

i

5G European Validation platform for Extensive trials

Deliverable D3.4

Second implementation of the interworking

reference model

ii

Project Details

Call H2020-ICT-17-2018

Type of Action RIA

Project start date 01/07/2018

Duration 36 months

GA No 815074

Deliverable Details

Deliverable WP: WP3

Deliverable Task: Task T3.3

Deliverable Identifier: 5G_EVE_D3.4

Deliverable Title: Second implementation of the interworking reference

model

Editor(s): Marc Mollà Roselló

Author(s):
Ramón Perez, Aitor Zabala (TELC); M. Pergolesi, M.

Femminella, F. Lombardo Francesco, P. Lungaroni, S.

Salsano, N. Blefari Melazzi (CNIT); Giacomo Bernini,

Leonardo Agueci, Giada Landi (NXW); Gopolasingham

Aravinthan (NOK-FR); Marc Mollà Roselló (ERI-ES);

Jaime Garcia-Reinoso, Pablo Serrano Yañez-Mingot

(UC3M); Grzegorz Panek (ORA-PL); Luis Miguel

Contreras, Lourdes Luque, Juan Rodriguez (TID);

Federico Alvarez, David Jimenez, Javier Serrano,

Alberto del Rio (UMP);

P. Vlacheas, V. Foteinos, I. Belikaidis, V. Kosmatos, K.

Trichias, A. Skalidi, C. Ntogkas, A. Gkiolias, I.

Chondroulis, A. Demou, A. Athanesselis, M. Mitrou

(WINGS)

Reviewer(s): Silvia Canale (Ares2T); Vincenzo Suraci (Ares2T)

Contractual Date of Delivery: 30/06/2020

Submission Date: 29/06/2020

Dissemination Level: PU

Status: Final

Version: 1.0

File Name: 5G_EVE_D3.4

Disclaimer

The information and views set out in this deliverable are those of the author(s) and do not

necessarily reflect the official opinion of the European Union. Neither the European

Union institutions and bodies nor any person acting on their behalf may be held

responsible for the use which may be made of the information contained therein.

iii

Deliverable History

Version Date Modification Modified by
V0.1 14/05/2020 First draft Marc Mollà Roselló

V0.2 29/05/2020 Second draft with initial

contributions

WP3 team

V0.3 08/06/2020 First version for internal

review

WP3 team

V0.4 09/06/2020 Second version for internal

review

WP3 team

V0.5 12/06/2020 Version ready for internal

review

WP3 team

V0.6 14/06/2020 Internal review WP3 team

V0.9 15/06/2020 Ready for official review WP3 team

V0.91 26/06/2020 Internal review WP3 team

V1.0 28/06/2020 QA review Kostas Trichias

iv

Table of Contents

LIST OF ACRONYMS AND ABBREVIATIONS .. VI

LIST OF FIGURES .. VII

LIST OF TABLES ... VIII

EXECUTIVE SUMMARY .. 9

1 INTRODUCTION ... 10

1.1 INITIAL CONTEXT .. 10
1.2 STRUCTURE OF THE DOCUMENT .. 10

2 INTERWORKING FRAMEWORK DESIGN ... 11

2.1 NEW FEATURES IN MS9 VERSION .. 11
2.1.1 Extended Automation in Connectivity Interworking Services ... 12
2.1.2 Central repository for Site-related information .. 14
2.1.3 RAN Orchestration .. 15

3 SOFTWARE ARTEFACTS ... 16

3.1 MULTI-SITE CATALOGUE .. 16
3.1.1 Software architecture .. 17
3.1.2 Open API description .. 18
3.1.3 Service description .. 19

3.2 MULTI-SITE INVENTORY ... 20
3.2.1 Software architecture .. 21
3.2.2 Open API description .. 21
3.2.3 Service description .. 21

3.3 MULTI-SITE NETWORK ORCHESTRATOR ... 21
3.3.1 Software architecture .. 21
3.3.2 Open API description .. 23
3.3.3 Service description .. 23

3.4 DATA COLLECTION MANAGER .. 29
3.4.1 Software architecture .. 30
3.4.2 Open API description .. 31
3.4.3 Service description .. 32

3.5 RUNTIME CONFIGURATOR ... 38
3.5.1 Software architecture .. 38
3.5.2 Open API description .. 40
3.5.3 Service description .. 44

3.6 ADAPTATION LAYER ... 51
3.6.1 Multi-Site Catalogue SBI .. 51
3.6.2 Multi-Site NSO to local Orchestrators interface (MSO-LO)... 51

3.7 IWF REPOSITORY .. 57
3.7.1 Software architecture .. 57
3.7.2 Open API description .. 59
3.7.3 Service description .. 63

3.8 SITE ADAPTATIONS .. 63
3.8.1 French site .. 64
3.8.2 Greek site .. 66
3.8.3 Italian site ... 69
3.8.4 Spanish site ... 71

4 INTER-SITE CONNECTIVITY STATUS ... 73

5 UPDATED ROADMAP .. 74

6 CONCLUSIONS .. 77

ACKNOWLEDGMENT .. 78

REFERENCES ... 79

v

ANNEX A. EXAMPLE OF TCB BASED ON THE INFORMATION MODEL PROPOSED FOR THE SCRIPTS

 .. 80

vi

List of Acronyms and Abbreviations

Acronym Meaning

3GPP Third Generation Partnership Project

5G Fifth Generation

ACID Atomicity, Consistency, Isolation and Durability

API Application Programming Interface

DCI Data Center Interconnection

ETSI European Telecommunications Standards Institute

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IP Internet Protocol

IWF Inter-Working Framework

IWL Inter-Working Layer

LCM Lifecycle Management

MANO Management and Orchestration

MSNO 5G EVE Multi-Site Network Orchestrator

MSO-LO 5G EVE Multi-Site NSO to Local Orchestrator

NBI North-Bound Interface

NFV Network Function Virtualization

NFVO NFV Orchestrator

NS Network Service

NSD Network Service Descriptor

NSO Network Service Orchestrator

ONAP Open Network Automation Platform

OSM Open Source MANO

PNF Physical Network Function

PNFD PNF Descriptor

REST Representational State Transfer (software architectural style)

SBI South-Bound Interface

SQL Structured Query Language

SSH Secure Shell

TOSCA Topology and Orchestration Specification for Cloud Applications

UML Unified Modelling Language

VNF Virtual Network Function

VNFD VNF Descriptor

YAML YAML Ain’t Mark-up Language

vii

List of Figures

Figure 1: I/W Framework updated architecture .. 11

Figure 2: Typical SDN Control scenarios in 5G EVE ... 12

Figure 3: Potential SDN Control scenario in telecom operators ... 13

Figure 4: Multi-site Catalogue high level software design – second release version for D3.4 17

Figure 5: Multi-site Catalogue ONAP driver .. 20

Figure 6: MSNO micro-service architecture ... 22

Figure 7: MSNO micro-service internal architecture .. 22

Figure 8: Multi-Site Network Orchestrator URI structure .. 23

Figure 9: Create Network Service Workflow .. 24

Figure 10: Workflow for the NS instances query .. 24

Figure 11: Workflow for Query .. 25

Figure 12: Workflow for the Instantiate Request .. 26

Figure 13: NFV-O resolution .. 27

Figure 14: Terminate Network Service Workflow .. 28

Figure 15: Delete NS workflow .. 29

Figure 16: Data Collection Manager final architecture ... 30

Figure 17: Subscription to the topics used for experiment monitoring and performance analysis purposes ... 34

Figure 18: Delivery and management of monitoring information during the experiment execution 35

Figure 19: Withdrawal of the topics used for experiment monitoring and performance analysis purposes 36

Figure 20: Runtime Configurator final architecture .. 39

Figure 21: Runtime Configurator data model.. 39

Figure 22: Preliminary steps before starting with the experiment execution .. 46

Figure 23: Execution of application Day-2 configuration scripts ... 47

Figure 24: Execution of infrastructure Day-2 configuration scripts .. 48

Figure 25: Execution of experiment scripts ... 49

Figure 26: Stop infrastructure scripts .. 50

Figure 27: Reset application scripts and termination of the experiment ... 51

Figure 28: Architecture of the application ... 52

Figure 29: UML class diagram with an example method of the interface. ... 53

Figure 30: Message sequence chart to show modules and objects interactions. ... 54

Figure 31: Subscriptions and notifications management for ONAP ... 55

Figure 32: Subscriptions and notifications management for OSM ... 55

Figure 33: IWL components that use the IWF Repository .. 58

Figure 34: Entity-Relationship diagram for IWF Repository database ... 58

Figure 35: Example HTTP requests to create new entities in IWF Repository ... 63

viii

Figure 36: The overview architecture of French Site .. 64

Figure 37: The overview architecture of Greek Site ... 67

Figure 38: NFVO Orchestrators at the Italian site ... 69

Figure 39: MANO at the Spanish site ... 71

Figure 40: 5G EVE site integration ... 73

Figure 41: Task plan for WP3 for the 5G EVE second year ... 74

List of Tables

Table 1: Services provided by Multi-Site Catalogue ... 18

Table 2: Multi-Site Inventory services .. 21

Table 3: Service description .. 23

Table 4: Data Collection Manager operations from its Open API specification .. 32

Table 5: Runtime Configurator updated NBI .. 40

Table 6: Runtime Configurator updated SBI ... 42

Table 7: Runtime Configurator operations from its Open API specification. ... 43

Table 8: MSO-LO API interface ... 56

Table 9: IWF Repository main REST API paths .. 59

Table 10: API provided by Translation Component as a “external API of French Site” 65

Table 11 OSM API definition for Greek site .. 68

Table 12: API provided by EVER orchestrator to EVER driver ... 70

Table 13: 5G EVE Interworking Framework Roadmap .. 75

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 9 / 80

Executive Summary

Deliverable D3.4 is the second deliverable dealing with the implementation of the Interworking Layer (IWL).

This deliverable includes all IWL components as they are tested and integrated internally and with other 5G

EVE components (5G EVE Portal, 5G EVE sites), as we describe in the deliverable D3.7.

One of the biggest efforts done in the scope of WP3 during the last third of the second year of the project is the

integration of the IWL components. We integrated and tested the components first internally, and later with the

other 5G EVE components of the 5G EVE Portal and the 5G EVE sites. Most of this integration has been done

during the COVID-19 situation, which impacted the normal execution of the project due to the restrictions on

working physically in the sites. However, we delivered in time the IWL components with the required scope

and now IWL is integrated with the 5G EVE Portal and we tested the integration with OSM and ONAP NFV-

Os.

As we explain in the Roadmap section, we managed the scope of the IWL roadmap for delaying those part that

are not essential today for the project, without impacting the services and features offered by 5G EVE. In

addition, we also managed the incorporation of new requirements: (i) a new Gaming use case coming from

Telefonica and incorporated in the last amendment of the project, (ii) new requirements for integrating a new

kind of orchestrators that are focused in RAN management and (iii) the development of a new component, called

IWL repository, which exposes information related to the architecture of the 5G EVE sites. The seamless

incorporation of these new requirements demonstrates that the open and modular IWL architecture allows to

change, evolve or enhance any part of the IWL for adapting it to future requirements.

