

EMVA Standard 1288

Standard for Characterization and Presentation of Specification Data for Image Sensors and Cameras

Release A1.00

Acknowledgements

Participating companies in the elaboration of the EMVA Standard 1288 and their representatives:

Rights and Trademarks

The European Machine Vision Association owns the "EMVA, standard 1288 compliant" logo. Any company can obtain a license to use the "EMVA standard 1288 compliant" logo, free of charge, with product specifications measured and presented according to the definitions in EMVA standard 1288. The licensee guarantees that he meets the terms of use in the relevant version of EMVA standard 1288. Licensed users will self-certify compliance of their measurement setup, computation and representation with which the "EMVA standard 1288 compliant" logo is used. The licensee has to check regularly compliance with the relevant version of EMVA standard 1288, at least once a year. When displayed on line the logo has to be featured with a link to EMVA standardization web page. EMVA will not be liable for specifications not compliant with the standard and damage resulting there from. EMVA keeps the right to withdraw the granted license any time and without giving reasons.

About this Standard

EMVA has started the initiative to define a unified method to measure, compute and present specification parameters and characterization data for cameras and image sensors used for machine vision applications.

The standard does not define what nature of data should be disclosed. It is up to the component manufacturer to decide if he wishes to publish typical data, data of an individual component, guaranteed data, or even guaranteed performance over life time of the component. However the component manufacturer shall clearly indicate what the nature of the presented data is.

The Standard is organized in different modules, each addressing a group of specification parameters, assuming a certain physical behavior of the sensor or camera under certain boundary conditions. Additional modules covering more parameters and a wider range of sensor and camera products will be added at a later date.

For the time being it will be necessary for the manufacturer to indicate additional, component specific information, not defined in the standard, to fully describe the performance of image sensor or camera products, or to describe physical behavior not covered by the mathematical models of the standard.

The purpose of the standard is to benefit the Automated Vision Industry by providing fast, comprehensive and consistent access to specification information for Cameras and Sensors. Particularly it will be beneficial for those who wish to compare cameras or who wish to calculate system performance based on the performance specifications of a image sensor or a camera.

August 05 Release A1.00

4 Introduction and Scope

The first version of this standard covers monochrome digital area scan cameras with linear photo response characteristics. Line scan and color cameras will follow.

Analog cameras can be described according to this standard in conjunction with a frame grabber; similarly, image sensors can be described as part of a camera.

The standard text is organized into separate modules. The first module covers **noise and sensitivity**. More modules will follow in future versions of the standard.

Fig 1 Elements of the Standard

Each module defines a mathematical model for the effects to be described (see Fig 1). The model contains parameters which characterize the camera. The parameters are found by matching the model to measurement data.

Each module consists of the following parts:

- Description of the **mathematical model**
- Description of the **measurement setup**
- Description how to match the model to the data and **compute the parameters**
- Description of how the **results are published**

The standard can only be applied if the camera under test can actually be described by the mathematical model. To ensure this, each module contains a set of **conditions** which need to be fulfilled. If the conditions are not fulfilled, the computed parameters are meaningless with respect to the camera under test and thus the standard cannot be applied.

The standard is intended to provide a concise definition and clear description of the measurement process. For a better understanding of the underlying physical and mathematical model of the camera please read [1], [2], [3], [5], or [7]. Measurement examples are contained in [1].

5 Basic Information

Before discussing the modules, this section describes the basic information which must be published for each camera: -> Revise and see if more definitions are necessary.

- **Vendor** name
- **Model** name
- **Type of data presented:** Typical; Guaranteed; Guaranteed over life time¹
- **Sensor type**
	- CCD; CMOS; CID etc...
- **Sensor diagonal** in [mm] (Sensor length in the case of line sensors)
- **Indication of lens category to be used** [inch]
- **Resolution** of the sensor's active area (width x height in [pixels])
- **Pixel size** (width x height in [µm])
- **Readout type (CCD only)**
	- − progressive scan
	- − interlaced
- **Transfer type (CCD only)**
	- − Interline transfer
	- − Frame transfer
	- − Full frame transfer
	- − Frame interline transfer .
	- −
- **Shutter type (CMOS only)**
	- − **Global** : all pixels start exposing and stop exposing at the same time.
	- **Rolling** : exposure starts line by line with a slight delay between line starts; the exposure time for each line is the same.
	- − **Others** : defined in the data-sheet.
- **Overlap capabilities**
	- − **Overlapping** : readout of frame *n* and exposure of frame *n+1* can happen at the same time.
	- − **Non-overlapping** : readout of frame *n* and exposure of frame *n+1* can only happen sequentially.
	- **Others** : defined in the data-sheet.
- Maximum **frame rate** at the given operation point. (no change of settings permitted)
- **General conventions**
- Definition used for **typical** data. (Number of samples, sample selection).
- **Others** (Interface Type etc..)

