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ABSTRACT 

Mosaic is an open source multiplatform (osx, linux, windows) live coding and visual programming 
application based on openFrameworks.  This paper describes the initial ideas that have driven its 
development, its internal structure and the basic libraries it is comprised of, the levels of complexi-
ty that can be developed with Mosaic, (from beginner, to very complex developments) and the 
main contributions to the field of live coding/visual programming and also to the field of creative 
coding teaching/learning.  

We present the development framework, which integrates two paradigms: visual programming 
(diagram) and live coding (scripting), to show its features and potential, most significantly, the 
learning feedback generated through to the relationships it establishes between human-machine. 
In other words, amplifying access routes to that relationship/interrelation promotes augmented-
thinking through feedback. 
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1.  INTRODUCTION 

Mosaic is a visual programming and live coding environment, based on openFrameworks. In the 
data flow environment, the possibility of programming in different scripting languages (Lua, Py-
thon, BASH, GLSL) is inserted through specific objects that can be activated simultaneously (see 
Figure 1). 

Mixing visual diagram and scripting concepts (diagram and language) allows us to combine the 
possibilities of two media to offer variable learning curves for variable user levels. Visual pro-
gramming helps to understand and visualize schematically what the machine is doing (Tan-
imoto 2013, 31-32), because objects show what’s happening with the information flows being 
generated or modified, which provides a more intuitive and flexible feedback. Scripting, on an-
other level, allows us to explore and understand the specific processes that are involved in more 
detail and more deeply. This hybridization depicts a fertile two-way cross-pollination situation 
that amplifies the human-machine communication, providing something similar to the benefits 
introduced by the Dual Coding Theory (Paivio 1990, 57).      

The project, at alpha stage right now, is being developed through a modular structure of inde-
pendent ofxAddons. For example, ofxVisualProgramming is the central code for visual program-
ming, and is kept isolated to encourage contributions, simplify error correction and improve the 
quality of the code, but most of all to encourage a collaborative community-driven development 
of Mosaic project. 

Describing all the Mosaic characteristics could be a very complex task (OF and ofxAddons ecosys-
tem is extremely large, and the possibility of multiple scripting languages increases its complexi-



 

 

ty), so the idea behind the interface design is to avoid such "highly complex" situations, embody-
ing a direct and natural interface of a drag&drop connect/disconnect interface (mouse / trackpad) 
on the most basic level of interaction, adding editing code (keyboard) at an intermediate level 
(scripting), and up to the most advanced level for experienced users (external device communica-
tion, automated interaction, etc.). The main features of Mosaic are summarized in the following 
sections. 

 
Figure 1. Mosaic Screenshot.  

2 .  GOALS 

- To submit a new development application in the field of creative programming, hybridizing 
live-coding and visual-programming paradigms. 

- To facilitate learning and use of programming environments, promoting a human-machine 
interrelation that encourages augmented-thought through the learning feedback that this ap-
plication provides.  

- To make the software and the related documentation more widely known to promote a com-
munity-driven collaborative development.  

3 .  MOSAIC CONTEXT 

The general objective of visual programming languages is to make programming more accessible 
for beginners (Medlock-Walton 2014, 545), and to provide advanced users with added support at 
three different levels: 

- Syntax, visual programming languages use blocks and a flow communication system (cords), 
which reduces and/or completely removes the possibility of syntactic errors (a cord cannot 
connect where it does not touch, the environment prevents the error). 

- Visual semantics, it is plausible to consider the inclusion of visual compression mechanisms 
embedded in the blocks themselves (visual feedback of comprehension), or in other words, 
documentation of the language hybridized in the language itself. 



 

 

- Pragmatic, the structure of visual programming allows the generation of case studies to ana-
lyze the interaction systems internal to the process (internal data flow/reaction/interaction) 
and related to the result (input -> output). Amplification of the relationship/interrelation be-
tween human-machine, boosting augmented-thought through feedback. 

Today's visual programming environments also incorporate the dataflow programming concept, 
which translates into adding real-time live-coding capabilities, or in this case live-visual-coding, a 
programming environment that allows auto-parallelization (Johnston, Hanna, and Millar 2004), a 
programming concept that increases opportunities for shared development and multiple levels of 
learning (fragmentation/de-fragmentation of a program in real time) 

The fundamental elements of an environment with these characteristics can be derived from the 
basic concepts that constitute the formulation of Reactive Functional Programming of Continuous 
Semantics (Elliott and Hudak 1997), which aims to abstract all the operational details not im-
portant for the programming itself (simplification of interface/use). 

