An introduction to the tidyverse: dplyr, tidyr and
purrr

Aitor Ameztegui, Victor Granda

February 2019

Introduction

Thi is a RMarkdown document generated to illustrate the exercices suggested as part of the Workshop “An
introduction to the tidyverse”, that will be celebrated in Barcelona within the 1st Meeting of the Iberian
Ecological Society and the XIV AEET Meeting. All the code and the data needed to produce this document can
be found in GitHub (https://github.com/ameztegui/tidyverse_workshop). For any doubt about the exercises,
you can contact Aitor Ameztegui (ameztegui@gmail.com) or Victor Granda (v.granda@creaf.uab.cat).

The packagestidyr, dplyr, and purrr are part of a set of packages known as the tidyverse, created by
Hadley Wickham, Chief Scientist in RStudio. The tidyverse was created to easen data analysis and data
management. It consists on packages to import and read data, to organize and modify them, to analyze and
model them, and to visualize them. In this seminar we will focus on tidyr, conceived to help organize data,
dplyr, that focuses on data transformation, and purrr, which enhances R’s functional programming (FP)
toolkit by providing a complete and consistent set of tools for working with functions and vectors. We must
firs install these packages (if we haven’t done it yet). To install all the packages from the tidyverse at once
we need to write install.packages("tidyverse"). Then we need to load the core tidyverse and make it
available in our current R session.

library(tidyverse)

We also need to load the dataset we will use for this workshop, we can download them from GitHub.

load("../data/data_workshop.Rdata")
In these exercises we will use five data frames with information from the 2nd and 3rd Spanish National Forest
Inventory (IFN2 e IFN3) in Catalonia. The data frames are:

 plots [11,858 x 15]: all the IFN3 plots in Catalonia, with info about the date and time of measurement,
soil texture and soil pH, total canopy cover and tree canopy cover, etc.

o trees [111,756 x 12]: contains all the adult trees (diam > 7.5 cm) measured both in IFN2 and IFN3.
Contains info about the plot, the species, diameter class, diameter measured at IFN2 and IFN3. ..

« species [14,778 x 15]: contains the number of trees/ha per species and diameter class.
« coordinates [11,858 x 6]: contains the X & Y coordinates of each IFN3 plot.
o leaf [10447 x 3]: leaf biomass and carbon content for those IFN3 plots where it is available

First thing to do is to have a look at the data, to get familiar with the data they contain.
plots

A tibble: 11,858 x 15
Codi Provincia Cla Subclase FccTot FccArb Fechalni

<fct> <chr> <fct> <fct> <int> <int> <date>

1 0800~ 08 A 1 80 70 2001-07-09
2 0800~ 08 A 1 80 70 2001-08-06
3 0800~ 08 A 1 90 80 2001-08-06
4 0800~ 08 A 1 90 50 2001-07-09
5 0800~ 08 A 1 70 60 2001-08-03
6 0800~ 08 A 1 90 90 2001-08-01
7 0800~ 08 A 1 90 90 2001-08-07
8 0800~ 08 A 1 70 60 2001-08-03
9 0800~ 08 A 1 80 70 2001-08-02
10 0800~ 08 A 1 80 80 2001-06-14
... with 11,848 more rows, and 8 more variables: Horalni <dttm>,

FechaFin <date>, HoraFin <dttm>, Rocosid <int>, Textura <int>,
MatOrg <int>, PhSuelo <int>, FechaPh <date>

https://github.com/ameztegui/tidyverse_workshop
ameztegui@gmail.com
v.granda@creaf.uab.cat
https://cran.r-project.org/web/packages/tidyverse/index.html
https://github.com/hadley
https://github.com/ameztegui/tidyverse_workshop/data

trees

A tibble: 111,756 x 10

Codi Provincia Especie Rumbo Dist N CD DiamIf3 DiamIf2 HeilIf3
<fct> <chr> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 080001 08 022 7 8.3 31.8 20 20.3 18.9 9
2 080002 08 476 38 9.1 31.8 35 34 32.4 9
3 080003 08 021 25 7 31.8 25 24.8 17.6 11
4 080004 08 021 28 8.89 31.8 15 16.8 12.6 9.5
5 080006 08 021 19 11.2 14.1 35 34.0 30.9 13
6 080007 08 021 32 12 14.1 35 33.1 28.2 10
7 080008 08 243 40 7.8 31.8 15 15 13.2 6
8 080009 08 045 16 5.09 31.8 20 17.5 15.3 7
9 080010 08 243 47 26.9 5.09 65 67.4 66.8 16.5
10 080013 08 022 44 2.7 127. 15 15.1 12.6 9.5
... with 111,746 more rows