 1 The type of data may vary for different parameters. E.g. guaranteed specification for most of the parameters and typical data for some measurements not easily done in production (e.g. $\eta(\lambda)$). It then has to be clearly indicated which data is of what nature.

6 General definitions

This section defines general terms used in the different modules

6.1 Active Area

The Active Area of an image sensor or of a camera is defined as the array of light sensitive pixels that are functional² in normal operation mode.

6.2 Number of Pixels

The number of pixels is defined as:

The number of pixels is the number of separate, physically existing and light sensitive photosites in the Active Area³.

Stacked photosites 4 are counted as a single pixel

The number of pixels of a sensor / camera is indicated in number of columns x number of rows. (E.g. 640 x 480)

6.3 (Geometrical) Pixel Area

Geometrical not necessarily light sensitive area of a pixel, given by horizontal pixel pitch x vertical pixel pitch.

 2 Functional in this context means that the pixel values are given out.

 3 Dark pixels are not counted

⁴ Stacked pixels are sometimes used for colour separation

7 Module 1: Characterizing the Image Quality and Sensitivity of Machine Vision Cameras and Sensors

This module describes how to characterize the temporal and spatial noise of a camera and its sensitivity to light.

7.1 Mathematical Model

This section describes the physical and mathematical model used for the measurements in this module. (Fig 2 & Fig 3): A number of n_p photons hits the (geometrical) pixel area during the exposure time. These photons generate a number of n_e electrons, a process which is characterized by the total quantum efficiency n . (total quantum efficiency includes fill factor microlenses etc..) see formula 4.

Fig 2 Physical model of the camera

The electrons are collected,⁵ converted into a voltage by means of a capacitor, amplified and finally digitized yielding the digital gray value *y* which is related to the number of electrons by the overall system gain *K*. All dark noise sources⁶ in the camera are referenced to the number of electrons in the pixel and described by a (fictive) number of n_d noise electrons added to the photon generated electrons.

 $^{\rm 5}$ The actual mechanism is different for CMOS sensors, however, the mathematical model for CMOS is the same as for CDD sensors.

 6 Dark Noise = all noise sources present when the camera is capped; not to be confused with Dark Current Noise.

Fig 3 Mathematical model of a single pixel

Spatial non-uniformities in the image are modeled by adding (fictive) spatial noise electrons to the photon generated electrons.⁷

grey value

electrons

The following naming conventions are used for the mathematical model:

photons

- n_x denotes a number of things of type x. n_x is a stochastic quantity.
- $\mu_{\rm r}$ denotes the mean of the quantity *x*.
- \bullet σ_x denotes the standard deviation and σ_x^2 the variance of the quantity *x*.
- **The index p denotes quantities related to the number of photons hitting the geometrical pixel dur**ing exposure time.
- The index *e* denotes quantities related to the number of electrons collected in the pixel.
- **The index** *d* **denotes quantities related to the number of (fictive) dark noise electrons collected in** the pixel.
- The index *y* denotes quantities related to the digital gray values.

The mathematical model consists of the following equations:

Basic Model for Monochrome Light

$$
\mu_p = \Phi_p T_{\rm exp} \tag{1}
$$

$$
\Phi_p = \frac{EA\lambda}{hc} \tag{2}
$$

$$
\mu_{y} = K(\mu_{e} + \mu_{d}) = K(\eta\mu_{p} + \mu_{d})
$$

$$
= \underbrace{K\eta\mu_p}_{light\ induced} + \mu_{y\ldots dark} \tag{3}
$$

$$
\eta = \eta(\lambda) \tag{4}
$$

$$
\sigma_y^2 = \sigma_{y.total}^2 = \sigma_{y.temp}^2 + \sigma_{y.spat}^2
$$
\n
$$
\begin{bmatrix}\n\vdots & \vdots & \vdots & \vdots \\
\sigma_{y.t char}^2 & \sigma_{y.tamp}^2 & \sigma_{
$$

$$
= K^{2} \left[\underbrace{\eta \mu_{p} + \sigma_{d}^{2}}_{temporal} + \underbrace{S_{g}^{2} \eta^{2} \mu_{p}^{2} + \sigma_{o}^{2}}_{spatial} \right]
$$

$$
\sigma_{y. temp}^2 = \underbrace{K^2 \eta \mu_p}_{light\ induced} + \sigma_{y. temp. dark}^2 \tag{6}
$$

 $\frac{1}{7}$ Not shown in Fig 3.