We also update in this report the information related to inter-site connectivity, which is core for supporting the

multi-site experiments execution.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 10 / 80

1 Introduction

Deliverable D3.4 “Second implementation of the interworking reference model” contains the report of the Inter-

Working Layer software deliverables for MS8 and MS9 of the 5G EVE project, developed in the scope of Task

3.3 “Interworking model implementation and deployment”. The deliverable contains the public definitions of

the Interworking Framework components’ interfaces, the low-level description of the components as well as the

references to the public repository for the software artefacts.

1.1 Initial context

This work is based on the analysis, architecture and interface definitions included in D3.1 ([1]) and D3.2 ([2]).

The software delivery is an update of the first delivery reported at D3.3 ([3]). A summary of the design decisions

contained in these documents is included in section 2.

1.2 Structure of the document

The main structure of this deliverable can be summarized as follows:

• Section 2 contains a summary of the Interworking Framework design that is included in the D3.1, D3.2

and D3.3. It also contains the description of the new requirements and components included in the IWL

since the delivery of D3.3.

• Section 3 contains the description of the software included in this deliverable. We included the public

specification of the API provided for each component, with a reference of the public open API

definition. Also, we included the features provided by each component as well as the internal design.

• Section 4 contains an update of the status of the inter-site connectivity.

• Section 5 describes the Interworking Framework roadmap at the time of this delivery.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 11 / 80

2 Interworking Framework design

The 5G EVE I/W layer (IWL) enables the 5G EVE platform to execute multi-site vertical experiments without

caring of the specific technology constraints that each site implements to provide 5G services. Indeed, the IWL

is the core 5G EVE component for the abstraction of specific logics and management, control and orchestration

tools that each site facility implements, by exposing common and unified procedures (and data models) for

managing the vertical experiments on top of the heterogeneous multi-site infrastructure. The 5G EVE Portal

benefits from this approach by accessing the IWL to first retrieve the capabilities of the multi-site 5G EVE

infrastructure in terms of services and VNFs, and then to request for the provisioning of multi-site 5G vertical

experiments designed on top of such capabilities, all by using a common and unified set of APIs based on the

ETSI NFV SOL specifications that the I/W framework expose. At its southbound, the I/W framework takes care

to interface with the various site tools (e.g. the local site orchestrators, each with its own information model for

network service and VNF description). This is enabled by a dedicated Adaptation Layer that abstracts the

specific site technologies, data models and procedures while exposing common and unified APIs to the I/W

framework internals.

The detailed design of the I/W framework capabilities and features is reported in deliverables D3.1 ([1]) and

D3.2 ([2]), where the functional decomposition together with APIs and workflows are described. Moreover,

deliverable D3.3 ([3]) provides details about the first software release of the I/W framework, which is already

integrated with the 5G EVE site facilities and used by the 5G EVE Portal for the validation of the first set of 5G

vertical experiments. With respect to the software delivery in D3.3, the internal architecture of the I/W

framework of the new release described in this document (for the milestone MS9) is slightly updated as depicted

in Figure 1, where in addition to the existing functional blocks (the Multi-Site Network Orchestrator, the Multi-

Site Catalogue, the Multi-Site Inventory, the Runtime Configurator and the Data Collection Manager), a new

component is introduced to address additional I/W framework requirements and constraints emerged during the

first set of integration and validation activities. This new component is the IWF repository, depicted in green in

Figure 1, takes care to store information about site facility capabilities and features, e.g. in terms of available

local orchestrators (type, credentials,), virtualized infrastructures and availability zones. The IWF repository is

therefore a central storage point within the I/W framework for all the site facility information that are useful for

the I/W framework logics, even if not strictly related to the 5G vertical experiments themselves. It exposes a

well-defined set of APIs to be consumed by the other I/W framework components (mostly the Multi-Site

Catalogue, the Multi-Site Network Service Orchestrator, the Runtime Configurator), as fully described in

section 3.7.

Figure 1: I/W Framework updated architecture

2.1 New features in MS9 version

During the design and development of the IWL we introduce new requirements and components due to the

following reasons:

1. new requirements coming from the new Telefónica’s gaming use case

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 12 / 80

2. new requirements from the integration of IWL and the 5G EVE sites and

3. new requirements from internal 5G EVE use cases and the new use cases coming from ICT-19 projects.

In the amendment of the 5G EVE project, Telefónica (TID) introduced a new gaming business case that is

interesting for the IWL because the use case introduces the integration of SDN controllers and the IWL as well

as a close loop that connects the metrics collection with the orchestration decision. The use case is briefly

described in the following sections and the IWL will support it for the next release of the IWL.

One of the biggest efforts in WP3 during this year has been the integration of the IWL components and the

integration of the 5G EVE Portal, the IWL and the 5G EVE sites. During the integration we realized that even

using standard and open interfaces we needed to know per-site details in order to integrate the systems:

credentials, internal architecture, configuration, etc. For that reason, we decided to create the IWL repository, a

new IWL component that will store all the per-site information required at the IWL. This approach allows us to

maintain most of the IWL components agnostic to the 5G EVE site architecture and configuration.

Finally, we introduce the RAN orchestration feature as the first feature in our roadmap towards the multi-site

experiments. The aim of the feature is to configure the (v)RAN of the experiment according to the requirements

of the experiment developer. This feature allows us to introduce RAN controllers that configure the RAN

according to the requirements or even RAN orchestrators that deploy virtual RAN on demand, all of this

transparently to the user of the 5G platform.

In the following sections we detail all these new features.

2.1.1 Extended Automation in Connectivity Interworking Services

In Deliverable D3.2 ([2]) – Interworking Reference Model – several “Interworking Services” were introduced.

These were classified following the below taxonomy:

• Interworking Framework services, divided in single-site and multi-site scenarios, and which deal with

orchestration, monitoring, and automated deployment.

• Data Plane Connectivity services, divided themselves in traditional services, like VLANs, VPNs, etc.,

and slices.

Regarding the automated provisioning of the latter, some discussions were introduced about different SDN

architectures with the capabilities to achieve this. In 5G EVE, generally, SDN Controllers in charge of managing

the datacentre fabric (or the Open vSwitches at the compute infrastructure) are themselves managed by the local

VIMs, or alternatively, by the local NFVO (as depicted in Figure 2).

Figure 2: Typical SDN Control scenarios in 5G EVE

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 13 / 80

These configurations are not only typical in 5G EVE sites, but also in most of the Cloud Service Providers’

datacentres. However, this is not necessarily true for telecom operators. For many reasons, one of these being

the interaction with the transport network in Data Centre Interconnection (DCI) scenarios, it may happen that

SDN Controllers at the operators’ datacentres are not governed by local VIMs or NFVOs, but by other

hierarchical SDN components (Figure 3).

Figure 3: Potential SDN Control scenario in telecom operators

In this sense, the project has taken advantage of the inclusion of a new Use Case (“high quality multi-site gaming

experience”, described in D2.6 ([7]) – Participating vertical industries planning) to face this challenge, and

demonstrate scenarios in which the SDN Controllers (either the local or even the hierarchical one) may be

directly exposed to the Multi-Site Network Service Orchestrator (MS-NSO).

In the gaming Use Case, estimations of the Quality of Experience (QoE) are generated, which can trigger

corrective actions when needed. Initially, the actions would target the gaming engine and media. For example,

in case too many users joined a game, and that affected the overall quality (example: packet losses generating

artefacts), the QoE Estimation module could address the transcoders, and reduce the video rates. The reduction

in bandwidth would reduce the packet losses, resulting in zero artefacts and better QoE, even if the transmitted

video quality is lower.

The capability of the QoE Estimation module to impact on the network as well as on the gaming engine would

certainly improve the gaming system. The module would have more flexibility to decide which component

should implement the corrective actions, resulting in better QoE. Indeed, imagine the QoE Estimation module

in the example case above could somehow detect that the packet losses are all happening in a single network

bottleneck, and could request to the Orchestrator additional resources at that network segment. Under these

circumstances the system would not need to reduce the transmitted video rate, thus resulting in improved

experienced quality.

2.1.1.1 New requirements to MS-NSO

When considering that the Network Optimiser module will be able to trigger network related actions at the MS-

NSO, and that the latter should progress these directly to an SDN Controller, two new requirements compared

to D3.2 appear:

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 14 / 80

• The NBI interface of the MS-NSO now must be opened to support requests from components outside

the Interworking Layer (IWL) or the 5G EVE Portal. Furthermore, these components are in fact external

to 5G EVE development, coming as they are from a Vertical. Apart from the update of the NBI itself,

this results in very important operational concerns, including of course security.

• The SBI interface of the MS-NSO now must implement a new type of communication, towards an SDN

Controller.

2.1.1.2 Implementation approach

The approach for the support of the new requirements in 5G EVE will be to try to reuse as much as possible

what is already available. Two reference points (Or-Or and Os-Ma-Nfvo) were designed for the MS-NSO in

D3.2, being currently supported by the implementation that 5G EVE has made of ETSI NFV SOL 005 ([5]).

For the NBI, the better positioned option which is being evaluated is to use the POST request available to update

a Network Service. This request includes a field called “vnfConfigurableProperties”, which is a list of key-value

pairs, where we could include the proposed operation. For example, we could code “newBandwidth = 5M”, or

more open actions like “bandwidthOperation = increase”.

The big benefit of this approach is that it would be quick to implement and would not increase the complexity

of the MS-NSO. Probably the biggest drawback is that the original intention of the operation is not exactly this

one, resulting in a solution a little bit against the spirit of the specification. The alternative will be to implement

a more SDN-like operation in the MS-NSO NBI.

Regarding the SBI, there are also two options. One of them is implementing at the MS-NSO a WIM-like

interface, as defined for OSM. The biggest issue about the current specification of this interface is that it is more

focused on the provisioning of VPN-like services, which limits quite a lot its potential usage.

The second option, probably more realistic, is to make a proxy out of the MS-NSO for this specific operation

and let the Adaptation Layer build a translator between NFV SOL 005 and an API which SDN Controllers can

understand. That later API will be typically based on some IETF YANG models over a Netconf interface. The

capability to adapt such approach to the specific needs in our use case is very high, since we could use any

YANG model agreed with the Controller vendor, in case the IETF ones were not enough.

Anyhow, the implementation of these features has not started yet. As mentioned above, the Use Case has been

recently included in 5G EVE, and current focus is placed on integrating it with the available infrastructure on

WP2 and the on-boarding processes of WP4. Resulting modifications in the IWL with regards to the gaming

Use Case will be included in Deliverable D3.5.

2.1.2 Central repository for Site-related information

During the integration of components in the Interworking Framework and the development of new features, the

requirement for a single repository to store information about 5G EVE sites and their features arose. Indeed,

each component was relying on an internal, local storage to keep both its status and some contextual information,

like for example the list of NFV Orchestrators registered with the 5G EVE infrastructure. While this solution

kept each component as an independent and fully functional micro-service, data inconsistencies started to

happen. Each component would need to implement multiple checks in the logic to ensure its local information

is in sync with other components and subsequently map external data entities to local entities to ensure consistent

behaviour.

Considering the issues mentioned above, the developers discussed and agreed on having a unique component

to store shared information, while maintaining component-related, dynamic status in local storage elements.