The key points of this formulation are related to the previously introduced dataflow programming, 
the dynamic modeling of values in real-time (dataflow, the cords system that we call signal trans-
mission system), and to the possibility of controlling/programming reactive events that alter the 
system structure (program -> code -> visual process). 

Another important point to consider is the difference between two concepts, Interactive Pro-
gramming and Hot-swapping: 

- Interactive Programming means programming with immediate feedback, eliminating compila-
tion and transforming the process into a continuous loop (process of coding) 

- Hot-swapping means being able to modify code WHILE it is running, and this is necessary 
when we are referring to Fully Interactive Programming.  

Mosaic integrates live-coding (Lua, Python, GLSL, Interactive Programming without Hot-
swapping) with visual programming and data flow in real time (Fully Interactive programming), 
combining all its elements to reinforce its native structure of auto-parallelization, leveling out the 
layers of complexity and equalizing the possible user levels to simplify the approach to collabora-
tive processes. 

3 .1 .  Conceptual background 

Following research by Deleuze (2007, 143), a diagram or a visual scheme is defined by modulation, 
similar to analog relationships, while digital language or code language is defined by articulation, 
underlining in the notion of abstract machine (Deleuze y Guattari 2002, 103) that it have a 
complementary nature, incorporating both functions, inserting one into the other. Following 
this idea, Mosaic grafts scripting objects inside dataflow programming.  

3 .2 .   Art and coding background 

Since the 90s (20th C.) at Laboratorio de Luz at the Universitat Politècnica de València, we have 
been interested in interactive art applications, both for conducting research into artistic practice, 
and for research for the development of specific applications, which is the case of GAmuza1.  

The first GAmuza (rel.001) was developed in 2009 and was implemented only as a graphical inter-
face to facilitate the teaching and use of video tracking techniques. The latest GAmuza (rel.1.0.1), 

                                                        
1 GAmuza is one of the results of the R&D research project: Visión Ampliada: Sistemas de Tracking Visual para Instalaciones Interac-

tivas en el Campo del Arte Digital. Ref.HAR2008-02169  



 

 

released in 2016, is configured as a hybrid Live OpenFrameworks Sketching IDE (Martínez de 
Pisón; Mazza 2016). 

The accumulated experience in teaching and research has been applied to the development of Mo-
saic, modifying the basic concept behind the development of GAmuza towards a visual program-
ming environment. This means that it contains all the possibilities of GAmuza (and many more as 
we will detail below) but with much more plasticity in its use possibilities. 

As a reference, we’ll highlight what was probably first visual programming software: GRAIL RM-
5999 - ARPA from the RAND Corporation (Ellis; Heafner; Sibley 1969). 

Developing an application today is a process that involves the work of many people, who leave 
their libraries in repositories, which is why communities such as github are crucial for developing 
projects like Mosaic. Because of this, we have chosen to integrate openFramework’s ofxAddons, 
updating and/or modifying them through forks.  The ofxAddons used are listed in the following 
section.  

Other references for this Project are existing commercial and non-commercial visual program-
ming and live coding software. A short analysis of the specific contribution of each software to the 
Mosaic project lies outside the scope of this paper, so we’ll just offer a reduced list here, as well as 
the artistic references.  

Reference visual programming systems:  

Blender, Coral, DesignScript, Dynamo, Engi JS, EyesWeb, FL Studio, GenerativeComponents, 
GRaIL, Houdini, Isadora, MAX/MSP, Minko ShaderLab, NodeBox, Praxis LIVE (Smith 2016), Pure 
Data, Quartz Composer, Reaktor, TouchDesigner, VUO, VVVV. 

Reference Live Coding systems: 

ChucK, Extempore, Fluxus, Fragment, Gibber, KodeLife, LiveCode, Lua, Overtone, Scratch, Siren, 
Sonic Pi, SuperCollider, TouchDesigner.  

Artistic reference: 

GRASS (GRAphics Symbiosis System), an interactive, interpreted, programming language, deve-
loped on a PDP-11/45 (DeFanti 1974)  

Spiral 5 PTL (Perhaps The Last), live performance (DeFanti and Sandin 1979). DeFanti added 
GRASS as input to the Dan Sandin's Image Processor (IP), creating the GRASS/Image Processor. 
With this combined application they created this live performance. 

