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Abstract: The purpose of the study is to introduce the notion of generalized neutrosophic b-open set 

in neutrosophic topological space. We define generalized neutrosophic b-open set, generalized 

neutrosophic b-interior, generalized neutrosophic b-closure and investigate some of their properties. 

By defining generalized neutrosophic b-open set, we prove some theorems on neutrosophic 

topological spaces. We also furnish some suitable examples. 

Keywords: Neutrosophic set; neutrosophic b-open set; generalized neutrosophic b-open set; 

generalized neutrosophic b-interior; generalized neutrosophic b-closure 

 

 

1. Introduction 

Smarandache (1998) grounded the Neutrosophic Set (NS) in 1998.  From then it became very 

popular and attracted many researchers' attention for theoretical and practical researches (Broumi et 

al., 2018; Khalid, 2020; Peng & Dai, 2018; Pramanik, 2013; 2016a; 2016b; 2020; Pramanik & Mallick, 

2018; 2019; Pramanik & Mondal, 2016; Pramanik & Roy, 2014; Smarandache & Pramanik, 2016; 2018, 

Biswas, Pramanik & Giri, 2014; 2016a; 2016b; Dalapati et al., 2017; Dey, Pramanik, & Giri, 2016a; 

2016b; Pramanik, Mallick, & Dasgupta, 2018; Mondal & Pramanik, 2015; Pramanik & Dalapati, 2018, 

Pramanik, Dey, & Smarandache, 2018; Pramanik, Mondal, & Smarandache, 2016a; 2016b). 

Salama and Alblowi (2012a) grounded the “Neutrosophic Topological Space” (NTS).  Salama 

and Alblowi (2012b) also presented generalized NS and generalized NTSs.  Salama, Smarandache, 

& Alblowi (2014) studied the concept of neutrosophic crisp topological space. Arokiarani, 

Dhavaseelan, Jafari, and Parimala (2017) defined neutrosophic semi-open functions and established 

relation between them.  Iswaraya and Bageerathi (2016) studied neutrosophic semi-closed set and 

neutrosophic semi-open set. Rao and Srinivasa (2017) introduced neutrosophic pre-open set 

and pre-closed set. Dhavaseelan and Jafari (2018) studied generalized neutrosophic closed sets. 

Pushpalatha and Nandhini (2019) defined the neutrosophic generalized closed sets in NTSs. Shanthi, 

Chandrasekar, Safina, and Begam (2018) presented the neutrosophic generalized semi closed sets in 
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NTSs. Ebenanjar, Immaculate, and Wilfred (2018) studied neutrosophic b -open sets in NTSs. 

Maheswari, Sathyabama, and Chandrasekar (2018) studied the neutrosophic generalized b- closed 

sets in NTSs.  

Research gap: No investigation on neutrosophic generalized b-open set has been reported in the 

recent literature. 

Motivation: In order to fill the research gap, we introduce neutrosophic generalized b-open set. 

Remaining of the paper is designed as follows: 

Section 2 recalls of NTS, neutrosophic b- closed sets and a theorem.  Section 3 introduces 

neutrosophic generalized b-open set and proofs of some theorems on neutrosophic b-open sets. 

Section 4 presents concluding remarks.   

2. Preliminaries and some properties 

Definition 2.1 Assume that ( , )W  is an NTS. Then  , an NS over W  is said to be a Neutrosophic 

b-Open (N-b-open) set (Ebenanjar, Immaculate, & Wilfred, 2018) if and only if (iff)    ⊆Nint(Ncl(

))∪ Ncl(Nint(  )). 

Definition 2.2 In an NTS ( , )W , an NS   is said to be a Neutrosophic b-Closed (N-b-closed) set 

(Ebenanjar, Immaculate, & Wilfred, 2018) iff   ⊇ Nint(Ncl(  ))∩ Ncl(Nint(  )). 