The new component, named IWF Repository, stores and provide CRUD operations for the following

information elements:

• Sites

• NFV Orchestrators

• RAN Orchestrators

• Orchestrator credentials

• VIM accounts available at NFV Orchestrators

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 15 / 80

• VIM network names (management and external networks, statically configured in each site)

• VIM availability zones (to distinguish between resources available at cloud and at edge)

• RAN zones (to represent coverage areas and antenna capabilities)

• Subscriptions to notifications about Network Service lifecycle

• Data shippers

More information on the data model and implementation details can be found in Section 3.7.

2.1.3 RAN Orchestration

As we introduce above, a new kind of orchestrator is supported in the IWL. The goal is to configure and/or

orchestrate the Radio Access Network stage of the 5G EVE sites, based on the requirements received from the

5G EVE Portal: Network Slice Type (eMBB, mMTC, URLLC), Technology (LTE, 5G mid-bad, 5G mmWaves,

NB IoT, CAT-M) and Coverage zone (e.g. location, room).

The RAN orchestration shall adapt or deploy the RAN according to the received parameters and configure the

required Connection Points with the 5GCore.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 16 / 80

3 Software artefacts

This section contains the description of the software artefacts included in this delivery. For all Interworking

framework components, we include the description of the public interface provided by the component, in Open

API format. For the Multi-Site Catalogue, the Multi-Site Network Orchestrator and the Adaptation Layer we

include a description of the services and features included in this deliverable. Additionally, we also include a

low-level detail of the internal design of components.

3.1 Multi-Site Catalogue

The 5G EVE Multi-site Catalogue is the IWL component that is responsible for storing all of the Networks

Service Descriptors (NSDs) and VNF Descriptors (VNFDs) that model single-site and multi-site vertical

experiments. It is accessed by the 5G EVE Portal to retrieve the capabilities of each site facility in terms of

available Network Services and VNFs to properly compose experiments according to the specific vertical

requirements and constraints. Indeed, the 5G EVE Portal is allowed to onboard new NSDs in the Multi-site

Catalogue whenever a vertical experiment is made of the composition of existing NSDs and VNFDs in one or

more site facility. It is important to recall that according to the 5G EVE principles, VNFs are not allowed to be

onboarded in the various site facilities from the I/W framework, or from the 5G EVE Portal. The VNF

onboarding (and removal) is performed directly on the site catalogues (upon a related request issued on the 5G

EVE Portal ticketing system) and through a human driven process by each site manager. For this reason, the

Multi-site Catalogue implements specific catalogues synchronization mechanisms through which it is able to

periodically retrieve the available VNFs in each site facility catalogue.

The Multi-site Catalogue follows the ETSI NFV SOL specifications, and in particular the data model for NSDs

and VNFDs is aligned with the ETSI NFV SOL001 TOSCA models [8], while the northbound APIs are

compliant with the ETSI NFV SOL005 v2.4.1 interfaces [5]. As the various local site catalogues (where site-

specific NSDs and VNFDs are stored) implement their own data models (e.g. based on ETSI OSM or ONAP

descriptors models), the Multi-site Catalogue takes care (in both I/W framework to local site catalogue and local

site catalogue to I/W framework directions) to translate the NSDs and VNFDs from ETSI NFV SOL001 TOSCA

model into the site-specific data model. Indeed, the Multi-site Catalogue embeds part of the I/W framework

adaptation layer features with the aim of exposing at its northbound a common and unified NSD and VNFD

data model for the 5G EVE Portal use.

In practice, the Multi-site Catalogue is conceived to provide the following Network Service and VNF on-

boarding related procedures:

• Catalogues synchronization, to let the Multi-site Catalogue automatically retrieve, translate and store

available NSDs and VNFDs from each site facility.

• VNF onboarding, to allow dynamic and automated retrieval, translation and storage of new VNFDs that

are on-boarded directly in the 5G EVE sites at runtime.

• VNF removal, to allow dynamic and automated removal of existing VNFDs in the Multi-site Catalogue

when the related VNFs are no longer available in the 5G EVE sites.

• Network Service Descriptor onboarding triggered by the 5G EVE Portal, to allow the 5G EVE Portal

to onboard in the I/W framework new NSDs for single- and multi-site vertical experiments. The

descriptors are then translated and forwarded to the proper site catalogues into the specific data model

format.

• Network Service Descriptor onboarding triggered by the local site catalogues, to allow dynamic and

automated retrieval, translation and storage of new NSDs that are on-boarded directly in the 5G EVE

sites at runtime.

• Network Service Descriptor removal triggered by the 5G EVE Portal, to allow the 5G EVE Portal to

remove existing NSDs whenever the related single- or multi-site vertical experiment is no longer

available in the 5G EVE platform.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 17 / 80

• Network Service Descriptor removal triggered by the local site catalogues, to allow dynamic and

automated removal of existing NSDs in the Multi-site Catalogue when the related NSs are no longer

available in the 5G EVE sites.

3.1.1 Software architecture

This section describes the second software release of the Multi-site Catalogue, as an incremental drop on top

the first one delivered with deliverable D3.3 [3]. In terms of high-level software design (reported as part of the

deliverable D4.1 [9] and referenced in D3.3), the main principles and functionalities are still valid. In particular,

the Multi-site Catalogue is developed in Java, as Maven projects, and adopt PostgreSQL as backend database.

It is an extension of the 5G Apps and Services Catalogue developed in the context of the 5G-MEDIA project1 .

As depicted in Figure 4, the Multi-site Catalogue exposes at its northbound a set of REST APIs, which are

compliant with the ETSI NFV SOL005 interfaces defined for NSD Management and VNF Package

Management. The core engine is implemented in the Catalogue Service, which provides the logic for Multi-site

Catalogue workflows described above and coordinates the interactions with the underlying local site catalogues.

For this, site-dependant NFVO drivers are integrated with a Kafka message bus, to take care, following an

asynchronous approach, of the bi-directional translation of ETSI NFV SOL001 TOSCA data model into the

specific local site catalogue data model (e.g. ETSI OSM or ONAP ones) for each of the NSD or VNFD that is

either retrieved from the site facilities, or is onboarded from the 5G EVE Portal.

Figure 4: Multi-site Catalogue high level software design – second release version for D3.4

The Multi-site Catalogue stores the files included in the NSD and VNF packages (according to the ETSI NFV

SOL004 [10] CSAR format) in the local filesystem, while summary information for each of the onboarded

descriptor (including identifiers, mapping with local site catalogue identifiers, sites where a descriptor is

onboarded) is stored into a backend database based on PostgreSQL.

1 http://www.5gmedia.eu/

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 18 / 80

With respect to the first software release described in deliverable D3.3, some new features have been

implemented in the Multi-site Catalogue for this second release. These additional functionalities are highlighted

in green in Figure 4 and can be summarized as follows:

• New Catalogue Service logics for the support of (with reference to workflows listed in section 3.1

above):

o VNF onboarding workflow.

o VNF removal workflow.

o Network Service Descriptor onboarding triggered by the local site catalogues workflow.

o Network Service Descriptor removal triggered by the local site catalogues workflow.

• New NFVO driver for the integration with ONAP local site orchestrator.

• Integration with the I/W framework IWF Repository for automated NFVO drivers configuration.

3.1.2 Open API description

The Multi-site Catalogue northbound APIs are compliant with the ETSI NFV SOL005 v2.4.1 specification [5]

and are implemented as REST APIs that provide the operations related to NSD Management and VNF Package

Management.

Table 1: Services provided by Multi-Site Catalogue

Service Path Method Input Output Description

Multi-Site

Catalogue

/ns_descriptors POST Create NsdInfo

Request

NsdInfo

Instance

Create a new

NSD resource

Multi-Site

Catalogue

/ns_descriptors GET - Array of

NsdInfo

Returns the

information of all

NSD resources

Multi-Site

Catalogue

/ns_descriptors/{nsdI

nfoId}

GET - NsdInfo Returns the

information of

individual NSD

resource

Multi-Site

Catalogue

/ns_descriptors/{nsdI

nfoId}

DELETE - - Delete individual

NSD

Multi-Site

Catalogue

/ns_descriptors/{nsdI

nfoId}/nsd_content

PUT NSD file - Onboard new

NSD content

(TOSCA format)

Multi-Site

Catalogue

/ns_descriptors/{nsdI

nfoId}/nsd_content

GET - NSD file Returns the

individual NSD

content (TOSCA

format)

Multi-Site

Catalogue

/vnf_packages GET - Array of

VNFPckgI

nfo

Returns the

information of all

VNF Package

resources

Multi-Site

Catalogue

/vnf_packages/{vnfP

kgId}/

GET - VNFPckgI

nfo

Returns the

individual VNF

Package resource

Multi-Site

Catalogue

/vnf_packages/{vnfP

kgId}/vnfd

GET - VNFD file Returns the

individual VNFD

file (TOSCA

format)

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 19 / 80

The OpenAPI representations for the Multi-site Catalogue northbound REST APIs are available in the 5G EVE

GitHub repository, at:

https://github.com/5GEVE/OpenAPI/tree/v0.2/MultiSiteCatalogue

No updates have been implemented with respect to the APIs and related endpoints detailed in deliverable D4.1

([9]) and referenced in D3.3 ([3]), as part of the Multi-site Catalogue software design and first prototype release

documentation. However, for the sake of completeness of this document, we report in the Table 1 a summary

of the APIs and related endpoints implemented and exposed by the Multi-site Catalogue.

3.1.3 Service description

This section reports the second release of the Multi-site Catalogue, which advances the first drop provided with

D3.3. As depicted in Figure 4, new features have been implemented with the aim of supporting the full set of

Multi-site Catalogue functionalities defined in D3.2. In summary, this new release of the Multi-site Catalogue

now implements the full set of onboarding workflows described in section 3.1.1:

• Catalogues synchronization

• VNF onboarding

• VNF removal

• NSD onboarding triggered by the 5G EVE Portal

• NSD onboarding triggered by the local site catalogues

• NSD removal triggered by the 5G EVE Portal

• NSD removal triggered by the local site catalogues

As described in the previous section, this new version of the Multi-site Catalogue provides also a new NFVO

driver to interact with ONAP local site orchestrators, beyond the one already existing for ETSI OSM local site

orchestrators. This is a new feature that has been implemented from scratch to support the integration of the

Multi-site Catalogue with the French site facility, where indeed ONAP is the centralized orchestrator

responsible for the lifecycle management of Network Services and VNFs that implement the French site vertical

experiments. In particular, this new Multi-site Catalogue ONAP driver is in charge to communicate with the

Translation component described in section 3.8.1, as shown in Figure 5, to retrieve the available VNFs and

experiment services available in the local ONAP catalogue, which are modelled following a TOSCA CSAR

model [15] not compliant with the ETSI NFV SOL001 and SOL004 one used in the Multi-site Catalogue. With

this software release, the ONAP driver supports the following workflows:

• Catalogue synchronization, to retrieve from ONAP (at start-up) all of the existing VNFDs and NSDs

available in the local catalogue in the ONAP TOSCA CSAR format, and translate them into the Multi-

site Catalogue ETSI NFV SOL001 TOSCA format.

• VNF onboarding, to automatically detect new VNFs onboarded on ONAP at runtime, translate them

into the standard TOSCA format and store them in the local Catalogue DB.