Maybe you have noticed that printing the data frames produces a different output. Instead of plotting all the
content, it prints by default the first 10 rows, and it will also give us some information about the variable
types. This is because they are not normal data frames, but tibbles.We can check this by printing its class
type.

class(plots)

[1] "tbl_df" "tbl" "data.frame"

A tibble is just a data frame with some particularities: for example, they only print the first 10 rows by
default (instead of the whole data frame), and printing them provides information on all the variables and
their class. Besides that, we can treat tibbles as normal data frames, because they behave like them at all
effects. Since they are tibbles, we can use the function glimpse to have a prettier summary of its content.

glimpse(plots)

Observations: 11,858
Variables: 15

$ Codi <fct> 080001, 080002, 080003, 080004, 080005, 080006, 0800...
$ Provincia <chr> "0O8", "08", "o8", "08", "08", "08", "08", "08", "08"...
$ Cla <fct> A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A...
$ Subclase <fect> 1, 1, 1,1, 1,1, 1, 1,1, 1, 1,1, 1,1, 1,1, 1, 1...
$ FccTot <int> 80, 80, 90, 90, 70, 90, 90, 70, 80, 80, 70, 100, 90,...
$ FccArb <int> 70, 70, 80, 50, 60, 90, 90, 60, 70, 80, 60, 95, 90, ...
$ Fechalni <date> 2001-07-09, 2001-08-06, 2001-08-06, 2001-07-09, 200...
$ Horalni <dttm> 2017-11-26 09:44:00, 2017-11-26 09:18:58, 2017-11-2...
$ FechaFin <date> 2001-07-09, 2001-08-06, 2001-08-06, 2001-07-09, 200...
$ HoraFin <dttm> 2017-11-26 11:20:14, 2017-11-26 10:52:47, 2017-11-2...
$ Rocosid <int> 3, 4, 3, 3, 4, 3, 3, 4, 4, 5, 5, 2, 2, 3, 2, 4, 3, 4...
$ Textura <int> 3, 3, 3, 3, 3, 3, 3, 3, 3, NA, NA, 3, 3, 3, 2, 2, 3,...
$ MatOrg <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, NA, NA, 1, 1, 2, 2, 1, 2,...
$ PhSuelo <int> 5, 5, 6, 6, 6, 5, 5, 6, 6, NA, NA, 6, 5, 6, 4, 5, 6,...
$ FechaPh <date> 2001-07-09, 2001-08-06, 2001-08-06, 2001-07-09, 200...

dplyr: transforming data frames

dplyr can be used to transform our data frames in the way we need it in each case: we can create new
variables, select those of interest, execute filters, etc. The dplyr package contains 5 main verbs:

e filter keep the rows that match a given set of conditions

e select keep columns based on their name

o arrange sort the data frame based on one or several variables

e mutate create new variables

o summarise create new variables that summarize values of an existuing variable (mean, sum, etc.)

All of them have a similar structure: the first argument in the function is the data frame to which it will be
applied, and the rest of arguments specify what to do with this data frame, depending on the verbwe are
using.

filter

filter selects those rows of a data frame that accomplish a certain criterion. The first argument is the data
frame, and the rest are the criteria, that can be specified in chain, separated by commas.

#+#+#Exercice 1
To practice with filter let’s try to find those plots of IFN that:

o 1.1 Are located in Barcelona (08) or Girona (17).

We have two options:
Option 1

filter (plots, Provincia =="08" | Provincia =="17")
Option 2

filter (plots, Provincia %in% c("08", "17"))

We see that both options produce exactly the same result. But the next option wouldn’t be valid, since we
need to specify explicitly the variable every time we add a new condition:

filter(plots, Provincia =="08" | "17")

e 1.2 plots that were measured completely in January 2001

To do this we need to find the plots for which the completion date is later than 31 December 2000 and earlier
than 1 February 2001. We can do this in two ways: the first one is to use the & operator to indicate we want
to get the rows that meet both criteria. The second options would be simply to concatenate both criteria
with a comma, since filter assumes all of them must be met.