Remark 2.1 An NS  over W  is said to be an N-b-closed set (Ebenanjar, Immaculate, & Wilfred, 

2018) in ( , )W  iff  c is a N-b-open set in ( , )W . 

 

In 2018, Ebenanjar, Immaculate, and Wilfred (2018) studied the concept of N-b-open set in NTS 

but they did not check whether the union or intersection of two N-b-open sets (N-b-closed sets) is 

again an N-b-open set (N-b-closed set) or not. In this paper we show some results on the intersection 

and union of neutrosophic b-closed sets. 

Theorem 2.1 The intersection of any two N-b-closed sets is again an N-b-closed set.    

Proof. Assume that E, F be any two N-b-closed sets in an NTS ( , )W . Then we have 

E ⊇ Nint(Ncl(E)) ∩ Ncl(Nint(E))             (1) 

and F ⊇ Nint(Ncl(F)) ∩ Ncl(Nint(F))            (2) 

For any two NSs E and F We know that E∩F ⊆ Eand E∩F ⊆  𝐹. 

Now E∩F ⊆ E⟹Nint(E∩F) ⊆ Nint(E) ⟹Ncl(Nint(E∩F)) ⊆ Ncl(Nint(E))       (3) 

E∩F ⊆ E⟹Ncl(E∩F) ⊆ Ncl(E) ⟹Nint(Ncl(E∩F)) ⊆ Nint(Ncl(E))              (4) 

E∩F ⊆ F⟹Nint(E∩F) ⊆ Nint(F) ⟹Ncl(Nint(E∩F)) ⊆ Ncl(Nint(F))              (5) 

E∩F⊆ F⟹Ncl(E∩F) ⊆ Ncl(F) ⟹Nint(Ncl(E∩F)) ⊆ Nint(Ncl(F))               (6) 

From (1) and (2) we have, 

E∩F ⊇ Nint(Ncl(E)) ∩ Ncl(Nint(E)) ∩ Nint(Ncl(F)) ∩ Ncl(Nint(F)) 

          ⊇Nint(Ncl(E∩F)) ∩ Ncl(Nint(E∩F)) ∩ Nint(Ncl(E∩F)) ∩ Ncl(Nint(E∩F)) 

[ by eqs (3), (4), (5) & (6)] 

             = Nint(Ncl(E∩F)) ∩ Ncl(Nint(E∩F)) 

⟹E∩F ⊇ Ncl(Nint(E∩F)) ∩ Nint(Ncl(E∩F)). 

Therefore E∩F is an N-b-closed set. 
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Hence the intersection of any two N-b-closed sets is again an N-b-closed set. 

Remark 2.2: The union of any two N-b-closed sets may not be an N-b-closed set. This is proved as 

follows: 

Example 2.1: Assume that 
1 2{ , }W p p  and 𝜏 = {0N, 1N, {(

1p , 0.5, 0.2, 0.4), (
2p , 0.6, 0.1, 0.3)}, {(

1p , 0.3, 

0.5, 0.6), (
2p , 0.4, 0.4, 0.5)}} be the family of some NSs over W . Then 𝜏 is an NT on .W  Now it can 

be verified that E= {(a, 0.6, 0.5, 0.6), (b, 0.5, 0.6, 0.7)}, F={(a,1, 0, 1), (b, 0.9, 0.1, 0.1)} are two N-b-closed 

sets in (𝑊, 𝜏). But their union E∪F = {(a, 1, 0, 0.6), (b, 0.9, 0.1, 0.1)} is not an N-b-closed set. 

Definition 2.3 Assume that ( , )W  is an NTS and   is an NS overW . Then the Neutrosophic 

b-Closure (Nbcl) and Neutrosophic b-Interior (Nbint) (Ebenanjar, Immaculate & Wilfred, 2018) of   

are defined by 

Nbcl(  ) = ∩{ :   is an N-b-closed set in ( , )W  and ⊆ }; 

Nbint(  ) = ∪{  :   is an N-b-open set in ( , )W  and  ⊆  }. 