- DYN_{in} Input dynamic range [1]
 DYN_{out} Output dynamic range [1] *DYN_{out}* Output dynamic range [1]
E irradiance on the sensor s
- E irradiance on the sensor surface $\textsf{[W/m}^2\textsf{]}$
- *F* Non-whiteness coefficient
- *h* Planck's constant $h \approx 6.6310^{-34}$ Js
- *K* overall system gain [DN/e-]

⁸ For linear sensors, $DYN_{in} = DYN_{out}$ holds true.

 9 The dynamic range must be present in the same image ("intra scene").

- The amount of photons collected by a pixel depends on the product of irradiance and exposure time.
- All noise sources are stationary and white with respect to time and space.¹⁴ The parameters describing the noise are invariant with respect to time and space.

 \overline{a}

¹⁰ Including the geometrical fill factor.
¹¹ The unit [e-] = 1 denotes a number of electrons.
¹² The unit [p~] = 1 denotes a number of photons.
¹³ The unit [DN] = 1 denotes digital numbers.
¹⁴ The spectrogram me

EMVA Standard

- Only the total quantum efficiency is wavelength dependent. The effects caused by light of different wavelengths can be linearly superimposed.
- Only the dark current is temperature dependent.

August 05 and the Release A1.00

If these assumptions do not hold true and the mathematical model cannot be matched to the measurement data, the camera cannot be characterized using this standard.

7.2 Measurement Setup

The measurements described in the following section use dark and bright measurements. Dark measurements are performed while the camera is capped.

Bright measurements are taken without a lens and in a dark room. The sensor is illuminated by a diffuse disk-shaped light source15 placed in front of the camera (see Fig. 4). Each pixel must "see" the whole disk.¹⁶ No reflection shall take place.¹

Fig. 4 : Optical setup

The f-number of this setup is defined as:

$$
f_{\#} = \frac{d}{D} \tag{20}
$$

with the following quantities:

d distance from sensor to light source [m]

D diameter of the disk-shaped light source [m]

The f-number must be 8.

If not otherwise stated, measurements are performed at a 30°C camera housing temperature. The housing temperature is measured by placing a temperature sensor at the lens mount. For cameras consuming a lot of power, measurements may be performed at a higher temperature.

Measurements are done with monochrome light. Use of the wavelength where the quantum efficiency of the camera under test is maximal is recommended. The wavelength variation must be ≤ 50 nm.

The amount of light falling on the sensor is measured with an accuracy¹⁸ of better than $\pm 5\%$. The characteristic of non-removable filters is taken as part of the camera characteristic.

 $\overline{}$

 $^{\rm 15}$ This could be, for example, the port of an a Ulbricht sphere. A good diffuser with circular aperture would also do.

 16 Beware, the mount forms an artificial horizon for the pixels and might occlude parts of the disk for pixels located at the border of the sensor.
¹⁷ Especially not on the mount's inside screw thread.

 18 Typical pitfalls are: the inside of the lens mount reflects additional light on the sensor;the measurements device has a different angular characteristic as compared with the camera sensor.

The number of photons hitting the pixel during exposure time is varied by changing the exposure time and computed using equations (1) and (2).

All camera settings (besides the variation of exposure time where stated) are identical for all measurements. For different settings (e.g., gain) different sets of measurements must be acquired and different sets of parameters, containing all parameters¹⁹ which may influence the characteristic of the camera, must be presented.

7.3 Matching the Model to the Data

7.3.1 Extended Photon Transfer Method

The measurement scheme described in this section is based on the "Photon Transfer Method" (see [4]) and identifies those model parameters which deal with temporal noise.

For a fixed set of camera settings, two series of measurements are performed with varying exposure times²⁰ T_{exp} :

First a dark run is performed and the following quantities are determined (details below): T_{exp} , $\mu_{v,dark}$, and

 $\sigma_{v.temp. dark}^2$.

Second a bright run is performed and the following quantities are determined: T_{exp} , μ_p , μ_y , and $\sigma_{y,\text{temp}}^2$.

Set up the measurement to meet the following conditions:

- The number of bits is as high as possible.
- The Gain setting of the camera is as small as possible but large enough to ensure that in darkness $\sigma_{v \text{ term dark}}^2 \geq 1$ holds true.²¹
- The Offset setting of the camera is as small as possible but large enough to ensure that the dark signal including the temporal and spatial noise is well above zero.²
- The range of exposure times used for the measurement series is chosen so that the series covers $SNR_v = 1$ and the saturation point.
- Distribute the exposure time values used for measurement in a way that ensures the results for minimum detectable light and saturation bear same exactness.

No automated parameter control (e.g., automated gain control) is enabled.

The **mean of the gray values** μ is computed according to the formula:

$$
\mu_{y} = \frac{1}{N} \sum_{i,j} y_{ij} \tag{21}
$$

using the following quantities:

- μ_{v} mean gray value [DN]
- *ij y* gray value of the pixel in the *i*-th row and *j*-th column [DN]
- *N* Number of pixels [1]

All pixels in the active area²³ must be part of the computation.²⁴.