Option 1

filter (plots, FechaFin < "2001-02-01" & FechaFin > "2000-12-31")

Option 2
filter (plots, FechaFin < "2001-02-01", FechaFin > "2000-12-31")

o 1.3 Those plots that took more than 2 hours to be measured (7200 seg)
filter(plots, (HoraFin - HoralIni) >7200)

As we see, we can do operations within filter conditions. In this case, we want that the difference between
EndDate and StartDate be < 7200 s (2 hours).

select

select allows to retain only some columns, based on their name. To help us find the columns, there are
some specific functions such as starts_with or contains, that only work within select. We can see the
list of special functions by typing help("select")

#+##Exercise 2 To practice with select let’s try to find 4 different ways of selecting the variables that
specify the starting and ending date of measurement of the plots (Fechalni y FechaFin)

e For example, we could specifiy the name of the columns we want to keep in an explicit way

select(plots, Fechalni, FechaFin)

e We can also specify them as a range, so that all columns between the two indicated will be selected

select(plots, Fechalni:FechaFin)

e Or we could select all the columns that contain the text ‘fecha’ In this case, since we are not interested
in the pH measurement date, we can decide to delete it from our selection:

select(plots, contains ("Fecha'"),-FechaPh)

o At last, we could also select all the variables that start with ‘fecha’ (in this case we also need to eliminate
FechaPh):

select(plots, starts_with("Fecha"), -FechaPh)

arrange

arrange sorts the data frame based on the values of ine or more variables (columns). The first argument
will be, as usual, the data frame we want to sort, and then we must specify the variables that determine the
ordering. If we specify more than 1 variable, the succesive variables will be used to decide order when there
are ties (i.e. secondary sorting variables). We can also use ‘desc(x)’ to sort in decreasing order. Let’s try with
a few exercises:

###Exercise 3

e Ex.3.1 Sort the plots by measurement date and time

arrange (plots, FechaFin, HoraFin)

e Ex. 3.2 Which plots were started to be measured later in the day?

arrange (plots,desc(HoraIni))

e Ex. 3.3 Which took longer to be measured?

arrange (plots, desc(HoraFin-HoralIni))

We see that, as it happens with filter, we can also sort data frames based on the result of an arithmetic
operation.

mutate

mutate allows us to create new variables with a certain value or as combination of existing variables. We just
need to specify the data frame, and indicate the new variables name and its value. Let’s see some examples:
#+#+#Exercise 4 Let’s create two new variables:

o Ex.4.1 A variable with individual tree growth (in cm) between IFN2 and IFN3.

trees <- mutate (trees, growth= DiamIf3 - DiamIf2)

e Ex.4.2 Create two new variables with the basal area per hectare that each tree represents, both in IFN2
and IFN3. Which species was the fastest growing tree in basal area?

trees <- mutate(trees, BAIf2= (((pi/4)*(DiamIf2/100) 2)*N),
BAIf3= (((pi/4)*(DiamIf3/100) 2)*N),
BA_growth = BAIf3 - BAIf2)

arrange (trees, desc(BA_growth))

As we see, we can calculate new variables based on the variables we just created. Also, we can combine
mutate and arrange to know which is the fastest growing tree.

summarise

summarise allows us to make calculations with the variables in the data frame, but using summary functions,
that transform the variability in a given variable into a single value. Functions such as sum, mean, max,IQR,
etc. are examples of summary functions. However, this function by itself often lacks any interest, cause it
would reduce all the data frame to a single value. It is commonly used together with group_by, that classifies
the data frame in groups based on a categorical variable.

To use group_by we just need to indicate the data frame and the variable we want to group it by. To be
more efficient, dplyr does not create a copy of the data frame, but it creates a hidden variable that indexes
the groups, so that when we ask it to perform operations by group, it know to which group belongs each
observation.

In the case of our data frame trees, there are several groups that could be of interest el caso de nuestra base
de datos de pies trees, hay varios grupos que pueden tener inter?s:

Por provincia
by_province <- group_by (trees, Provincia)

Por parcela
by_plot <- group_by (trees, Codi)

Por especte
by_species <- group_by (trees, Especie)

#Por clase diam?trica
by_CD <- group_by (trees, CD)

#Por parcela y especte
by_plot_species <- group_by (trees, Codi, Especie)

We can see, by typing glimpse (by_plot) that the resulting data frame is not different at all from the original,
at least apparently. However, if we type class(by_plot) we see it has now a new class grouped_df.