 

Remark 2.3 Clearly Nbint(  ) is the largest N-b-open set (Ebenanjar, Immaculate, & Wilfred, 2018) in 

( , )W  which is contained in  and Nbcl(  ) is the smallest N-b-closed set in ( , )W  which contains .  

 

Definition 2.4 Assume that ( , )W  is an NTS. A neutrosophic subset E of ( , )W is said to be a 

Neutrosophic Generalized Closed Set (NGCS) (Dhavaseelan & Jafari, 2018) if Ncl(E)⊆F whenever 

E⊆F and F is an NOS. A subset K of ( , )W  is called Neutrosophic Generalized Open Set (NGOS)  

iff Kc is an NGCS in ( , ).W  

3. Generalized neutrosophic b-open set 

Definition 3.1 Assume that ( , )W  is an NTS. An NS G over W  is called a Generalized 

Neutrosophic b-Open (g-N-b-open) set if ∃ an N-b-closed set H (except 1N) with G⊆H such that 

G ⊆ Nint(H). A neutrosophic subset K in ( , )W  is called a Generalized Neutrosophic b-Closed 

(g-N-b-closed) set iff Kc is a g-N-b-open set in ( , )W .  

Example 3.1 Assume that 
1 2{ , }W p p and 𝜏={0N, 1N, {(

1p , 0.5, 0.6, 0.7), (
2p ,0.6, 0.7, 0.8)}, {(

1p ,0.6, 

0.5, 0.6), (
2p ,0.7, 0.6, 0.7)}} are the collection of some NSs over .W Then ( , )W is clearly an NTS. 

Here K = {(
1p , 0.6, 0.7, 0.8), (

2p , 0.5, 0.8, 0.8)} is a g-N-b-open set, because there exists an N-b-closed 

set G = {
1p , 0.7, 0.3, 0.4), (

2p , 0.8, 0.3, 0.4)} in ( , )W  with K ⊆ G such that K ⊆ Nint(G). 

Proposition 3.1 In an NTS ( , )W , 0N  is a g-N-b-open set but 1N is not a g-N-b-open set. 

Proof. Assume that ( , )W is an NTS. Since a Neutrosophic Open Set (NOS)  is an N-b-open set, so 1N 

is an N-b-open set. Therefore, 0N is an N-b-closed set (since it is the complement of N-b-open set 1N). 

Now 0N ⊆ 0N and 0N ⊆ Nint(0N)= 0N. 

Thus there exist an N-b-closed set 0N (except 1N) with 0N ⊆0N such that 0N ⊆ Nint(0N). Hence 0N is a 

g-N-b-open set in ( , ).W  

But in case of NS 1N, we cannot find any neutrosophic b-closed set H (except 1N) with 1N⊆H such that 

1N⊆ Nint(H). Hence 1N is not a g-N-b-open set in ( , ).W  

Proposition 3.2 Assume that   is a  g-N-b-open set in an NTS ( , ).W  Then, every NS contained 

in   is a g-N-b-open set. 
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Proof. Assume that   be a g-N-b-open set in an NTS ( , )W  and  be any arbitrary NS over W

which is contained in . Since   is a g-N-b-open set, so there exists an N-b-closed set   (except 

1N) with  ⊆   such that  ⊆Nint( ). 

Now   is contained in A, so  

      ⊆  

 ⟹  ⊆  ⊆ &  ⊆  ⊆Nint( ). 

Therefore there exists an N-b-closed set   (except 1N) with  ⊆  such that  ⊆Nint( ). Hence   

is a g-N-b-open set. Thus each NS contained in   is again a g-N-b-open set in ( , )W . 

Definition 3.2 Assume that ( , )W  is an NTS and   be an NS over .W  Then the Generalized 

Neutrosophic b-Interior (g-Nbint) and Generalized Neutrosophic b- Closure (g-Nbcl) of   are defined 

by 

g-Nbint( ) = ∪{  :   is a g-N-b-open set and   ⊆  }; 

g-Nbcl( ) = ∩{  :   is a g-N-b-closed set and   ⊆  }. 