¹⁹ Including for example if the exposure time is programmed or defined by means of an external trigger signal.
²⁰ Varying the exposure time is required for determining dark current and shutter efficiency.
²¹ Otherwi

August 05 **August 05** Release A1.00

The **variance of the temporal distribution of the gray values** $\sigma_{v,temp}^2$, namely $\sigma_{v,temp,dark}^2$, is computed from the difference of two images A and B according to:

$$
\sigma_{y.\text{temp}}^2 = \frac{1}{2} \left[\frac{1}{N} \sum_{i,j} \left(y_{ij}^A - y_{ij}^B \right)^2 \right] \tag{22}
$$

using the following quantities:

 $\sigma_{y.\mathit{temp}}^2$ variance of the temporal noise [DN²]

 y_{ii}^A gray value of the pixel in the *i*-th row and *j*-th column of the image A [DN]

 y_{ii}^B gray value of the pixel in the *i*-th row and *j*-th column of the image B [DN]

N Number of pixels

All pixels in the active area are part of the computation. To avoid transient phenomena when the live grab is started, images A and B are taken in order from a live image series.

After performing the measurements, draw the following diagrams:

- (a) μ _{*v*} versus μ ^{*n*}</sub>
- (b) $\sigma_{v.temp}^2$ versus μ_p
- (c) $\mu_{v,dark}$ versus T_{exp}
- (d) $\sigma_{v.temp. dark}^2$ versus T_{exp}
- (e) $\sigma_{y.\mathit{temp}}^2 \sigma_{y.\mathit{temp.dark}}^2$ versus $\mu_y \mu_{y.\mathit{dark}}$
- (f) $\mu_v \mu_{v,dark}$ versus μ_p

Select a contiguous range of measurements where all diagrams show a sufficiently linear correspondence.²⁵ The range should cover at least 80% of the range between $SNR_y = 1$ and $SNR_y = Max$.

The **overall system gain** *K* is computed according to the mathematical model as:

$$
K = \frac{\sigma_{y. temp}^2 - \sigma_{y. temp. dark}^2}{\mu_y - \mu_{y. dark}}
$$
 (23)

which describes the linear correspondence in the diagram showing $\sigma_{y.\mathit{temp}}^2 - \sigma_{y.\mathit{temp.dark}}^2$ versus ^µ *^y* − ^µ *^y*.*dark* . Match a line starting at the origin to the linear part of the data in this diagram. The slope of this line is the overall system gain *K*.

The **total quantum efficiency** η is computed according to the mathematical model as:

²³ See "general definitions".
²⁴ Defective pixels must not be excluded.
²⁵ If this is not possible, the camera does not follow the model and cannot be qualified using this norm.

August 05 and the Release A1.00

$$
\eta = \frac{\mu_y - \mu_{y,dark}}{K\mu_p} \tag{24}
$$

which describes the linear correspondence in the diagram showing $\mu_v - \mu_{v, dark}$ versus μ_p . Match a line starting at the origin to the linear part of the data in this diagram. The slope of this line divided by the overall system gain K yields the total quantum efficiency η .

The **dark current** N_d is computed according to the mathematical model as:

$$
N_d = \frac{\mu_{y, \text{dark}} - K\mu_{\text{d0}}}{KT_{\text{exp}}}
$$
\n(25)

which describes the linear correspondence in the diagram showing $\mu_{v. dark}$ versus T_{exp} . Match a line to the linear part of the data in this diagram. The slope of this line divided by the overall system gain K yields a value which equals the dark current N_d derived from the noise measurement. The offset from the matched line divided by the overall system gain *K* yields the dark offset μ_{d0} . This quantity, however, is not of interest for characterizing a camera.

If a camera has a dark current compensation, the dark current is computed as:

$$
N_d = \frac{\sigma_{y,\text{temp.dat}}^2 - K^2 \sigma_{d0}^2}{K^2 T_{\text{exp}}}
$$
(26)

which describes the linear correspondence in the diagram showing $\sigma_{v. \textit{temp.} dark}^2$ versus T_{exp} . Match a line (with offset) to the linear part of the data in the diagram. The slope of this line divided by the square of the overall system gain K yields also the dark current N_d .

If the camera's exposure time cannot be set long enough to result in meaningful values for the dark current N_d and the doubling temperature k_d (see below) these two parameters – and only these – may be omitted when presenting the results; the raw measurement data however must be given.

The **dark noise for exposure time zero** σ_{d0}^2 is found as the offset of same line divided by the square of the overall system gain *K* .