• VNF removal, to automatically detect VNFs that are removed from the ONAP local catalogue at

runtime, and delete them in turn from the Multi-site Catalogue.

• NSD onboarding triggered by the local site catalogues, to automatically detect new NSDs onboarded

on ONAP at runtime, translate them into the standard TOSCA format and store them in the local

Catalogue DB.

• NSD removal triggered by the local site catalogues, to automatically detect NSDs that are removed

from the ONAP local catalogue at runtime, and delete them in turn in the Multi-site Catalogue

Moreover, a new integration with the IWF Repository has been also implemented in this release. This allows,

for each new per-site NFVO driver instance automatically created when the Multi-site Catalogue application

starts, to retrieve the proper information to access the given local site catalogue (e.g. in terms of credentials,

tenants, URLs, endpoints) and automatically configure the NFVO driver itself. This allows to keep such

https://github.com/5GEVE/OpenAPI/tree/v0.2/MultiSiteCatalogue

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 20 / 80

information centralized in the IWF Repository and accessible by any of the I/W framework component, and

avoid to have local Multi-site Catalogue configuration files (as it was for the previous software release described

in D3.3).

The Multi-site Catalogue delivered with this second software release is available as opensource code on the

Nextworks GitHub at:

https://github.com/nextworks-it/5g-catalogue/tree/v4.0.0

As an additional Multi-site Catalogue automated deployment feature, a Docker Compose script has been made

available to have a containerized deployment of the Multi-site Catalogue as the combination of two Docker

containers: i) one for the Multi-site Catalogue GUI front-end, ii) one for the Multi-site Catalogue backend

application (that is the full set of software components within the green box in Figure 5). The Docker Compose

script is available at:

https://github.com/nextworks-it/5g-catalogue/tree/v4.0.0/deployments/docker

As said, this is not to be considered as the final release of the Multi-site Catalogue software prototype.

Additional features will be implemented in the coming months to fulfil the 5G EVE platform requirements for

the lifecycle management of 5G vertical experiments.

Figure 5: Multi-site Catalogue ONAP driver

3.2 Multi-Site Inventory

The Multi-Site Inventory is the component of the Inter-Working Layer that provides information about the

Network Services deployed in the 5G EVE sites.

https://github.com/nextworks-it/5g-catalogue/tree/v4.0.0
https://github.com/nextworks-it/5g-catalogue/tree/v4.0.0/deployments/docker

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 21 / 80

3.2.1 Software architecture

The Multi-Site Inventory is integrated with the Multi-Site Network Orchestrator, as described in section 3.3.1.

3.2.2 Open API description

The north-bound interface of the Multi-Site Inventory is available at:

https://github.com/5GEVE/OpenAPI/tree/master/MSNO

It is based on the ETSI NFV SOL 005 interface and implements a subset of the Network Service Life Cycle

Management.

3.2.3 Service description

The Multi-Site Inventory services are detailed in Table 2 and described in section 3.3.3.

Table 2: Multi-Site Inventory services

Resource Name Resource URI HTTP

Method

Description

NS Instances /ns_instances GET Returns the list of onboarded

NS information

NS Instances /ns_instances POST Creates a new NS into the

MSNO

Individual NS

Instances

/ns_instances/{nsInstanceId} GET Returns the information of a

NS

3.3 Multi-Site Network Orchestrator

The Multi-Site Network Orchestrator (MSNO) is one of the key components for deploying Network Services

in the 5G EVE sites. As described in previous deliverables (please refer to [1], [2] and [3]), the MSNO offers a

unique and standard API for managing the lifecycle of the Network Services in all the 5G EVE sites.

The main mission of the MSNO is to unify the management of the Network Services, together with the

Adaptation Layer, which provides a protocol conversion to per-site NFV-O APIs. It also interacts with other

key IWL components like the Multi-Site Catalogue, from where MSNO obtains the NSD content and the NSD

Information and with the IWL repository, which contains per-site information.

We describe here the delta implementation from D3.3 ([3]), which includes two software drops for MS8 and

MS9. As we detail in the workflows, MSNO is fully integrated with the rest of the components of the IWL and

provides all the features required for deploying experiments at MS9 status and supports ICT-19 projects.

3.3.1 Software architecture

The software architecture of the MSNO is based on a micro service architecture (Figure 6). We select this

approach basically due to the flexibility that it provides during the development, especially with a small

development team, as it allows to develop and to enhance each service individually.

The main micro-service is the Multi-Site Network Orchestrator service, which implements the northbound

interface that provides service to the 5G EVE Portal. We develop an auxiliary micro-service for the notifications

part of the northbound interface, for decoupling the on-demand service to the Portal from the asynchronous

operations. MSNO service is also in charge of stablishing the communications with the other IWL components.

https://github.com/5GEVE/OpenAPI/tree/master/MSNO

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 22 / 80

All the micro-services use a storage service for the persistent storage, called storage service. The persistency is

guarantee by using an open source reliable data base, called MongoDB2

Figure 6: MSNO micro-service architecture

All the micro services share the same internal architecture, described in Figure 7. The development language

selected for these processes is Go3 and we use standard Go libraries for implementing the HTTP (net. HTTP),

Service routing (gorilla.Mux) and YAML/JSON support.

Figure 7: MSNO micro-service internal architecture

With this, we implemented a YAML parser in Python for automatically generating the basic code of each

process from the OpenAPI specifications, which are described in the next section. This approach automatizes

the common code of each micro-service and allows us to concentrate the effort in the development of the service

logic. For the deployment of the micro services we selected the Docker4 containers technology.

2 https://www.mongodb.com

3 https://golang.org/

4 https://www.docker.com/

Storage

service

Database

Notifier

Multi-Site

Network

Orchestrator

IWL repository

Multi-Site Calaogue

WP4 Portal

Adaptation Layer

Storage API

HTTPSHTTP (net/http)

Router (gorilla/mux)

Generic Handler

YAML/JSON

Service Handler

Context

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 23 / 80

3.3.2 Open API description

The north-bound interface of the MSNO is available at:

https://github.com/5GEVE/OpenAPI/tree/master/MSNO

It is based on the ETSI NFV SOL 005 ([5]) interface and implements a subset of the Network Service Life

Cycle Management.

3.3.3 Service description

As commented, the service provided by the Multi-Site Network Orchestrator (MSNO) is an implementation of

the ETSI NFV SOL 005 interface related to the Network Service Life Cycle Management.

Figure 8: Multi-Site Network Orchestrator URI structure

Table 3: Service description

Resource

Name

Resource URI HTTP

Method

Description

NS Instances /ns_instances GET Returns the list of onboarded

NS information

NS Instances /ns_instances POST Creates a new NS into the

MSNO

Individual NS

Instances

/ns_instances/{nsInstanceId} GET Returns the information of a

NS

Individual NS

Instances

/ns_instances/{nsInstanceId} DELETE Deletes a NS from MSNO

Instantiate NS /ns_instances/{nsInstanceId}/instantiate POST Instantiates a NS into target

site

Terminate NS /ns_instances/{nsInstanceId}/terminate POST Terminates an instantiated

NS

3.3.3.1 Create Network Service Request

This request creates (onboard) a Network Service in the MSNO. It is the first step for deploying a Network

Service into the Inter-Working Layer.

The MSNO does not raise any operation towards the 5G EVE sites as the target site is not known yet, so the NS

remains in NOT_INSTANTIATE state in the MSNO:

https://github.com/5GEVE/OpenAPI/tree/master/MSNO

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 24 / 80

The resource URI is: {apiRoot}/nslcm/v1/ns_instances, and the resource method is POST.

Figure 9: Create Network Service Workflow

The workflow is as following:

1. Client sends a CreateNSRequest with the NSD ID of the Network Service to be deployed

2. MSNO generates a unique UUID for the Network Service Instance

3. MSNO stores the NS in the local storage with the state of NOT_INSTANTIATED

4. Response includes the UUID for the NS and the link to the resource

3.3.3.2 Query NS Instances

The Query Network Service Instances service returns the list of the Network Services that are onboarded in the

Inter-Working Layer and its local status.5

The resource URI is: {apiRoot}/mslcm/v1/ns_instances, and the resource method is GET.

Figure 10: Workflow for the NS instances query

5 As the end-2-end notification system is not ready, the local status could be outdated

https://github.com/5GEVE/I-W_Framework/blob/master/MSNO/doc/workflows/CreateNsRequest.png
https://github.com/5GEVE/I-W_Framework/blob/master/MSNO/doc/workflows/NsInstanceList.png

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 25 / 80

3.3.3.3 Query NS Instance

This service allows to retrieve the status of a single Network Service Instance in the platform. MSNO will check

with the site NFV-O the last status of the NS before informing the client.

The resource URI is: {apiRoot}/mslcm/v1/ns_instances/{nsInstanceId}, and the resource method is GET .

Figure 11: Workflow for Query

The workflow is as follows:

1. Client sends a GET request including NS instance ID

2. MSNO retrieves NS Instance local information for checking if the NS is onboarded

3. MSNO retrieves local NS ID from the mapping database.

4. In case that NS has not instantiated yet, MSNO returns local information

5. In case that NS has been instantiated, MSNO retrieves NS information from the local site

6. Local NS information is updated

7. Updated NS information is sent to the client

3.3.3.4 Instantiate NS

This service allows to instantiate a Network Service that is previously onboarded into the IWL. This is the

second step for deploying a NS into 5G EVE as the result is the Network Service deploying in the target site

selected by the Experimenter.

The resource URI is: {apiRoot}/mslcm/v1/ns_instances/{nsInstanceId}/instantiate, and the resource method

is POST.

https://github.com/5GEVE/I-W_Framework/blob/master/MSNO/doc/workflows/NsInstance.png

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 26 / 80

Figure 12: Workflow for the Instantiate Request

The workflow is:

1. The client sends an Instantiate request with the NS Instance ID and the target 5G EVE site

2. MSNO retrieves NS information from local storage

3. In case that the NS instance does not exists, or it has been instantiated, MSNO generates the

correspondent error

4. MSNO retrieves the NSD Info information from Multi-Site Catalogue, which includes the supported

sites for the NS instance

5. In case that target 5G EVE site is not in the supported sites list, the request is rejected

6. MSNO determines which site NFV-O will use for deploying the NS

7. MSNO checks if the NS has been deployed in a site.

8. In case that the target site is different to the site that has onboarded the NS, MSNO sends a 403

Forbidden error. If the local site is the same, MSNO skips onboarding phase (steps 9, 10) and sends an

Instantiation request (step 11)

9. MSNO generates a CreateNsRequest towards the selected NFV-O, through the Adaptation Layer

10. In case of success, MSNO stores the mapping between NS Instance ID and the UUID provided by the

site NFV-O

11. MSNO instantiates the NS in the local NFV-O

12. A positive response is generated

In case of error during the workflow, the MSNO raises the rollback procedure, which is in charge of deleting

any NS created in a local NFV-O.

https://github.com/5GEVE/I-W_Framework/blob/master/MSNO/doc/workflows/InstantiateNs.png

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 27 / 80

Figure 13: NFV-O resolution

In the MS9 scope, IWL supports a multi orchestration scenario, with one orchestrator for RAN and another one

for NFV management. For that, it implements the selection of the NFV-O as follows:

1. MSNO retrieves from IWL repository the list of orchestrators.

2. MSNO selects the appropriate NFV-O for the NS management

3. MSNO retrieves the NSD content from the MSC and determines if it is required a mapping between the

network names and the site implementation of public networking

4. MSNO retrieves the network mapping information from IWL repository

5. MSNO includes the mapping information in the Instantiation Request body

3.3.3.5 Terminate NS

This service allows to terminate a Network Service

The resource URI is: {apiRoot}/mslcm/v1/ns_instances/{nsInstanceId}/terminate, and the resource method

is POST.