###Exercise 5 What statistics could be of interest to characterize the diameter values of each plot? We can,
for example, calculate te mean, minimum and maximum value, percentile 0.9 and interquartile range for each
plot. We can also compute the number of trees measured in each plot and the number of different species,
using the functions n() y n_distinct(x). In this case, the resulting data frame will have less rows, one per
plot, and will only contain the new variables created.

summarise (by_plot,
media = mean(DiamIf3),

min

= min (DiamIf3),
max (DiamIf3),

max =

q90

sps = n_distinct (Especie))

quantile(DiamIf3, 0.9),
IQ = IQR(DiamIf3),
n =n(),

A tibble: 7,713 x 8

##
##
##
##
##
##
##
##
##
##

© 00 NO O WN -

H #
H #*
e
o

#to# ...

Codi
<fct>
080001
080002
080003
080004
080005
080006
080007
080008
080009
080010

med
<db

26.
35.
32.
24.
28.
35.
30.
16.
16.
31.
with 7,703 more rows

ia
1>

~NO 0O Pk wWONW

6

min
<dbl>
13.
24.
14.
16.
16.
14
15.2
9
9
9.2

N 00 N 00

max
<dbl>
38
44 .4
51
31.
59.
55.
63.
21.
36.
95.

OO OO 00N

q90
<dbl>

34.
43.
46.
30.
39.
52.
49.
17.

24

61.

QP> W NN~ OB

IQ n sps
<dbl> <int> <int>
4.15 15 1
10.2 13 3
12.2 7 2
7.42 2 1
15.3 12 3
17.9 23 2
12.3 35 2
2.05 11 1
3.88 16 2
18.2 13 3

Pipelines (%>%)

We will often use several dplyr verbs together, creating nested functions. However, when we need to perform
several operations, these nested functions can easily get complex and difficult to understand. For example, by
having a look at this code, would you be able to say what it will do?

diam_medio_especie <- filter(

summarise (
group_by (
filter(
trees,
lis.na(DiamIf3)
),
Codi, Especie
Do
diam = mean (DiamIf3),
n =n(0
Do
n > 5)

The code gets those observations, from the data frame trees, that have a value of diameter
('is.na(DiamIf3)), it then groups them by plot and species (group_by(Codi, Especie)), calcu-
lates for each combination the mean diameter (diam = mean (DiamIf3)), and the number of trees per plot
(n = nQ)), and finally selects only those cases in which there are at least 5 trees (filter (n>5)).

Although this syntaxis is not operationally complex, it is hard to understand. Often a solution is to save each
step as a different data frame, but this is an important source of errors.

We can however simplify this code using the pipe operator (%>%) from the magrittr package, which is installed
and loaded with tidyr and dplyr. When we use %>%, the result of the left side is processed by the righ side
function as first argument. In the case of dplyr and tidyr, since the first argument is always a data frame,
%>% makes that a function be applied to the data frame resulting from the previous function. Thus, we can
express filter (df, color =="blue) as df %>} filter(color == "blue"). This allows to concatenate
several functions in a logical and understandable way, so that the operator %>% could be read as then. Let’s
see how this would be in the previous function

diam_medio_especie <- trees 7>’ # take the df 'trees' and THEN
filter(!is.na(DiamIf3)) %>% # eliminate NA values and THEN

group_by(Codi, Especie) %>% # group y plot and species and THEN
summarise (diam=mean(DiamIf3), n = n()) %>/ # calculate mean and number of trees and THEN
filter(n > 5) # filter those with n> 5

###Exercise 6 Let’s do some exercises. Using the pipe operator, let’s create pipelines to solve the next
exercises:

e Ex.6.1 Which plots have the greatest average growth between IFN2 and IFN3?

We first define the data frame we will work with. THEN (%>%) we create a new variable with the growth of
each tree, THEN we group by plot, THEN we calculate, for each plot, the mean growth, and THEN we
arrange the results in decreasing order. The resulting code would be:

trees %>
mutate (growth=DiamIf3-DiamIf2) %>%
group_by(Codi) %>%
summarise (av_growth=mean(growth), n=n()) %>%
arrange (desc(av_growth))

A tibble: 7,713 x 3

Codi av_growth n

<fct> <dbl> <int>
1 171089 23.1 3
2 170819 21.6 1
3 172607 17.6 6
4 172216 17.4 6
5 172690 16.0 17
6 171682 15.4 6
7 083267 15.3 1
8 431363 15.1 4
9 171664 14.8 5
10 171976 14.4 1
... with 7,703 more rows

e Ex.6.2 Which is the plot with highest species richness?