The **doubling temperature** k_d of the dark current is determined by measuring the dark current as described above for different housing temperatures. The temperatures must vary over the whole range of the operating temperature of the camera.

Put a capped camera in a climate exposure cabinet and drive the housing temperature to the desired value for the next measurement. Before starting the measurement, wait at least for 10 minutes with the camera reading out live images to make sure thermal equilibrium is reached. For each temperature \mathcal{G} , determine the dark current N_d by taking a series of measurements with varying exposure times as described above.

Draw the following diagram:

(g)
$$
\log_2 N_d
$$
 versus $9-30^{\circ}C$.

Check to see if the diagram shows a linear correspondence and match a line to the linear part of the data. From the mathematical model, it follows that:

$$
\log_2 N_d = \frac{\mathcal{G} - 30^{\circ}C}{k_d} + \log_2 N_{d30} \tag{27}
$$

August 05 Release A1.00

and thus the inverse of the slope of the line equals the doubling temperature k_d and the offset taken to the power of 2 equals the **30°C dark current** N_{d30} .

The saturation point is defined as the maximum of the curve in the diagram showing $\sigma_{v \text{ term}}^2$ versus μ_n . The abscissa of the maximum point is the number of photons $\mu_{p,sat}$ where the camera saturates. The **full well capacity** $\mu_{e, sat}$ in electrons is computed according to the mathematical model as:

$$
\mu_{e,sat} = \eta \mu_{p,sat} \tag{28}
$$

To determine the wavelength dependence of the total quantum efficiency, run a series of measurements²⁶ with monochrome light of different wavelengths λ , including the wavelength λ_o , where the quantum efficiency has been determined as described above.

For each wavelength, adjust the light's intensity and the exposure time so that the same amount of photons μ_p hit the pixel during exposure time. Take a bright measurement and compute the mean μ_v

of the image. Cap the camera, take a dark measurement and compute the mean $\mu_{v,dark}$ of the image.

From the mathematical model, it follows that:

$$
\eta(\lambda) = \eta(\lambda_0) \frac{\mu_y(\lambda) - \mu_{y,dark}}{\mu_y(\lambda_0) - \mu_{y,dark}}\bigg|_{\mu_p = \text{const}}
$$
\n(29)

which can be given as a table and/or graphic 27 .

7.3.2 Spectrogram Method

The measurement scheme described in this section is based on the "Spectrogram Method" (see [1]) and identifies those model parameters which deal with total and spatial noise. $\frac{2}{3}$

The **total noise** is taken from a spectrogram of a single image. The spectrogram is computed by taking the mean of the amplitude of the Fourier transform of each line (details below). The white part of the total noise, as well as the total amount of noise including all kind of artifacts such as stripes in the image, can be estimated from the spectrogram.

To describe the total noise, three measurements for different lighting conditions are made. For each measurement, the spectrogram, $\sigma_{v, full}$, and $\sigma_{v, while}$ are measured. The measurements are done for a

fixed set of camera settings.

The **spatial noise** is estimated in the same manner as the total noise but the spectrogram is taken from an image resulting from low pass filtering (averaging) a live image stream.

To describe the spatial noise, a bright and a dark run are performed. During the dark run, the following quantities are determined (details below): T_{exp} , $\mu_{y \text{.}dark}$, and $\sigma_{y \text{.}spat \text{.}dark}^2$.

During the bright run, the following quantities are determined: T_{exp} , μ_p , μ_v , and σ_v^2 _{spat}.

For computing $\sigma_{v,spat,dark}^2$ and $\sigma_{v,spat}^2$, the measure $\sigma_{v,full}$ is used which contains all noise parts.

²⁶ You can use a set of filters.

²⁷ Note that this is different from the spectral distribution of the responsivity which is determined by the same

measurement, but holding constant the irradiance instead of the number of photons collected.
²⁸ Spatial noise is often not really white but can, to a large extent, be dominated by periodic artifacts such as stripes in the image. To deal with this, the spatial noise parameters are estimated from the spectrogram. The Spectrogram is the mean of the frequency spectrum of the of the image's lines.

August 05 and the Release A1.00

Set up the measurement to meet the following conditions:²⁹

(Note: All settings must be equal for all measurements. For some cameras it may be useful to perform the measurements at several operating points in order to obtain meaningful values for all measured parameters.)

- The number of bits per pixel is as high as possible.
- The Gain setting of the camera is as small as possible but large enough to ensure that in darkness $\sigma_{v.temp}^2 \ge 1$ and $\sigma_{v.spat}^2 \ge 1$ holds true.
- The Offset setting of the camera is as small as possible but large enough to ensure that the dark signal, including the temporal and spatial noise, is well above zero.
- The range of exposure times used for the measurement series is chosen so that the series covers $SNR_v = 1$ and the saturation point.
- No automated parameter control (e.g., automated gain control) is enabled.

