heidelberg, August 2017.

[DFP15] Jean Paul Degabriele, Pooya Farshim, and Bertram Poettering. A more
cautious approach to security against mass surveillance. In Gregor Leander,
editor, Fast Software Encryption – FSE 2015, volume 9054 of Lecture Notes
in Computer Science, pages 579–598. Springer, Heidelberg, March 2015.

[DGG+15] Yevgeniy Dodis, Chaya Ganesh, Alexander Golovnev, Ari Juels, and Thomas
Ristenpart. A formal treatment of backdoored pseudorandom generators.
In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology
– EUROCRYPT 2015, Part I, volume 9056 of Lecture Notes in Computer
Science, pages 101–126. Springer, Heidelberg, April 2015.

http://eprint.iacr.org/2019/989
http://eprint.iacr.org/2019/989
http://eprint.iacr.org/2019/987
http://eprint.iacr.org/2019/987


Marcel Armour and Bertram Poettering 167

[DMS16] Yevgeniy Dodis, Ilya Mironov, and Noah Stephens-Davidowitz. Message trans-
mission with reverse firewalls—secure communication on corrupted machines.
In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology –
CRYPTO 2016, Part I, volume 9814 of Lecture Notes in Computer Science,
pages 341–372. Springer, Heidelberg, August 2016.

[FJM18] Marc Fischlin, Christian Janson, and Sogol Mazaheri. Backdoored hash
functions: immunizing HMAC and HKDF. In 2018 IEEE 31st Computer
Security Foundations Symposium (CSF), pages 105–118. IEEE, 2018.

[FM18] Marc Fischlin and Sogol Mazaheri. Self-guarding cryptographic protocols
against algorithm substitution attacks. In 2018 IEEE 31st Computer Security
Foundations Symposium (CSF), pages 76–90. IEEE, 2018.

[GBPG03] Eu-Jin Goh, Dan Boneh, Benny Pinkas, and Philippe Golle. The design and
implementation of protocol-based hidden key recovery. In Colin Boyd and
Wenbo Mao, editors, ISC 2003: 6th International Conference on Information
Security, volume 2851 of Lecture Notes in Computer Science, pages 165–179.
Springer, Heidelberg, October 2003.

[Gol11] Dieter Gollmann. Computer Security (3. ed.). Wiley, 2011.

[Isa13] Richard Isaac. The pleasures of probability. Springer Science & Business Media,
2013.

[KK03] Lars R. Knudsen and Tadayoshi Kohno. Analysis of RMAC. In Thomas
Johansson, editor, Fast Software Encryption – FSE 2003, volume 2887 of
Lecture Notes in Computer Science, pages 182–191. Springer, Heidelberg,
February 2003.

[MS15] Ilya Mironov and Noah Stephens-Davidowitz. Cryptographic reverse firewalls.
In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology –
EUROCRYPT 2015, Part II, volume 9057 of Lecture Notes in Computer
Science, pages 657–686. Springer, Heidelberg, April 2015.

[MZY+18] Hui Ma, Rui Zhang, Guomin Yang, Zishuai Song, Shuzhou Sun, and Yuting
Xiao. Concessive online/offline attribute based encryption with cryptographic
reverse firewalls - secure and efficient fine-grained access control on corrupted
machines. In Javier López, Jianying Zhou, and Miguel Soriano, editors,
ESORICS 2018: 23rd European Symposium on Research in Computer Security,
Part II, volume 11099 of Lecture Notes in Computer Science, pages 507–526.
Springer, Heidelberg, September 2018.

[RTYZ16a] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Clip-
tography: Clipping the power of kleptographic attacks. In Jung Hee Cheon
and Tsuyoshi Takagi, editors, Advances in Cryptology – ASIACRYPT 2016,
Part II, volume 10032 of Lecture Notes in Computer Science, pages 34–64.
Springer, Heidelberg, December 2016.

[RTYZ16b] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Destroying
steganography via amalgamation: Kleptographically CPA secure public key
encryption. Cryptology ePrint Archive, Report 2016/530, 2016. http://
eprint.iacr.org/2016/530.

[RTYZ17] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Generic
semantic security against a kleptographic adversary. In Bhavani M. Thurais-
ingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017:

http://eprint.iacr.org/2016/530
http://eprint.iacr.org/2016/530


168 Substitution Attacks against Message Authentication

24th Conference on Computer and Communications Security, pages 907–922.
ACM Press, October / November 2017.

[RTYZ18] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Correcting
subverted random oracles. In Hovav Shacham and Alexandra Boldyreva,
editors, Advances in Cryptology – CRYPTO 2018, Part II, volume 10992
of Lecture Notes in Computer Science, pages 241–271. Springer, Heidelberg,
August 2018.

[SFKR15] Bruce Schneier, Matthew Fredrikson, Tadayoshi Kohno, and Thomas Risten-
part. Surreptitiously weakening cryptographic systems. Cryptology ePrint
Archive, Report 2015/097, 2015. http://eprint.iacr.org/2015/097.

[Sim83] Gustavus J. Simmons. The prisoners’ problem and the subliminal channel. In
David Chaum, editor, Advances in Cryptology – CRYPTO’83, pages 51–67.
Plenum Press, New York, USA, 1983.

[YY96] Adam Young and Moti Yung. The dark side of “black-box” cryptography, or:
Should we trust capstone? In Neal Koblitz, editor, Advances in Cryptology
– CRYPTO’96, volume 1109 of Lecture Notes in Computer Science, pages
89–103. Springer, Heidelberg, August 1996.

[YY97] Adam Young and Moti Yung. Kleptography: Using cryptography against cryp-
tography. In Walter Fumy, editor, Advances in Cryptology – EUROCRYPT’97,
volume 1233 of Lecture Notes in Computer Science, pages 62–74. Springer,
Heidelberg, May 1997.

http://eprint.iacr.org/2015/097

	Introduction
	Our Work
	Preceding work

	Preliminaries
	Notation
	Combinatorics: Coupon Collection
	Message Authentication Schemes

	Notions of Subversion against Message Authentication
	Undetectable Subversion
	Subversion Leading to Key Recovery

	Subversion Attacks via Acceptance vs Rejection
	Passive Attack
	Active Attack