Multi-Site

Network

Orchestrator

Multi-Site

Catalog

IWL

Repository

Local

Storage

Get NFVO site information (TARGET SITE)

List of NFV-O and RAN orch.

NFV-O

selection

Get NSD content (NSD ID)

NSD Content

Get Network information (TARGET SITE)

Network information

Mapping

information

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 28 / 80

Figure 14: Terminate Network Service Workflow

The workflow is:

1. Client sends a Terminate request with the NS Instance ID

2. MSNO retrieves local NS instance information

3. In case of NS state is not INSTANTIATED, MSNO responds with a 409 Conflict (Note: as the local

status in this drop is not synced with local NFVO, this check is skipped)

4. MSNO retrieves local ID for the NS instance

5. MSNO sends the Terminate request to the local NFV-O

6. MSNO forwards the response to the client

3.3.3.6 Delete NS

Deletes a Network Service from the 5G EVE platform. All resources are cleaned at IWL level as well as site

NFV-O level.

The resource URI is: {apiRoot}/mslcm/v1/ns_instances/{nsInstanceId}, and the resource method is DELETE.

https://github.com/5GEVE/I-W_Framework/blob/master/MSNO/doc/workflows/TerminateNs.png

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 29 / 80

Figure 15: Delete NS workflow

The workflow is:

1. Client sends a delete request with the NS instance ID

2. MSNO retrieves local NS information

3. In case of NS state is not NOT_INSTANTIATED, MSNO responds with a 409 Conflict (Note: as the

local status in this drop is not synced with local NFVO, this check is skipped)

4. MSNO retrieves local ID for the NS instance

5. MSNO sends the Delete NS request to the local NFV-O

6. MSNO deletes NS and local ID from storage

7. MSNO forwards the response to the client

3.4 Data Collection Manager

As summarised in the deliverable D3.3 ([3]), the Data Collection Manager is the component responsible for the

collection, persistence and delivery of all the network and vertical performance metrics, and also KPI values,

which are required to be gathered during the execution of experiments, with two main objectives: monitor the

experiment (thanks to the Monitoring and Result Collection tools provided within WP4 scope) and validate the

targeted KPIs (thanks to the KPI Validation Framework proposed and developed within WP5 scope).

For this purpose, the publish-subscribe paradigm is used in order to fully implement this workflow. In that way,

there are different components subscribed to specific topics, which play the role of communication channel to

successfully deliver the monitored data published from one entity to the components subscribed to that topic.

https://github.com/5GEVE/I-W_Framework/blob/master/MSNO/doc/workflows/DeleteNs.png

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 30 / 80

Next, the different improvements integrated in the Data Collection Manager, based on Apache Kafka6 and

Apache ZooKeeper7, will be presented.

3.4.1 Software architecture

In the current implementation of the DCM, the architecture selected to build and deploy it has evolved into a

simpler approach, compared to the software architecture presented in D3.3, based on the integration of the Kafka

Confluent8 platform to provide value-added features on top of the Apache Kafka and Apache ZooKeeper tools.

The architecture in which the DCM has been implemented is presented in the next Figure 16.

Figure 16: Data Collection Manager final architecture

In the architecture, Apache Kafka and Apache ZooKeeper are present. The first one is used for implementing

the publish-subscribe paradigm to coordinate the operation between the different modules interested in the

delivery of metrics’ (both application and infrastructure) and KPIs’ values, while the second one is in charge of

controlling the cluster configuration built among all the Apache Kafka components present in the architecture.

Moreover, to automate the process and to include some value-added features, a lightweight Python logic has

been also implemented, which mainly takes care of the topic management in coordination with the ELM (for

the topics related to the experiments) and with the DCS-DV (for the signalling topics). This piece of software

intends to take the role played originally by Kafka Confluent, as all the features provided by that tool are not

really needed in the context of 5G EVE. This Python logic can be found here: https://github.com/5GEVE/5geve-

wp3-dcm-handler.

6 https://kafka.apache.org/

7 https://zookeeper.apache.org/

8 https://www.confluent.io/

https://github.com/5GEVE/5geve-wp3-dcm-handler
https://github.com/5GEVE/5geve-wp3-dcm-handler
https://kafka.apache.org/
https://zookeeper.apache.org/
https://www.confluent.io/

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 31 / 80

Regarding site facilities, note that Apache ZooKeeper acts as the central component that coordinates all the

cluster activity, so it is the responsible for correctly configure all the topics handled by the Monitoring platform

and also the replication mode to be followed by each topic. Regarding this last fact, what it is intended to do is

to replicate the data from each site facility to the DCM, so that the DCM will be able to handle all the topics

related to the experiments handled in all site facilities, but site facility will only work with the topics related to

experiments deployed in their own site. This ensures that data that come from a single site facility is not

replicated towards another site facility, which is a security requirement that must be fulfilled. This particular

architecture will be described with more detail in the next deliverable D3.5.

The architecture in Figure 16 also reflects the interactions between the different modules, also including the

ports used in that communication:

• Port 2181: standard ZooKeeper port, used for coordinating the Kafka cluster from ZooKeeper, and also

used as destination port by the Python logic to manage the lifecycle of the topics provided by the ELM.

• Port 8090: Python’s logic listening port which enables the operations exposed in its OpenAPI, as

discussed in chapter 3.4.2.

• Port 9092: standard Kafka port, used for handling the delivery of data between the publishers and the

subscribers. This interaction is fully described in D3.3 – chapter 3.4.3.2, but now the interaction between

the Python logic and the DCM and DCS-DV is also included for handling the signalling topic’s

information, previous to the execution of the experiments.

Note that persistence configuration, in the case of the Kafka servers placed in each site facility, will depend on

the particular requirements of each site. In the case of the Kafka server located in the DCM, the retention time

defined will be enough to cover the whole experiment lifecycle, but the data persistence service will be offered

by the DCS-DV instead, as the possibilities that it provides (data pre-processing, filtering, indexing, etc.) allows

the Monitoring platform to better handle and manage the monitored data generated. In any case, a disk size

theoretical estimation based on the worst case (i.e. all the use cases performing experiments at the same time,

managing 20 topics per experiment, and with a retention time of two weeks) results in a value slightly below to

100 TB ([14]), this being a hard upper limit to have in mind. However, according to the tests already done and

the overview of the different use cases (i.e. they will not be executed simultaneously, and the topics handled are

around 5), the amount of disk needed could be around 100 GB with that assumptions.

Finally, the implementation of the DCM architecture is thought to be deployed in a single, Linux server, physical

or virtual (VM). The current Linux distribution used to deploy the DCM is Ubuntu Server 16.04 LTS, and the

deployment steps can be found in the following repository: https://github.com/5GEVE/5geve-wp3-dcm-

deployment. There, a specific Ansible playbook provides all the commands, files and configurations needed to

setup a DCM instance from scratch or to update it to the latest version.

3.4.2 Open API description

According to the software architecture presented in chapter 3.4.1, the OpenAPI specification that corresponds

to the REST API offered by the DCM Python logic can be found in the following link:

https://github.com/5GEVE/OpenAPI/tree/master/DataCollectionManager. This specification fully replaces the

Kafka Confluent’s REST Proxy OpenAPI definition presented in deliverable D3.3.

Then, the operations exposed by the DCM through the Python API, which are aligned with the three main

operations detected in D3.3 (i.e. subscribe, unsubscribe and publish), are the following:

https://github.com/5GEVE/5geve-wp3-dcm-deployment
https://github.com/5GEVE/5geve-wp3-dcm-deployment
https://github.com/5GEVE/OpenAPI/tree/master/DataCollectionManager

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 32 / 80

Table 4: Data Collection Manager operations from its Open API specification

Service Path Method Input Output Description

Data

Collection

Manager

/dcm/subs-

cribe

POST expId = internal

topic =

signalling topic

name

201 –

accepted

400 -

error

Subscribe9 to the signalling topic provided as

input in the body request.

Data

Collection

Manager

/dcm/un-

subscribe

DELETE expId = internal

topic =

signalling topic

name

201 –

accepted

400 -

error

Unsubscribe to the signalling topic provided

as input in the body request.

Data

Collection

Manager

/dcm/pu-

blish/<to-

pic>

POST topic =

signalling

topic10.

Array of

records11

containing

values with the

information

related to the

topics to be

subscribed/un-

subscribed.

201 –

accepted

400 –

error

Publish the information related to the topics

that will be created during the experiment

(and deleted afterwards) in the signalling

topics, so that the DCM triggers all the

mechanisms to create the topics in Kafka and

to distribute them to the proper entities.

3.4.3 Service description

In the DCM service description, the topic framework proposal already presented in the D3.3 will be updated

with the last changes included to adapt it to the new features enabled in the platform. Then, the workflows

presented in D3.3 – Annex A.3 will be updated with the current architecture specification showed in chapter

3.4.1. Finally, the information model to be used for publishing metrics’ and KPIs’ values in the Monitoring

platform will be also introduced.

3.4.3.1 Topic framework proposal update

As a reminder, the topic framework proposal intends to model the data handled by the Data Collection Manager

in terms of different topics to be used, depending on the traffic expected by the Data Collection Manager.

In this case, the distinction between signalling topics and data topics are still maintained. However, there are

several changes in both that must be commented:

• Signalling topics: in this case, it has been adapted to cover both infrastructure and application metrics,

using different signalling topics for each of them. Moreover, results’ data will no longer be handled, so

its signalling topic is directly removed from the proposal. Then, the signalling topic used by the DCM

are:

o signalling.metric.infrastructure: signalling topic for infrastructure metric’s data.

o signalling.metric.application: signalling topic for application metric’s data.

9 Note that the subscribe and unsubscribe operations for the topics related to metrics and KPIs do not need to expose an external API, as

it is directly handled by the Python logic with direct interactions with Apache ZooKeeper.

10 For the moment, the data managed by this endpoint is exclusively related to the messages sent by the ELM to subscribe/unsubscribe

to the topics related to the experiment. However, this endpoint can also be used to publish data in Kafka in another topic. The

considerations to allow this operation will be described in D3.5 if it is finally needed.

11 Examples with the format of this array of records can be found in deliverable D4.4 – Annex A.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 33 / 80

o signalling.kpi: signalling topic for KPI’s data.

• Data topics: as results are no longer monitored by the platform, they are also removed from the

definition of the data topics. Moreover, a new field, called <uc> (related to the use case) is also

included for enabling some functionalities in the DCS-DV in the 5G EVE Portal. Then, the current

format to be followed, updating the last one presented in D4.3, is the following:

<uc>.<exp>.<site>.[application_metric|infrastructure_metric|kpi].<value>, where:

o <uc>: it identifies the use case related to the topic. It will be used to handle user permissions

in the DCS-DV.

o <exp>: is the experiment ID, uniquely identifying the experiment itself. This value is generated

and assigned by the ELM.

o <site>: identifies the site facility where the data is extracted (e.g. Spain, Italy, etc.).

o [application_metric|infrastructure_metric|kpi]: it is a key word that indicates the type of

information to which belongs the next parameter.

o <value>: set the name of the parameter to be monitored (e.g. latency), identifying the

metric/KPI.