Camera built-in **offset and gain shading correction or any other correction (e.g. defect pixel correction)** may be applied but must not be changed during a series of measurements.³⁰

The **spectrogram** of an image is computed by the following steps:

- Restrict the number of pixels per line so that the largest number $N = 2^q$ is less than or equal to the image width.³¹ ($q \in N$)
- For each of the *M* lines of the image, compute the amplitude of the Fourier transform:
	- Prepare an array $y(k)$ with the length 2*N*.
	- Copy the pixels from the image to the first half of the array ($0 \le k \le N-1$).
	- Compute the mean of the pixels in the first half of the array

$$
\bar{y} = \frac{1}{N} \sum_{k=0}^{N-1} y(k)
$$
\n(30)

Subtract the mean from the values

$$
y(k) = y(k) - \overline{y} \tag{31}
$$

- Fill the second half of the array with zeros ($N \le k \le 2N-1$).
- − Apply a (Fast) Fourier Transformation to the array y(k):

$$
\underline{Y}(n) = \sum_{k=0}^{2N-1} y(k) e^{j2\pi \frac{nk}{2N}}
$$
\n(32)

The frequency index n runs in the interval $0 \le n \le N$ yielding N+1 complex result values. Verify that the first value $Y(0)$ is zero. (This must be the case if the mean was subtracted from each line and computation was done correctly)

− Compute the amplitude of the Fourier transform as:

²⁹ It may be necessary to use a different gain setting as in the photon transfer measurement.

³⁰ Applying shading correction during measurement might make it impossible to match the mathematical model and thus characterize the camera by the methods described in this standard.

 31 Depending on the FFT implementation available, non- 2^q based data length can be also used.

August 05 Release A1.00

$$
|\underline{Y}(n)| = \sqrt{\underline{Y}(n)\underline{Y}^*(n)}
$$
\n(33)

Take the mean of the amplitude values for all *M* lines of the image

$$
\overline{\left|\underline{Y}(n)\right|} = \frac{1}{M} \sum_{j} \left| \underline{Y}_{j}(n) \right| \tag{34}
$$

where $Y_{i}(n)$ is the amplitude of the Fourier transform of the j-th line.

The N+1 values $|Y(n)|$ with $0 \le n \le N$ form the spectrogram of the image. It should be flat with occasional peaks only.

*** The mean of the squared transform is the variance of the noise, describing the total grey value noise, including all artifacts. It is computed according to:

$$
\sigma_{y,full}^2 = \frac{1}{N - n_{\min} + 1} \sum_{n = n_{\min}}^{N} \boxed{\underline{Y}(n)}^2
$$
\n(35)

To avoid counting lighting non-homogeneities such as camera noise, values $\langle n_{\min} \rangle$ are not used for the computation. Determine n_{min} by comparing the spectrogram with and without light applied. The following restrictions apply:

$$
0 < n_{\min} < \frac{1}{32}N \tag{36}
$$

The square of the height of the flat part seen in the spectrogram curve is the variance describing the white part of the noise. It is estimated by taking the median of the spectrogram; sort the values $|Y(n)|$ and take the value with the index $N/2$.

$$
\sigma_{y. white} = \text{sort}\bigg(\left|\frac{\overline{Y}(n)}{\underline{Y}(n)}\right|n = 0,1,2,...N\bigg)_{index = \frac{N}{2}}
$$
\n
$$
\star \qquad \star
$$
\n(37)

To **check if the total noise is white,** take three spectrograms: one in darkness, one with the camera at 50% saturation capacity ^µ*e*.*sat* and one with the camera at 90% saturation. Draw the three spectrograms in one diagram showing $\sqrt{\frac{Y(n)}{K}}/K\eta$ in [p~] versus *n* in [1/pixel]. All three curves should be flat with occasional sharp peaks only. Compute the non-whiteness coefficient 32 for each curve:

$$
F = \frac{\sigma_{y,fill}^2}{\sigma_{y,white}^2} \tag{38}
$$

and check if it is approximately 1. If this parameter deviates significantly from 1 the spatial noise is not white, and the model may not be applied.

In order to gain a temporal **low-pass filtered** version of the camera image, the mean is computed from a set of *N* images taken from a live image stream.

This can be done recursively by processing each pixel according to the following algorithm:

 32 This parameter indicates how well the camera / sensor matches the mathematical model.

$$
\overline{y}_{k+1} = \frac{k\overline{y}_k + y_{k+1}}{k+1}
$$
\n(39)\n
$$
\overline{\sigma}_{k+1}^2 = \frac{\sigma_{y,\text{temp}}^2}{k+1}
$$
\n(40)

where y_k is the pixel's value in the k-th image with $0 \le k \le N-1$ and N is the total number of images processed. The temporal low-pass filtered image is formed by the pixel values 33 $\overline{\mathbf{\mathrm{y}}_{N}}$ which have a temporal variance of $\overline{\sigma}_N^2$.