First, we define thedata frame (trees), THEN we group by Code, THEN we determine the number of species
per plot and THEN we arrange in decreasing order:
trees 7>

group_by(Codi) %>%

summarise (n_species=n_distinct(Especie)) %>%

arrange (desc(n_species))

A tibble: 7,713 x 2

Codi n_species
<fct> <int>
1 170195 9
2 171036 9
3 170218 8
4 170121 7
5 170596 7
6 170635 7
7 170799 7
8 171398 7
9 171481 7
10 172650 7
... with 7,703 more rows

o Ex.6.3 Are both variables (species richness and average growth) related?

First, we would need to indicate the data frame we will work with, THEN we will group by plot, THEN
we will calculate the variables. To see the relationship between both variables, we will create a plot with
ggplot2, just to show how all the packages in the tidyverse relate to each other. The aim of this workshop
is not to learn ggplot2, so we won’t go into further details. To know more about ggplot you can visit this
website: http://ggplot2.org/

trees %>%
mutate (growth=DiamIf3-DiamIf2) 7>
group_by(Codi) %>%
summarise (n_species=n_distinct(Especie),
av_growth=mean(growth)) %>’
ggplot (aes(n_species, av_growth)) +
geom_point () +
geom_smooth (method = "1m")

http://ggplot2.org/

[)
20 -
]
H []
o . *
% 10- e
C%| ! °
c>5 °
2
s ¢ :
0' ° ®
[]
[]
2.5 50 7.5

n_species

Here we see one of the advantages of the tidyverse, the fact that all the packages and functions can
communicate one with another. In this way, we just created a plot without the need of creating intermediate

objects or data frames, starting directly from the raw data frame, and chianing orders in a logical and intuitive
way.

Grouped mutate/grouped filter

Most of the times we use group_by, we will do it with the summary functions, that is, functions that take n

values as input, and give back 1 value as output. Examples of summary functions are mean(), sd(), min(),
sum(), etc.

However, some times we will need to do some operation by group, but we will need to produce one output
per input, that is n inputs —> n outputs. This can be done using mutate or filter in combination with
group_by.

#H#H#Exercise 7

Taking this into account, let’s try to:

e Ex.7.1 Identify those trees that grow much faster than the average of the plot
trees %>
mutate (growth=DiamIf3-DiamIf2) 7>7
group_by(Codi) %>%
mutate(plot_mean= mean(growth),
des = (growth - plot_mean)) %>’
arrange (desc(des))

10

In the previous code we see we first calculate the growth of each tree, and after grouping by plot, we calculate
a new variable, where the plot average is substracted from the growth of each tree, and the result is divided
by the standard deviation of the plot. We calculate in this way the standardized growth of each tree with
respect to the plot, making it easy to identify those trees that grow suspiciously more than the average for
their plot.

o Ex. 7.2 Identify those plots where a species grows much more than the average for the species

trees >/
mutate (growth=DiamIf3-DiamIf2) %>%
group_by (Especie) %>%
mutate(growth_sp = mean(growth)) %>%
group_by(Codi, Especie) %>/
mutate (growth_sp_plot = mean(growth),
inc = (growth_sp_plot /growth_sp))>%
arrange(desc(inc))

As we did before, we first calculate the growth of eaxh tree, we then group by species, so that we can calculate
the mean growth for each species (growth_sp). Finally, we group again, now for plot and species, to calculate
the mean growth of each species on each plot (growth_sp_plot). Once we have this, we can calculate the
ratio between the two variables, identifying those plots where the species is performing better)assuming no
mistakes, of course).