3.4.3.2 Updated workflows

Regarding the workflows, the three main phases detected in D3.3 – Annex A.3 have been maintained, but also

updating them with the new features enabled in the Monitoring platform. Then, the workflow would be the

following:

• Subscription phase (Figure 17): in the updated workflow presented in the following figure, note that

the workflow followed by the Result Analysis and Validation component is independent from the

workflow followed between the ELM and the DCM to exchange the topic names, as the provision of

the topics is directly handled by the Experiment Execution Manager in that case. Moreover, in the

subscribers installed in the DCS, they will be created two consumers for each data topic: one is the

Logstash pipeline that will ingest all the monitored data that comes from the corresponding publishers,

and the other one is a single Kafka consumer that will detect when the first message arrives to the DCS,

in order to generate the corresponding dashboards related to the monitored metric/KPI.

• Monitoring and data collection phase (Figure 18): this workflow is practically the same than the one

presented in D3.3, but also including some considerations related to the visualization of metrics and

KPIs in the Portal GUI. As commented in the subscription phase, when the first message arrives at the

DCS, it triggers the creation of the corresponding dashboards, and then the Kafka consumer related to

that process is closed. At the end of the workflow, which can be seen in the following figure, it is also

presented the interaction between the user and the Portal GUI, performed during all the experiment

execution. When the user enters in the Experiment Metrics Dashboards’ page in the 5G EVE Portal

GUI, a request to the DCS is performed in order to obtain the URLs of the dashboards to present the

metrics and KPIs in an on-line fashion. The components and the architecture implemented in the Portal

GUI for this purpose are fully described in the deliverable D4.4 (“Report on benchmarking of new

features”, which will be deliver in parallel to this deliverable).

• Withdrawal phase (Figure 19): again, it is the opposite operation to the subscription phase. In figure

below, it is also presented, at the end of the picture, the withdrawal process of the signalling topics,

which is performed when no more experiments are expected during a consider period of time, just to

stop the Monitoring platform.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 34 / 80

Figure 17: Subscription to the topics used for experiment monitoring and performance analysis purposes

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 35 / 80

Figure 18: Delivery and management of monitoring information during the experiment execution

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 36 / 80

Figure 19: Withdrawal of the topics used for experiment monitoring and performance analysis purposes

3.4.3.3 Information model to publish monitored data in the Monitoring platform

In order to publish the data related to the metrics’ and KPIs’ values to be handled by the Monitoring platform

in a unified way, an information model to define the specific fields that the message containing that data must

have is presented here.

In this proposed information model, the publication in Kafka implies the building of a specific JSON string, in

which the data needed by upper layers is included. This JSON string must be built by the Data shipper (i.e. light

pieces of software that collect the data related to monitored metrics in each VNF/PNF/specific component

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 37 / 80

related to a given experiment and publish them in the corresponding Kafka broker) and the publishers used in

other components (e.g. the RAV), including the values that correspond to the expected fields in the message.

For publishing a message in Kafka, the publisher will need in advance the IP address of the targeted Kafka

broker (the port is 9092, a well-known one) and the topic to publish. In the case of the RAV, these two

parameters are well-known beforehand, but in the case of the Data shippers for infrastructure and application

metrics, this information must be provided in the Day-2 configuration process performed by the Runtime

Configurator, as presented in the whole section 3.5. Regarding the Kafka IP address to be used by each Data

shipper, it will be the one related to the site in which that Data shipper is operating, then the data is replicated

to the DCM as commented before.

Having said that, the proposed JSON string for the information model, with the explanation of each field to be

included, is the following:

{

 'records': [{

 'value': {

 '[metric_value|kpi_value]': <value captured from the execution>,

 'timestamp': <time in which value has been captured, in Unix epoch format>,

 'unit': <unit used in metric_value>,

 'device_id': [ID of the device, to be used in upper layers if needed. Set to ‘nil’ if
not needed],

 'context': [param1=value1 param2=value2 ...] <include here other information that may
be needed in upper layers – customized parameter. Set to ‘nil’ if not needed>

 }

 }]

}

In this case, there are some mandatory parameters, which are the metric_value captured for the specific metric,

with its unit, and the related timestamp. It can be also included the device_id that identifies the device in which

it has been captured, to be used in upper layers if needed, and in case of needing to publish more information,

it can be included in the optional context field. In the case of KPIs, the only modification to be considered is to

change metric_value for kpi_value, as presented above.

The reason of using the records and value fields is to be compatible with the format used for the provision of

the topics from the ELM to the DCM. Also, in this way, a message batch can be sent, containing several,

consecutive metrics’ values of the same metric, if required.

The way of publishing this JSON depends on the implementation followed in the Kafka publisher; for example,

using Kafka libraries in well-known programming languages such as Python, Java, Go, etc., or by using specific

tools such as Beats12.

Specifically, in the 5G EVE context, it is already defined a Day-2 configuration process that allows users to

install Filebeat13 in specific VNFs and to configure them in a standardised way, as proposed in the Runtime

Configuration description in section 3.5. In case of following that approach, the idea is to monitor, with Filebeat,

a CSV file, where each row represents one value of a monitored metric, with all the fields commented before.

The configuration included in that Filebeat module allows it to transform each new row in that CSV file in

JSON automatically, following the information model presented before, and to send the final JSON string

automatically to Kafka. Then, the information model to be followed to build each CSV row will be simplified

in this way:

12 https://www.elastic.co/beats/

13 https://www.elastic.co/beats/filebeat

https://www.elastic.co/beats/
https://www.elastic.co/beats/filebeat

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 38 / 80

<metric_value>,<timestamp>,<unit>,[<device_id>],[<context>]

In this case, however, the batch option is not possible. Note that, again, device_id and context are optional fields,

which must be set to ‘nil’ if they are not used. In the case of the context field, it must contain the values in the

following format: param1=value1 param2=value2, etc. (i.e. param=value items separated by spaces).

This process of configuring a Data Shipper based on Filebeat and monitoring CSV files will be explained with

more detail in the next D3.5.

3.5 Runtime Configurator

The Runtime Configurator (RC) is the component in charge of supporting the experiment configuration,

execution and termination through the interaction with the Experiment Execution Manager, handling the

commands to be executed in the different phases of an experiment, differentiating between the Day-2

configuration of the targeted servers, both VNFs/PNFs or infrastructure components, and the experiment

execution itself, executing the commands related to each step of the experiment in the corresponding servers.

3.5.1 Software architecture

The proposed architecture for the RC in D3.3 was based, mainly, on Ansible Core14, using SSH in the interaction

between the EEM and the RC as a first approach, but with the intention of evolving it towards a RESTful

interaction by integrating the AWX project15 in the RC. However, this approach was not enough for fulfilling

the requirements imposed to the RC due to the evolution of the 5G EVE end-to-end workflow, related to the

automation of the whole workflow.

For this reason, the Runtime Configurator software architecture has evolved to the one presented in the

following figure, including other internal components to achieve the full automation in the operations executed

between the EEM and the RC:

14 https://docs.ansible.com/ansible/latest/index.html

15 https://github.com/ansible/awx

https://docs.ansible.com/ansible/latest/index.html
https://github.com/ansible/awx

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 39 / 80

Figure 20: Runtime Configurator final architecture

Now, all the interactions between the EEM and the RC are managed by a Java logic running within the RC

server, based on Spring Framework, playing the role of the AXW project aforementioned, which will not be

installed in the RC then. This Java logic can be found here: https://github.com/5GEVE/5geve-wp3-rc-handler.

This module also handles the interaction with the IWF Repository, which will provide all the scripts related to

the configuration of infrastructure metrics, and with the targeted servers to be configured through specific

clients, counting with an Ansible client (which interacts with Ansible) and also with a REST client (in case a

specific server exposes a REST API to be accessed, instead of SSH). All the data handled by the Java logic is

saved in an internal PostgreSQL database, according to the data model presented in the following figure.

Figure 21: Runtime Configurator data model

https://github.com/5GEVE/5geve-wp3-rc-handler

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 40 / 80

Basically, there are three types of request that are handled between the EEM and the RC:

• Application Day-2 configuration: it handles the provisioning and execution of the scripts related to the

initialization and resetting of the configuration of applications.

• Infrastructure Day-2 configuration: it is directly received the information related to the different

infrastructure metrics to be monitored in the experiment, according to its definition in the corresponding

Experiment Blueprints (ExpB), and also including some other fields like the topic or the deviceId, which

are provided to the EEM by the ELM. Then, through this interface, the start and stop operations for the

monitoring of each infrastructure metric are handled. To obtain the scripts for these operations, a

previous interaction between the RC and the IWF Repository is needed to extract the scripts according

to the requested Data Shipper, whose identifier is based on the information provided in the EEM request.

• Execution: in the same way that the application Day-2 configuration, it handles the provisioning and

execution of all the scripts related to the experiment execution of the particular test case.

What it is saved in the RC internal database is all these scripts, also providing a unique identifier for each

provisioning operation requested by the EEM and the current status of the operation. This will be further

extended in chapter 3.5.3.

Regarding the access to the targeted servers, the main alternative offered by the RC is still the OpenSSH protocol

by using specific Ansible playbooks, which are triggered by the Java logic with the information provided by the

EEM (and the IWF Repository in the case of infrastructure metrics). However, as commented before, a REST

client is also provided for particular cases where the interaction between the RC and the targeted server must be

based on RESTful operations. For obtaining the IP addresses, they will be provided by the EEM, which would

previously obtain these IP addresses from the MSNO, according to the references included in the Test Cases

Blueprints (TCBs), except infrastructure components, whose access configuration is fairly fixed and declared

in the IWF Repository. Apart from that, the considerations related to the Proxy Component already mentioned

in D3.3 are still present in this scenario.

Finally, in the same way that the DCM, the RC is thought to be also deployed in a single Linux server, physical

or virtual (VM). The current Linux distribution used to deploy the RC is Ubuntu Server 16.04 LTS, and the

deployment steps can be found in the following repository: https://github.com/5GEVE/5geve-wp3-rc-

deployment. There, a specific Ansible playbook provides all the commands, files and configurations needed to

setup a RC instance from scratch or to update it to the latest version.

3.5.2 Open API description

The OpenAPI specification exposed by the Java logic in the RC can be found in the following link:

https://github.com/5GEVE/OpenAPI/tree/master/RuntimeConfigurator. This specification fully replaces the

AWX’s OpenAPI definition presented in deliverable D3.3.

As a result, the high-level operations provided by the RC need to be updated from what it was reported in D3.3

– Annex B, according to the previous OpenAPI definition. These are collected in tables below.

Table 5: Runtime Configurator updated NBI

Runtime Configurator NBI

Application Day-2 Configuration

Description
Operations related to start or reset the application Day-2 configuration in the targeted

VNFs or PNFs.

Reference Standards REST API interface.