The total number *N* of images processed is determined by running the recursion until the following condition is met:

$$
\sigma_{y,spat} \geq 10 \cdot \overline{\sigma}_N \tag{41}
$$

Using temporal low-pass filtered images, run a series of dark measurements and a series of bright measurements. For each measurement, compute the spectrogram and determine $\sigma_{v. full}$. Use this quantity as $\sigma_{y,spat}$ in the bright and $\sigma_{y,spat,dark}$ in the dark measurement. Draw the following diagrams:

(h)
$$
\sqrt{\sigma_{y,spat}^2 - \sigma_{y,spat.dat}^2}
$$
 versus $\mu_y - \mu_{y,dark}$

(i)
$$
\sigma_{y.\text{spat.dat}}
$$
 versus T_{exp}

Select a contiguous range of measurements where all diagrams show a sufficiently linear correspon d ence. 3

The **variance coefficient of the spatial gain noise** S_g^2 is computed according to the mathematical model as:

$$
S_g = \frac{\sqrt{\sigma_{y,spat}^2 - \sigma_{y,spat.dark}^2}}{\mu_y - \mu_{y,dark}}
$$
\n(42)

which describes the linear correspondence in the diagram showing $\sqrt{\sigma_{y.\text{spat}}^2 - \sigma_{y.\text{spat.}dark}^2}$ versus ^µ *^y* − ^µ *^y*.*dark* . Match a line through the origin to the linear part of the data. The line's slope equals the variance coefficient of the spatial gain noise $\,S^2_{g}$.

From the mathematical model, it follows that the **variance of the spatial offset noise** σ^2 should be constant and not dependent on the exposure time. Check that the data in the diagram showing $\sigma_{y.spat.dark}$ versus T_{exp} forms a flat line. Compute the mean of the values in the diagram and square the result; this equals the variance of the spatial offset noise σ_o^2 .

 33 To avoid rounding errors, the number format of \bar{y}_N must have sufficient resolution. A float value is recommended.

 34 If this is not possible, the camera does not follow the model and cannot be qualified using this standard.

August 05 **August 05** Release A1.00

7.4 Publishing the Results

This section describes the information which must be published to characterize a camera according to this standard. The published measurement data must be **typical** and/or **guaranteed specification** for the characterized camera type 35 . The type of data must be clearly indicated. If only typical data is published the definition of typical (sample selection; number of samples) must be indicated.

As good practice the following convention is recommended: For all guaranteed specification data typical, maximum and minimum values respectively curves are published. If for some parameters only one value or curve of data points is given, the data is typical and has to be acquired in accordance with the publishers definition of "typical".

A camera's characteristics may change depending on the **operating point** described by settings such as gain, offset, digital shift, shading, etc. A camera manufacturer can publish multiple data sets for multiple operating points. Each data set must contain a complete description of the (fixed) camera settings during measurement as well as a complete set of model parameters.

Some parameters may be left blank if correspondence with the model is not satisfied. The raw data and the diagrams, however, must still be plotted.

Use diagrams to show the measured data points.

7.4.1 Characterizing Temporal Noise and Sensitivity

The data described in this section can be published for multiple operating points. The following **basic parameters** are part of the mathematical model:

- $\eta(\lambda)$: **Total quantum efficiency** in [%] for monochrome light versus wavelength of the light in [nm]. FWHM of the illumination should be smaller than 50nm. This data can be given as a table and/or graphic.
- ^σ *^d* ⁰ : Standard deviation of the **temporal dark noise** referenced to electrons for exposure time zero in [e-].
- N_{d30} : **Dark current** for a housing temperature of 30°C in [e-/s]. (-> change way we measure temperature)
- k_d : **Doubling temperature** of the dark current in $[°C]$.
- $\frac{1}{K}$ **: Inverse of overall system gain** in [e-/DN].
- $\mu_{e, sat}$: **Saturation capacity** referenced to electrons in [e-].

The following **derived data** is computed from the mathematical model using the basic parameters given above:

- $\mu_{n,\min}(\lambda)$: **Absolute sensitivity threshold** in [p~] for monochrome light versus wavelength of the light in [nm].
- $SNR_v(\mu_n)$: **Signal to noise ratio** in [1] versus number of photons collected in a pixel during exposure time in [p~] for monochrome light with it's wavelength given in [nm]. The wavelength should be near the maximum of the quantum efficiency. If this data is given as a diagram, it must be plotted with *SNR_y* on the y-axis using a double scale \log_2 [bit] / 20 \log_{10} [dB] and μ _{*p*} on the xaxis using a single scale log_2 [bit].
	-
- $DYN_{in} = DYN_{out}$: **Dynamic range** in [1]

 $^{\rm 35}$ The type of data may vary for different parameters. E.g. guaranteed specification for most of the parameters and typical data for some measurements not easily done in production (e.g. $\eta(\lambda)$). It then has to be clearly indicated which data is of what nature.