 

Theorem 3.1 Assume that ( , )W  is an NTS. Then each neutrosophic open subset of ( , )W  is a 

g-N-b-open set. 

Proof. Assume that   be an arbitrary NOS in an NTS ( , )W . So   = Nint(  ). Since each 

neutrosophic closed set is an N-b-closed set so Ncl( ) is an N-b-closed set. Also we know that        

  ⊆ Ncl( ). 

Now   ⊆ Ncl( ) 

⟹Nint( ) ⊆ Nint(Ncl( )) 

⟹ = Nint( ) ⊆ Nint(Ncl( )) 

⟹  ⊆ Nint(Ncl( )) 

Therefore there exists an N-b-closed set Ncl( ) with   ⊆ Ncl( ) such that   ⊆ Nint(Ncl( )). Hence 

  is a g-N-b-open set in ( , )W . Thus each neutrosophic open subset of ( , )W  is again a g-N-b-open 

set. 

Remark 3.1 The converse of the theorem 3.1 is not true. This can be shown by the example 3.2. 

Example 3.2 In example 3.1, it can be easily seen that K = {(a, 0.6, 0.7, 0.8), (b, 0.5, 0.8, 0.8)} is a 

g-N-b-open set in ( , )W  but it is not an NOS. 

Theorem 3.2 Assume that ( , )W  
is an NTS. Then each Neutrosophic Pre-Open Set (NPOS) in 

( , )W  is a g-N-b-open set. 

Proof. Assume that ( , )W  is an NTS and   is an NPOS. Then   ⊆ Nint(Ncl( )). Since for any NS

 , Ncl( ) is an N-b-closed set and   ⊆ Ncl( ). Therefore there exists an N-b-closed set Ncl( ) with 

 ⊆ Ncl( ) such that  ⊆ Nint(Ncl( )). Hence   is a g-N-b-open set in ( , )W . Thus each NPOS in 

( , )W  is again a g-N-b-open set. 

Theorem 3.3 If   is both NOS and Neutrosophic Semi-Open Set (NSOS) in an NTS ( , )W then it is 

a g-N-b-open set. 
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Proof.  Assume that ( , )W  is an NTS and   is both NSOS and NOS. Since   is an NOS, so   

= Nint( ). Again since   is an NSOS, so   ⊆ Ncl(Nint( )). It can be verified that Ncl(Nint( )) is an 

N-b-closed set (since it is an NCS). 

Now   ⊆ Ncl(Nint( )) 

⟹Nint( ) ⊆ Nint(Ncl(Nint( )))  [ since  ⊆  𝛿 ⟹ Nint( ) ⊆ Nint(𝛿) ] 

⟹  = Nint( ) ⊆ Nint(Ncl(Nint( )))      [ since   = Nint( ) ] 

⟹   ⊆ Nint(Ncl(Nint( ))) 

Therefore there exists an N-b-closed set Ncl(Nint(  )) with   ⊆ Ncl(Nint( )) in ( , )W  such that    

  ⊆ Nint(Ncl(Nint( ))). Hence   is a g-N-b-open set. 

Theorem 3.4 Assume that ( , )W  is an NTS and  is both neutrosophic 𝛼-open and neutrosophic 

open set. Then   is again a g-N-b-open set. 

Proof. Assume that   is an arbitrary NS which is both neutrosophic 𝛼-open set and NOS. Since   

is an NOS so  = Nint( ). Again since   is a neutrosophic 𝛼-open set, so   ⊆ Nint(Ncl(Nint( ))). 

Hence, it is clear that Ncl(Nint( )) is an N-b-closed set (since it is an NCS) in ( , )W . 