Operations Exposed Information Exchanged Information Model

https://github.com/5GEVE/5geve-wp3-rc-deployment
https://github.com/5GEVE/5geve-wp3-rc-deployment
https://github.com/5GEVE/OpenAPI/tree/master/RuntimeConfigurator

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 41 / 80

Load commands

• Configuration scripts.

• Reset configuration scripts.

It will return the configId to be used in further operations

and also the current status of the operation.

See the Runtime

Configurator data model

presented in section 3.5.1, the

OpenAPI specification and

the service description

presented in section 3.5.3.

Get status of an operation
• configId

It will return the current status of the operation.

See the Runtime

Configurator data model

presented in section 3.5.1, the

OpenAPI specification and

the service description

presented in section 3.5.3.

Start configuration
• configId

It will return the current status of the operation.

See the Runtime

Configurator data model

presented in section 3.5.1, the

OpenAPI specification and

the service description

presented in section 3.5.3.

Reset configuration
• configId

It will return the current status of the operation.

See the Runtime

Configurator data model

presented in section 3.5.1, the

OpenAPI specification and

the service description

presented in section 3.5.3.

Abort configuration
• configId

It will return the current status of the operation.

See the Runtime

Configurator data model

presented in section 3.5.1, the

OpenAPI specification and

the service description

presented in section 3.5.3.

Infrastructure Day-2 Configuration

Description Operations related to start or stop the configuration of infrastructure components.

Reference Standards REST API interface.

Operations Exposed Information Exchanged Information Model

Load infrastructure

information

• List<information related to each infrastructure

metric>

It will return the configId to be used in further operations

and also the current status of the operation.

See the Runtime

Configurator data model

presented in section 3.5.1, the

OpenAPI specification and

the service description

presented in section 3.5.3.

Get status of an operation
• configId

It will return the current status of the operation.

See the Runtime

Configurator data model

presented in section 3.5.1, the

OpenAPI specification and

the service description

presented in section 3.5.3.

Start configuration
• configId

It will return the current status of the operation.

See the Runtime

Configurator data model

presented in section 3.5.1, the

OpenAPI specification and

the service description

presented in section 3.5.3.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 42 / 80

Stop configuration
• configId

It will return the current status of the operation.

See the Runtime

Configurator data model

presented in section 3.5.1, the

OpenAPI specification and

the service description

presented in section 3.5.3.

Experiment Execution

Description Operations related to the execution of commands during the Experiment Execution phase.

Reference Standards REST API interface.

Operations Exposed Information Exchanged Information Model

Load commands

• Commands to be executed.

It will return the execId to be used in further operations

and also the current status of the operation.

See the Runtime

Configurator data model

presented in section 3.5.1, the

OpenAPI specification and

the service description

presented in section 3.5.3.

Get status of an operation
• execId

It will return the current status of the operation.

See the Runtime

Configurator data model

presented in section 3.5.1, the

OpenAPI specification and

the service description

presented in section 3.5.3.

Start execution
• execId

It will return the current status of the operation.

See the Runtime

Configurator data model

presented in section 3.5.1, the

OpenAPI specification and

the service description

presented in section 3.5.3.

Abort execution
• execId

It will return the current status of the operation.

See the Runtime

Configurator data model

presented in section 3.5.1, the

OpenAPI specification and

the service description

presented in section 3.5.3.

Table 6: Runtime Configurator updated SBI

Runtime Configurator SBI

Execution of commands through SSH16

Description Execution of the commands for all the operations exposed in the NBI in the targeted servers.

Reference Standards Ansible (OpenSSH protocol).

Operations Exposed Information Exchanged Information Model

16 Note that the REST SBI interface is not exposed, as this interface is only used in specific component from specific use cases that really

need that way of interacting.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 43 / 80

Execute command

• Data to access the targeted servers (IP address,

credentials, etc.).

• A list with the commands to be executed in the servers.

It will return the result of the commands execution.

Specific command to be

executed in the server,

managed by Ansible

playbooks.

With this information, the detailed operations exposed by the RC to the EEM, according to its OpenAPI

specification, can be checked in the following table:

Table 7: Runtime Configurator operations from its Open API specification.

Service Path Method Input Output17 Description

Runtime

Configurator
/rc/nbi GET - 200 - OK

Get RC version and

check that the service is

running.

Runtime

Configurator

/rc/nbi/applicat

ion/day2/confi

guration

POST

configurationScri

pt = scripts

executed during

start application

Day-2

configuration

operation.

resetConfigScript

= scripts executed

during reset

application Day-2

configuration

operation.

200 - OK

Provide the scripts for

application Day-2

configuration to the RC.

It returns the configId

and the current status of

the operation.

Runtime

Configurator

/rc/nbi/applicat

ion/day2/confi

guration/<conf

igId>

GET configId 200 - OK
It returns the current

status of the operation.

Runtime

Configurator

/rc/nbi/applicat

ion/day2/confi

guration/<conf

igId>/start

POST configId 200 - OK

Execute the

configurationScript

commands. It returns the

current status of the

operation.

Runtime

Configurator

/rc/nbi/applicat

ion/day2/confi

guration/<conf

igId>/reset

POST configId 200 - OK

Execute the

resetConfigScript

commands. It returns the

current status of the

operation.

Runtime

Configurator

/rc/nbi/applicat

ion/day2/confi

guration/<conf

igId>/abort

DELET

E
configId 200 - OK

Abort the current

operation. It returns the

current status of the

operation.

17 The output is always 200 OK, but the operation status is managed thanks to the operation status attribute which is always returned in

all requests.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 44 / 80

Runtime

Configurator

/rc/nbi/infrastr

ucture/day2/co

nfiguration

POST

List<infrastructur

eMetricsInfo> =

list containing the

data related to

each

infrastructure

metric to be

configured.

200 - OK

Provide the information

related to each

infrastructure metric for

the Day-2 configuration

process. It returns the

configId and the current

status of the operation.

Runtime

Configurator

/rc/nbi/infrastr

ucture/day2/co

nfiguration/<c

onfigId>

GET configId 200 - OK
It returns the current

status of the operation.

Runtime

Configurator

/rc/nbi/infrastr

ucture/day2/co

nfiguration/<c

onfigId>/start

POST configId 200 - OK

Execute the

configurationScript

commands (extracted

from the IWF

Repository by the RC).

It returns the current

status of the operation.

Runtime

Configurator

/rc/nbi/infrastr

ucture/day2/co

nfiguration/<c

onfigId>/stop

POST configId 200 - OK

Execute the

stopConfigScript

commands (extracted

from the IWF

Repository by the RC).

It returns the current

status of the operation.

Runtime

Configurator

/rc/nbi/executi

on
POST

execScript =

commands to be

executed during

Experiment

Execution phase.

200 - OK

Provide the scripts for

experiment execution to

the RC. It return the

execId and the current

status of the operation.

Runtime

Configurator

/rc/nbi/executi

on/<execId>
GET execId 200 - OK

It returns the current

status of the operation.

Runtime

Configurator

/rc/nbi/executi

on/<execId>/st

art

POST execId 200 - OK

Execute the execScript

commands. It returns the

current status of the

operation.

Runtime

Configurator

/rc/nbi/executi

on/<execId>/a

bort

DELET

E
execId 200 - OK

Abort the current

operation. It returns the

current status of the

operation.

3.5.3 Service description

In order to describe the service offered by the RC, it will be firstly explained the current information model used

to build the scripts to be placed in both the Test Cases Blueprints and the IWF Repository. Then, it will be

introduced the updated specific-purpose workflows followed in a normal execution of test cases that have both

infrastructure and application Day-2 configuration and experiment execution commands.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 45 / 80

3.5.3.1 Information model to build the scripts

To achieve the execution of the different commands through Ansible playbooks, in this first full definition of

the Runtime Configurator, these commands must be provided in a specific format in both the TCBs (for

application configuration and experiment execution) and in the IWF Repository (for infrastructure metrics).

Below, it is presented a template to be used in the TCBs for the definition of the commands:

testCaseBlueprint:
 description: Example for integration with the RC
 name: Example TCB
 configurationScript: [! -e hosts] || rm hosts && touch hosts && echo \"server
ansible_host=<VNF_IP_REFERENCE> ansible_user=$$user ansible_ssh_pass=$$password
ansible_become_pass=$$password\" | tee -a hosts && export ANSIBLE_HOST_KEY_CHECKING=False &&
ansible-playbook -i hosts execute_script.yml -e 'script=\"<SCRIPT_OR_COMMAND_TO_BE_EXECUTED>\"';
 executionScript: sleep $$sleep_time;
 resetConfigScript: (...)
 userParameters:
 user: $$user
 password: $$password
 sleep_time: $$sleep_time
 (...)
 infrastructureParameters:
 <VNF_IP_REFERENCE>
 (...)

 version: '2.0'

In this particular case, note that the commands always follow the same structure:

• They begin with the “reserved words” [! -e hosts] || rm hosts && touch hosts &&, which removes

the hosts file managed by Ansible, in which it is contained the information to access to the targeted

servers. Then, this hosts file is always clean in each command execution.

• Then, it follows by echo \"server ansible_host=<VNF_IP_REFERENCE> ansible_user=$$user

ansible_ssh_pass=$$password ansible_become_pass=$$password\" | tee -a hosts &&, command that

creates the hosts file with particular data referenced in the userParameters field in the TCB. By this

way, Ansible can know the information to access to the server(s), by knowing the IP address, username

and password. If password is not provided, it is assumed that the RC has provided their public keys to

the targeted servers in an off-line process in order to access them without requiring authentication.

• Again, the previous set of commands are followed by some “reserved words” which are export

ANSIBLE_HOST_KEY_CHECKING=False && ansible-playbook -i hosts execute_script.yml -e, which

prevents Ansible from checking host key verification and calls to the execute_script.yml playbook with

the information included in the hosts file already created.

• Finally, the execute_script.yml playbook accepts one single parameter, which is the script to be

executed: 'script=\"<SCRIPT_OR_COMMAND_TO_BE_EXECUTED>\"'; in which it must be included the

command to be executed in the targeted server as if it were running in a single terminal.

Moreover, some observations must be taken into consideration:

• Several commands can be concatenated in a single “script” field by separating them with a “;”. But, in

case of needing to include several commands concatenated in the <SCRIPT_OR_COMMAND_TO_BE_EXECUTED>

field, they must be separated with “&&”, as the RC logic uses the “;” to separate the commands in order

to execute them sequentially.

• Note that, in the executionScript field of this template, it is provided the following command: sleep

$sleep_time; which is used to wait a certain amount of time in case of needing to do some actions off-

line within the scope of the experiment. This command does not need to include all the reserved words

and structure aforementioned.

• Currently, execute_script.yml is the only playbook that can be used in this first RC implementation;

but, in the near future, other playbooks will be also available to be used. These will be reported in the

next D3.5. Some of these playbooks that have been already developed (but not integrated in this logic),

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 46 / 80

apart from the execute_script.yml one, are available in the following Github repository:

https://github.com/5GEVE/5geve-rc.

• The commands included in the IWF Repository to start and stop the infrastructure components must

follow that format for either the execution of single commands or the sleep operation.