 

4 .  TECHNICAL FEATURES 

Mosaic is being developed with openFrameworks 0.10.0 (official version from the project website) 
together with a selection of ofxAddons , keeping their original versions whenever possible, or us-
ing a fork to resolve possible problems (compatibility with OF 0.10.0, bugs, specific Mosaic re-
quirements, etc.). To achieve a high portability, both for future maintenance/upgrades, and to pro-
vide a stable common base for developers interested in participating in the project, the source 
code of Mosaic is organized into different cores (see Figure 2), described here in detail: 



 

 

 
Figure 2. Mosaic Data Flow Diagram.  

1. openFrameworks core, the official version is used from the download section of the official 
website of the OF 0.10.0. project, without touching anything of the original code 

2. ofxAddons core/s, a selection of ofxAddons is made from the community (github), which are 
analyzed, tested outside Mosaic, integrated and retested within Mosaic. In the case of an 
ofxAddon that works perfectly, the original version of the author is used, whereas if prob-
lems/incompatibilities appear, the possibility of making a fork and the resulting adaptation 
work is studied, and if a good result is obtained, then the fork is made and a version of the 
ofxAddon in question is made for Mosaic. 

3. "Visual Programming" core, organized and modularized in the ofxAddon structure: ofxVi-
sualProgramming, for high portability (plug & play integration in other projects) and to cre-
ate a common collaborative base. In this code core, everything that concerns the Visual Data-
Flow Programming system (objects and signal system) is organized, including a predefined 
template to facilitate the creation of new objects by the community (COLLABORATION) 

To go into more detail about the possibilities of Mosaic software, we will briefly analyze its main 
source, openFrameworks. OF is designed according to the DIWO philosophy (do it with others), it 
combines a variety of advanced libraries to work with image, 3d, video and sound, it is multi-
platform and provides a powerful and easy-to-use code base.  

ofxAddons: ofxLua and ofxPython. These two ofxAddons are two key elements for the existence of 
the Live Coding system integrated within Mosaic; they allow us to obtain a binding (passing 
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through SWIG) of almost all of the OF APIs, and at the same time they provide us a real-time (live) 
scripting (coding) interpreter, both for Lua and for Python. This means that within Mosaic we can 
program in Lua and in Python at the same time, using OF APIs (possibility of programming almost 
identically to OF in C ++, but in Live) in conjunction with any of Lua and/or Python library.  

GLSL, openFrameworks gives us the world of openGL Shaders, and Mosaic incorporates a simple 
system to use/edit them in real time (see Figure 3). For cross-platform compatibility issues, Mosaic 
is configured to use openGL 2.1, and consequently the Shaders it can compile (#version 120). 

BASH, Mosaic incorporates the ability to open / edit / execute bash scripts (Linux and macOS), 
which coupled with the Visual DataFlow Programming environment, gives us direct interactive 
access to the operating system. 

 
Figure 3. Shaders patch test. 

Besides the ofxAddons present in the 0.10.0 version of openFrameworks, these other ofxAddons 
are included in the current version of Mosaic (pre-alpha 0.1.5), some originals, others adapted ver-
sions (forks): 

ofxAudioAnalyzer (Zimmerman 2016); ofxAudioFile (Pisanti 2018); ofxBTrack (Tokui 2015); 
ofxChromaKeyShader (Koo 2014); ofxCv (McDonald 2016); ofxDatGui (Braitsch 2015a); ofx-
FontStash (Ferre Mesià 2015); ofxGLEditor (Hayasaka 2012);)   ofxGLError (Ferre Mesià 2014); ofx-
HistoryPlot (Ferre Mesià 2016); ofxInfiniteCanvas (McDonald 2016); ofxLoggerChannel (Zananiri 
2015); ofxLua (Wilcox 2017); ofxMidi (Wilcox 2013); ofxModal (Braitsch 2015c); ofxParagraph 
(Braitsch 2015b); ofxPDSP (Pisanti 2015); ofxPython (Juliá 2015); ofxSIMDFloats (Pisanti 2015a); 
ofxSimpleHttp (Ferrer Mesià 2014); ofxTimeline (YCAMInterLab 2012); ofxTimeMeasurements (Fer-
re Mesià 2017); ofxVisualProgramming (Mazza 2018).  

5 .  CONCLUSIONS AND FURTHER WORK 

We have introduced a new application hybridizing a live coding environment with visual pro-
gramming, based on openFrameworks. We have explained the characteristics of its design based 
on independent articulated cores and the contributions it offers to the field of creative program-
ming, teaching and self-learning. We have presented the philosophical and computer concepts on 
which the concept and the technology of the project is built. 

Future work will involve the implementation of a distributed network communication system to 



 

 

work remotely on the same projects files in a collaborative way, as well as creating an on-line 
community to foster collaboration with the project. 
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