Let’s see one last example:
*Ex.7.3 Select those species of the IFN3 occupied by “pure” Pinus nigra stands (Especie = 025)

Note: a forest is considered as pure stand if more than 80% of their Basal Area corresponds to a single species.
Let’s see how we would do that:

trees %>%
group_by(Codi,Especie) %>%
summarise (BA_sp= sum(BAIf3)) %>%
group_by(Codi) %>%
mutate(BA_tot = sum(BA_sp),
ratio= BA_sp/BA_tot) %>
filter(Especie=="025", ratio >0.8)

A tibble: 648 x 5

Groups: Codi [648]

Codi Especie BA_sp BA_tot ratio
<fct> <fct> <dbl> <dbl> <dbl>

1 080132 025 41.4 49.9 0.830
2 080307 025 51.2 54.8 0.933
3 080313 025 28.1 35.0 0.804
4 080318 025 23.7 26.6 0.894
5 080322 025 29.7 32.3 0.919
6 080323 025 1.61 1.61 1

7 080324 025 18.2 19.7 0.924
8 080325 025 43.8 44.6 0.982
9 080326 025 6.01 6.01 1

10 080328 025 62.1 65.7 0.945
... with 638 more rows

In this case, we first calculate BA per plot, using summarise. We then calculate the sum of BA per plot,
but in this case we use mutate, because we don’t want to aggregate tge data by plot, but calculate them
separately for each plot but keeping the rest of the data as it was. Once we have both values, we can filter to
select those plots with Pinus nigra, in which percenrage of basal area for that species be > 80%.

11

Joins: working with to tables

Very often, the information we will work with more than a table. The join functions will allow us to work
with several data frames, joining them in different ways. Within dplyr there are two types of joins:

Mutating joins

They add the columns of a data frame to the other, depending on whether they share some observations or
not. There are four types.

o left_join(x, y) adds the columns of y to the observations of x that are also in y. Those that are not
present in y will receive the value NA. With this function we ensure that we will not lose any observation.

e right_join(x, y) adds the columns of x to those observations in y that are also in x. Those that are
not present will receive NA. It is equivalent to left_join, but the columns will be ordered differently.

e full_join(x,y) includes all observations in x and y. If they do not coincide, they assign NA.

e inner_join(x, y) includes only those observations both in x and y (repeats rows if it is necessary).

Filtering joins

The second type of joins are the filtering joins, that affect only to the observation, not to the variables.
That is, they never add new columns, but they keep or delete the rows of the original frame as a function of
their correspondence or not with a second data frame. There are only two types:

e semi_join(x, y) keeps the observations in x that match observations in y.
e anti_join(x, y) deletes the observations in x that match observations in y.

You can find more information about the join functions typing vignette("two-table").
###Exercise 8 To try the join functions, let’s add the geographic information (X & Y coordinates), contained
in the data frame coordinates to the data frame plots.

left_join(plots,coordinates, "Codi')

In this case, since we want to keep all the plots in the original plotsdata frame, we use left_join. In this
case, since the number of observations in coordinates and plots is the same, the function inner_join
should give us the same results.

Now we added the coordinates, we can represent in a map any variable in the data frame. We could, for
example, represent the values of tree canopy cover (FecArb). We need to load the package “maps”. (If we
don’t have it installed, we can install it typing in the console install.packages("maps")).

library (maps)

#i#
Attaching package: 'maps'

The following object is masked from 'package:purrr':
##
map

left_join(plots,coordinates, "Codi") %>%

ggplot (aes(CoorX, CoorY)) +
geom_point (aes(color=FccArb), size=0.3, alpha=0.6) +
scale_color_continuous(low= "white", high="dark green")

12

4750000 -

4700000 -

FccArb
4650000 - 100
>; 75
S
S 50
4600000 - -
0
4550000 -
4500000 -

250000 300000 350000 400000

450000 500000
CoorX

Once again, we see we don’t even need to create a new data frame with the new information, we can chain
the functions in dplyr and ggplot2, producing the results in a very easy and fast way.

13

tidyr: changing the shape of the data frames

One of the main ideas behind the tidyverse is the concept of tidy data, that we have introduced before.
According to Hadley Wickham, we can say that our data are tidy when two conditions are met:

e Each column corresponds to a variable
o Each row is a different observation

Of course, the data are not always organized in this way, sometimes other formats are more efficient (for
example, for gathering data). For instance, if we have a look at the table specieswe will see that the number
of trees for the different size classes are in different columns. This format is more convenient for entering
the data or for some kinds of analyses, but in general the tidy format easens the processing and analysis,
specially in vectorized languages such as R.

View(species)
The tidyr package allows to change the way in which data are organized, so that we can arrange them in
the way we need to our analysis. It has four basic verbs:

e gather aggregates variables that are in several columns and converts them into two variables: a factor
(key) and a numeric variablea (value).

e spread is the inverse of gather, it takes the levels of a factor and a numeric variable and creates a new
variable for each level of the factor.