August 05 and the Release A1.00

The following **raw measurement data** is given in graphic form allowing the reader to estimate how well the camera follows the mathematical model. In all graphics, the linear part of the data used for estimating the parameters must be indicated.

- $\mu_{v}(\mu_{n})$: Mean gray value in [DN] versus number of photons collected in a pixel during exposure time in [p~].
- \bullet $\sigma_{y.\mathit{temp}}^2(\mu_p)$: Variance of temporal distribution of gray values in [DN 2] versus number of photons collected in a pixel during exposure time in $[p-]$.
- $\mu_{v, \text{dark}}(T_{\text{ex}})$: Mean of the gray values' dark signal in [DN] versus exposure time in [s].
- \bullet $\sigma_{y.\mathit{temp.dark}}^2(T_\mathrm{exp})$: Variance of the gray values' temporal distribution in dark in [DN²] versus exposure time in [s].
- $\int \sigma_{y.\textit{temp}}^2 \sigma_{y.\textit{temp.dark}}^2 \left[\mu_y \mu_{y.\textit{dark}} \right]$ $\sigma_{_{y.\mathit{temp}}}^2-\sigma_{_{y.\mathit{temp.dark}}}^2\,|\mu_{_y}-\mu_{_{y.\mathit{dark}}})$: Light induced variance of temporal distribution of gray values in [DN 2] versus light induced mean gray value in [DN].
- $\left[\mu_{_y}-\mu_{_{y. dark}}\right] \! \left(\!\mu_{_p}\right)\;$: light induced mean gray value in [DN] versus the number of photons collected in a pixel during exposure time in [p~].
- $\log_2 N_d (\theta 30^{\circ} C)$: logarithm to the base 2 of the dark current in [e-/s] versus deviation of the housing temperature from 30°C in [°C]

7.4.2 Characterizing Total and Spatial Noise

The data described in this section can be published for multiple operating points. The following **basic parameters** are part of the mathematical model:

- ^σ *^o* : Standard deviation of the **spatial offset noise** referenced to electrons in [e-].
- *Sg* : Standard deviation of the **spatial gain noise** in [%].
- $\frac{|Y(n)|}{\sum_{i=1}^{n}}$ *K*^η $\frac{Y(n)}{N}$: **Spectrogram** referenced to photons in [p~] versus spatial frequency in [1/pixel] for no

light, 50% saturation and 90% saturation. Indicate the whiteness factor F for each of the three graphs.

The following **raw measurement data** is given in graphic form allowing the reader to estimate how well the camera follows the mathematical model. In all graphics, the linear part of the data used for estimating the parameters must be indicated.

- $\sqrt{\sigma_{y.\textit{spat}}^2-\sigma_{y.\textit{spat.dark}}^2}\,\big(\mu_y-\mu_{y.dark}\big)$: Light induced standard deviation of the spatial noise in [DN] versus light induced mean of gray values [DN].
- $\sigma_{v.spat. dark}(T_{\rm exp})$: Standard deviation of the spatial dark noise in [DN] versus exposure time in [s].

August 05 and 1 Release A1.00

8 References

- [1] Dierks, Friedrich, "Sensitivity and Image Quality of Digital Cameras", download at http://www.baslerweb.com/
- [2] Holst, Gerald, "CCD arrays, cameras, and displays", JCD Publishing, 1998, ISBN 0-9640000-4-0
- [3] Jähne, Bernd, Practical Handbook on Image Processing for Scientific and Technical Applications, CRC Press 2004, ISBN
- [4] Janesick, James R., CCD characterization using the photon transfer technique, Proc. SPIE Vol. 570, Solid State Imaging Arrays, K. Prettyjohns and E. Derenlak, Eds., pp. 7-19 (1985)
- [5] Janesick, James R., Scientific Charge-Coupled Devices, SPIE PRESS Monograph Vol. PM83, ISBN 0-8194-3698-4
- [6] Kammeyer, Karl, Kroschel, Kristian, Digitale Signalverarbeitung, Teubner Stuttgart 1989, ISBN 3- 519-06122-8
- [7] Theuwissen, Albert J.P., Solid-State Imaging with Charge-Coupled Devices, Kluwer Academic Publishers 1995, ISBN 0-7923-3456-6