Now   = Nint( ) 

⟹ = Nint( ) ⊆ Ncl(Nint( )) 

⟹   ⊆ Ncl(Nint( )) 

Therefore there exists an N-b-closed set Ncl(Nint(  )) with   ⊆ Ncl(Nint(  )) such that   ⊆

 Nint(Ncl(Nint( ))). Hence   is a generalized N-b-open set in ( , )W . 

Theorem 3.5 The intersection of any two g-N-b-open sets in an NTS ( , )W  is again a g-N-b-open 

set. 

Proof. Let   and   be any two g-N-b-open sets in an NTS ( , )W . Then there exist two N-b-closed 

sets K, L with  ⊆ K,   ⊆L such that   ⊆ Nint(K) and   ⊆ Nint(L). 

Here  ∩   ⊆ K∩L. 

We know that the intersection of two N-b-closed sets is again an N-b-closed set. So K∩L is an 

N-b-closed set in ( , )W . 

Now  ∩   ⊆Nint(K) ∩ Nint(L) [since   ⊆ Nint(K),   ⊆ Nint(L)] 

=Nint(K ∩ L) 

⟹  ∩   ⊆ Nint(K ∩ L). 

Therefore there exists an N-b-closed set K∩L with  ∩  ⊆K∩L such that  ∩   ⊆ Nint(K ∩ L). 

Hence  ∩   is a g-N-b-open set in ( , )W . Thus the intersection of any two g-N-b-open sets in 

( , )W  is again a g-N-b-open set. 

Theorem 3.6 The union of two g-N-b-open sets is a g-N-b-open set if one is contained in the other. 

Proof. Let  ,   are any two g-N-b-open sets in ( , )W  such that  ⊆  .  Since  and   are 

g-N-b-open sets, so there exist two N-b-closed sets G1, G2 with   ⊆ G1 and   ⊆ G2 such that   ⊆

 Nint(G1) and   ⊆ Nint(G2). 

Now  ∪   ⊆  [since  ⊆   ] 

             ⊆G2  

⟹  ∪   ⊆G2 

Again  ∪   ⊆   ⊆ Nint(G2), where G2 is an N-b-closed set in (𝑋, 𝜏). 
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Therefore there exists an N-b-closed set G2 with  ∪   ⊆G2 in (𝑋, 𝜏) such that  ∪   ⊆ Nint(G2).  

Hence the union of two g-N-b-open sets is again a g-N-open set if one is contained in the other.  

Definition 3.3 An NS   is called a g-N-b-open set relative to an NS   if there exists an N-b-closed 

set   with ⊆   ∩   such that   ⊆ Nint( ∩  ). 

Theorem 3.7 Assume that ( , )W  is an NTS. If   is a g-N-b-open set relative to  and   is a 

g-N-b-open set relative to  then  is a g-N-b-open set relative to  . 

Proof.  Since   is a g-N-b-open set relative to   so there exists an N-b-closed set K with          

  ⊆  ∩K such that   ⊆Nint( ∩K). Similarly, since   is a g-N-b-open set relative to   then 

there exists an N-b-closed set L with   ⊆   ∩L such that   ⊆ Nint( ∩L). 

We know that the intersection of two N-b-closed sets is again an N-b-closed set. So K∩L is an 

N-b-closed set. 

Now   ⊆   ∩K ⊆   ∩L∩K 

                           = ∩(L∩K) 

                           = ∩G , where G = K∩L is an N-b-closed set. 

Again   ⊆ Nint( ∩K) 

              ⊆ Nint( ∩G). 

Therefore there exists an N-b-closed set G with G  such that int ( )  N G  

Hence   is a g-N- b-open relative to  . 

4. Conclusion 

In this article, we introduce generalized neutrosophic b-open set, generalized neutrosophic 

b-interior, generalized neutrosophic b-closure and investigate some of their properties. By defining 

generalized neutrosophic b-open set, we prove some theorems on NTSs and few illustrative 

examples are provided. In the future, we hope that based on these notions in NTSs, many new 

investigations can be carried out. 

. 
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