« separate divides the content of a column into several columns

e unite inverse of separate, concatenates the values of several columns

gather & separate

gather transforms data in wide format into long format. gather takes a series of columns and transforms
them into two variables: a factor (key) and a numeric variable (value). The first parameter in gather is the
data frame, the second and third are the names we will give to key and value, and the rest are the variables
to group.

#+#+#Exercise 9 Let’s use gather and separate to transform the data frame species into a tidy format,
where each column is a variable and each row, an observation. First, let’s have a look at the data frame we
want to transform:

glimpse(species)
To convert it into the ‘long’ format we specify the data frame, then the new factor to create (key), and the

numeric variable (value), and last, the columns to aggregate. For the last part we have three equivalent
options:

o (A) Explicitly define the variables we want to gather:

gather(species, CD, n, CD_10,CD_15,CD_20, CD_25,CD_30,
Cb_35,CD_40, CD_45,CD_50,CD_55,CD_60, CD_65, CD_70)

o (B) Define the interval containing the variables we want to gather

gather(species, CD, n, CD_10:CD_70)

e (C) Define the variables with the helpers functions
gather(species, CD, n, starts_with('CD'))

14

https://cran.r-project.org/web/packages/tidyverse/index.html

o (D) Define the variables we DO NOT want to include (with -). The function will assume we want to
gather the rest of variables.

gather(species,CD, n,-Codi, -Especie)

The three pieces of code above produce the same result. Once we have converted the data frame into the new
format, we can divide the new variable “CD” into two new variables, that we will name “Name” and “CD”,
using separate. If we do not specify where to make the separation, the function takes by defualt the first
non alphanumeric character in the string.

species_long <- gather(species,CD, n,-Codi, -Especie)

species_long<-separate(species_long, col=CD, into = c("Nombre", "CD"))

species_long

spread & unite

If we have a data frame in long format, we can use spread and unite to transform it back into the wide
format. This is what we will do in the next exercise, converting back the data frame with species and diameter
classes into its original format. As with gather, spread takes the data frame as the first argument. The
secod parameter is the factor we will use to create the new columns, and the third parameter is the name of
the column that contains the values. We can see this with an example:

###FExercise 10 Use unite and spread to transform back the data to its origianl format.

First we create a new variable, that will be useful to create the new columns:

species_unite <- unite(species_long, CD, Nombre, CD)

Now we will transform the data frame, specifying the variable that will produce the new columns (“CD”) and
the variable that contains the values (n)

spread(species_unite, CD,n)

purrr fuctional programming

purrr allows for functional programming in R, meaning that functions becomes “first citizens‘in the R
environment (they can be used as arguments or returned from other functions).

Making loops pipe friendly

You can think of map, the main verb of purrr, as a pipe-friendly version of the apply family. It will accept
functions as arguments and they will be applied to all elements of the list/vector provided.

Exercise 11

First thing is grouping by the plot code (Codi), but also, and this is important, by Province as we will need
it later. Then we summarise the height with the mean, join the leaf dataset, split by province an map the
lineal model. Optionally, we can use broom or summary to see the results:
trees 7>

group_by(Codi, Provincia) %>%

summarise (height = mean(HeiIf3, na.rm = TRUE)) %>%

left_join(leaf, by = 'Codi') %>%

15

split(.$Provincia) %>%
map(~ lm(height ~ leaf_biomass, data = .)) %>%
map_dfr(broom: : tidy)

Other interesting functionalities of the tidyverse

Communication between packages

All the packages in the tidyverse are designed to communicate with each other. That means that we can
combine dplyr and tidyr functions, connecting them trhough pipes (%>%). For example, if we wanted to
know which the mean diameter distribution of all the pine species we could first filter the species we want
to study (pines) then transform the data frame, group the data by species and diameter class and finally
calculate the mean number of trees:
species %>

filter(Especie %inJ c("021", "022","023", "024", "025", "026")) %>%

gather (CD, n, CD_10:CD_70) %>%

group_by (Especie,CD) %>%

summarise(n_trees=mean(n))

A tibble: 78 x 3

Groups: Especie [7]
Especie CD n_trees
<fct> <chr> <dbl>

1 021 CD_10 55.4
2 021 CDh_15 121.
3 021 Ch_20 138.
4 021 Ch_25 109.
5 021 CD_30 63.7
6 021 CD_35 29.8
7 021 CD_40 13.2
8 021 CD_45 6.43
9 021 CD_50 3.00
10 021 CD_55 1.39
... with 68 more rows

But dplyr and tidyr also can connect to other packages in the tidyverse, such as ggplot2 or broom, so
we could expand on the previous code to generate a plot by species.
species %>

filter(Especie %inj c("021", "022","023", "024", "025", "026")) %>%

gather (CD, n, CD_10:CD_70) %>%

group_by (Especie,CD) %>%

summarise(n_trees=mean(n)) %>%

ggplot (aes(x=CD, y=n_trees)) +

geom_col() +

facet_wrap(~Especie)

16

021 022 023

150 -
100 -
50 -I I I I

)
()
bl 024 025 026
c

150 -

100 - I “

CDC II[IDIZI!SIZDIIS-BBEDDBBSBS QIDIZIZI!BIZBHDBSEDDBEOBSHOBS QIDZC EWI)HISIZI)IZSBDBS@)%-BBB5 7(

Functional sequences

Another interesting aspect of dplyris that we can save sequences of orders as an object, so they can later be
applied to different data frames, as if it was a function. To do this, we must use the pronoun . as data frame
in the sequence of orders to save. Let’s see an example:
av_growth <- . 7>}
mutate (growth=DiamIf3-DiamIf2) 7>7
group_by(Codi) %>
summarise (mean=mean(growth), n=n())

If we print the object, we will see it has a class functional sequence, and it specifies the orders to execute:

av_growth

Functional sequence with the following components:
##

1. mutate(., growth = DiamIf3 - DiamIf2)

2. group_by(., Codi)

3. summarise(., mean = mean(growth), n = n())

##

Use 'functions' to extract the individual functions.

We can then apply this sequence to a data frame. ..

trees >, av_growth()

A tibble: 7,713 x 3
Codi mean n

17

<fct> <dbl> <int>

1 080001 3.33 15
2 080002 3.63 13
3 080003 5.93 7
4 080004 6.55 2
5 080005 2.08 12
6 080006 2.28 23
7 080007 2.45 35
8 080008 1.79 11
9 080009 1.86 16
10 080010 3.33 13
... with 7,703 more rows

. or combine it with new dplyr or tidyr functions
trees %>
filter (Provincia=="17") %>
av_growth()

A tibble: 2,113 x 3
Codi mean n
<fct> <dbl> <int>
1 170004 2.99 39
2 170005 1.86 28
3 170006 1.75 31
4 170007 3.14 29
5 170008 1.68 9
6 170009 1.48 28
7 170010 2.40 26
8 170012 2.11 21
9 170013 1.55 34
10 170014 5.38 8
... with 2,103 more rows
Databases

In this workshop we’ve seen how to work with dplyr and tidyr using data stored in our computer, but
dplyralso allows working woth remote databases, admiting most formats and standards: PostgreSQL, MySQL,
SQLite, MonetDB, BigQuery, Oracle. ..

When working with databases we will use the same verbs and coding we’ve seen so far, but dplyrtransforms
the R code into SQLsequences, so we don’t need to change the language to read and analyze the data. Also, it
is much faster than R. The details of working with databases are beyond the scope of this workshop, but you
can find more information in the resources listed in the following section.

18

More info

Both the code and the data needed to generate this document and execute the examples can be found in
GitHub (https://github.com/ameztegui/dplyr workshop). You can also find more information about these
packages and their functions in the book R for data science by Hadley Wickham, or in the vignettes for each
function.

Sobre dplyr

vignette("introduction")

Sobre tidyr
vignette("tidy-data")

Sobre unir dos tablas mediante join
vignette("two-table")

Sobre trabajo con databases
vignette("databases")

19

https://github.com/ameztegui/dplyr_workshop
http://r4ds.had.co.nz/

	Introduction
	dplyr: transforming data frames
	filter
	select
	arrange
	mutate
	summarise

	Pipelines (%>%)
	Grouped mutate/grouped filter
	Joins: working with to tables
	Mutating joins
	Filtering joins

	tidyr: changing the shape of the data frames
	gather & separate
	spread & unite

	purrr fuctional programming
	Making loops pipe friendly
	Exercise 11

	Other interesting functionalities of the tidyverse
	Communication between packages
	Functional sequences
	Databases

	More info