An example of a TCB following this approach can be checked in Annex A. Note that it includes, as

infrastructureParameters, some parameters related to application metrics that may be needed to properly

configure the Data Shippers related to them, e.g. making a reference to the topic that the Data Shipper must use

to publish the data, which is injected by the EEM after receiving that information from the ELM.

However, this way of building the scripts in the TCB and in the IWF Repository are not definitive, as they are

not efficient because they need to include several reserved words that are useless to the experimenters. In that

way, a new information model to define these scripts in a more elegant way is under evaluation and will be

reported with detail in the next D3.5 with all the instructions needed to correctly make use of the different

functionalities offered.

3.5.3.2 Updated specific-purpose workflows

The workflows related to the operation of the RC have completely changed due to the modifications in the

architecture. All the steps related to the RC workflow are always triggered by the Experiment Execution

Manager, following this approach:

• First of all, the EEM provides the information related to the corresponding operation (i.e. application

configuration, infrastructure operation and experiment execution) to the RC, which automatically

generates an identifier to be used by the EEM in subsequent requests.

• When the EEM is about to trigger a script execution in whatever type of operation (start, stop, reset,

etc.), it uses the identifier aforementioned to reference the scripts that have to be executed, and then the

RC starts executing them asynchronously. Thanks to that, the EEM does not need to wait until the

scripts have been finished. In order to know it, the EEM performs a polling to the RC, checking the

status of the operation (again, using the identifier) until it changes to the expected status.

Then, the complete workflow in a full experiment execution with all the possible operations present is the

following:

1. First of all, there are some preliminary interactions between several components implied in the E2E

workflow, e.g. the provision of the topics from the ELM to the DCM or the proper configuration of the

EEM based on the information provided by the ELM.

Figure 22: Preliminary steps before starting with the experiment execution

https://github.com/5GEVE/5geve-rc

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 47 / 80

2. Then, the first scripts that are requested to be executed by the EEM are the ones related to the

applications’ configuration in the so-called application Day-2 configuration phase. But first, all the

scripts related to the application configuration (i.e. the configuration scripts and the reset configuration

scripts) are loaded in the RC by the EEM, as commented before. Then, after doing this, the start

operation is triggered by the EEM, which performs a polling process until the configuration has finished

(status changes to COMPLETED). During that time, the configuration scripts are executed in the

targeted VNFs and PNFs by using specific Ansible playbooks. Note that the commands executed in this

step are the ones included in the configurationScript field in the TCBs.

Figure 23: Execution of application Day-2 configuration scripts

3. When the application Day-2 configuration process is finished, then starts the infrastructure Day-2

configuration process, following the same approach, but instead of provisioning directly the scripts, the

EEM provides the information related to each infrastructure metric. As already commented, this

information can be used to make specific requests to the IWF Repository to extract the scripts and the

information to successfully connect to the infrastructure components. After this, the workflow is the

same: when the EEM triggers the start operation, the commands are executed and the EEM, in the

meanwhile, remains doing a polling until the status changes to COMPLETED. Note that the commands

executed in this step are the ones included in the configurationScript field for the selected Data Shipper

in the IWL Repository.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 48 / 80

Figure 24: Execution of infrastructure Day-2 configuration scripts

4. When the infrastructure Day-2 configuration process is completed, it starts the execution of the test

cases, i.e. the experiment execution scripts. Again, the same process presented before is repeated:

commands are loaded by the EEM and when the start operation is triggered, they are executed in the

targeted server, and the EEM remains in the polling process until the status changes to COMPLETED.

In the workflow presented, there are also some interactions with the RAV that are out of the scope of

the RC operation. Note that the commands executed in this step are the ones included in the

executionScript field in the TCBs.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 49 / 80

Figure 25: Execution of experiment scripts

5. When the experiment execution phase terminates, it is time to stop the infrastructure scripts by

triggering the stop operation in the EEM. Then, the RC executes the scripts related to the stop operation,

following the same approach explained in the previous phases. Now, the expected status to complete

this phase is STOPPED. Note that the commands executed in this step are the ones included in the

stopConfigScript field for the selected Data Shipper in the IWL Repository.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 50 / 80

Figure 26: Stop infrastructure scripts

6. And finally, it happens the same for the case of the reset application scripts: they are requested by the

EEM, they are then executed by the RC and the EEM waits until receiving a CLEANED status in the

polling process. Note that the commands executed in this step are the ones included in the

resetConfigScript field in the TCBs. After this, other resources (related to the RAV, DCM and other

related components) are released.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 51 / 80

Figure 27: Reset application scripts and termination of the experiment

3.6 Adaptation Layer

The Adaptation Layer at the South-Bound Interface (SBI) provides a common access interface to trial site

services and resources. The implementation is organized in multiple software components depending on the

specific feature to access (i.e., orchestration, configuration, monitoring).

A thorough presentation of requirements, features, and high-level design is reported in D3.2 ([2]).

The following subsections provide a description of the implementation process, software architecture and

technologies for each part of the Adaptation Layer.

3.6.1 Multi-Site Catalogue SBI

The Multi-Site Catalogue described in Section 3.1 includes SBI operations for the management of NSDs,

VNFDs and PNFDs in the local NFVOs. Furthermore, it features a synchronization mechanism to keep the

Interworking Layer aligned with the information available in the local NFVO catalogues. To achieve this, the

Multi-Site Catalogue is structured with a driver-based architecture. Each driver is in charge of the translation of

the NSD, VNFD, and PNFD from the standard ETSI NFV SOL 001 [8] model to the specific model of the

targeted NFVO type. Reverse translation is supported as well. The driver also implements the required

adaptations to interact with the NSD Management API of the specific NFVO.

In D3.3 software release of the Multi-Site Catalogue includes an OSM driver (that is compatible with OSM R4,

R5, and R6) that allows to integrate with the Italian, Spanish and Greek site facilities (i.e. all of them make use

of OSM as site orchestrator). In the current release, the Multi-Site Catalogue includes a driver to integrate the

ONAP NFV Orchestrators. More details can be found in Section 3.1.

3.6.2 Multi-Site NSO to local Orchestrators interface (MSO-LO)

The Multi-Site NSO to local Orchestrator interface (MSO-LO) is the portion of the Adaptation Layer that

enables the Interworking Layer to access the orchestration features provided by the trial sites involved in the

5G EVE project. Trial sites can expose one or more local Network Function Virtualization Orchestrator

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 52 / 80

(NFVO), each one managing a different set of resources. The specification of features, requirements, and a

textual description of the API’s methods is provided in D3.2 ([2]).

This interface provides the following features:

1. Operations to retrieve information about local NFVOs registered with the 5G EVE platform.

2. Operations to retrieve, create, instantiate, scale, terminate, and delete NS instances.

3. Operations to retrieve, create, and delete subscriptions to notifications about the status of one or more

NS instance.

3.6.2.1 Application architecture

The MSO-LO is a web service that exposes an NBI based on the REST architectural style. To implement this

module, we have mainly used tools for the API description / documentation and tools for the webservice

implementation. Due to the used technology, a reverse proxy is used to bundle all communications between

MSO and the MSO-LO backend.

Figure 28: Architecture of the application

As shown in Figure 28, the architecture of the application is composed by the following components:

• Reverse proxy: we use the popular NGINX18.

• WSGI server: we use uWSGI19 typically used for running Python web applications.

• Webservice: we use the lightweight micro-framework Flask20 written in python, that is designed for a

quick and easy “getting started”, with the ability to scale up to complex applications.

• In-memory data store: we use Redis21, an open source (BSD licensed), in-memory data structure store,

used as a database, cache and message broker.

• Periodic and background Tasks manager: we use Celery22 , an open source asynchronous task queue or

job queue which is based on distributed message passing.

Then the execution flow is the following: a generic HTTP Client initiates a request by NGINX that forwards

the request to uWSGI using a Unix socket. Then uWSGI forwards the request to Flask that handles the request

and generates the response. The response is passed back through the stack.

Regarding persistent storage, with respect to the previous version of the software described in D3.3, we do not

use the storage solution based on SQLite in the production environment but, as described in Section 3.7, we use

the IWF Repository component. Furthermore, we use a Redis instance as an-in-memory storage database to

18 https://www.nginx.com/

19 https://uwsgi-docs.readthedocs.io/en/latest/

20 https://flask.palletsprojects.com/en/1.1.x/

21 https://redis.io/

22 https://docs.celeryproject.org/en/stable/

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 53 / 80

support the background task scheduler (celery), the tracking of LCM operation status and shared information

between multiple processes of the MSO-LO.

3.6.2.2 Software architecture

The MSO-LO must provide a common interface to access the features of various NFVO types (e.g., OSM,

ONAP) without restrictions on open-source or proprietary licenses. The only constraint is for the NFVO

implementation to provide the complete specification of its North-Bound Interface (NBI), possibly in OpenAPI

format. To support the NFVO implementations declared at the moment in the 5G EVE project and to support

the inclusion of new NFVO technologies in the future, we designed the software with a driver-based structure

as depicted in Figure 29

Figure 29: UML class diagram with an example method of the interface.

Figure 29 shows a simplified version of the UML class diagram with just one method of the API, which is

enough to explain how the software works. As we use Python for the software implementation, not all the classes

shown in the diagram are Python classes. Some entities are just modules, as they do not need to store any status

but are a mere collection of static methods.

The app module contains the declaration of the REST API paths and related HTTP operations. Furthermore, it

includes the mapping between the previous entities and the relevant Python method. The method

implementation here is generic and agnostic from the specific type of local NFVO.

The other entities in the figure implement the factory method design pattern [13]. The pattern is very effective

for our solution as it separates the creation of driver instances from the app module that actually uses them.

Indeed, the app module depends (dashed arrow) from the manager module for the selection of the specific

NFVO implementation. The manager module implements the factory method plus some utility methods for the

interaction with the NFVO database.

The Driver abstract class realizes a contract for the driver implementation and is implemented by means of the

Abstract Base Class Python module (ABC23). The addition of a specific NFVO driver simply consists in the

extension of Driver and in the implementation of all its declared methods.

To better understand the interactions between the modules and class instances, we use a message sequence chart.

Figure 30 shows the interactions needed to obtain the list of NS instances from the catalogue of an OSM NFVO

identified with ‘osm_1’.

23 https://docs.python.org/3/library/abc.html

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 54 / 80

Figure 30: Message sequence chart to show modules and objects interactions.

At step 1, a GET request to the path “/nfvo/osm_1/ns_instances” is routed to the app module. The app module

executes the relevant method (step 2). At step 3, the app module requests the appropriate driver to the manager.

The manager determines the appropriate driver (step 4), creates an instance of the OSM driver (step 5), and

returns it to the app module (step 6). The app module actually receives an object of generic type Driver. In step

7, app calls the relevant method and in step 8 it receives the result.

Regarding the NS Lifecycle Management Notification, the MSO-LO provides an API interface compliant to the

ETSI NFV SOL005 specification, supporting three types of notifications:

• NsLcmOperationOccurrenceNotification: Inform subscribed clients about an event in the lifecycle of

an NS. The notification includes NS id, OpOcc id, StateType (PROCESSING, COMPLETED, etc.) and

affected components.

• NsIdentifierCreationNotification: Informs subscribed clients about NS id creation.

• NsIdentifierDeletionNotification: Informs subscribed clients about NS id deletion.

The solution provides a generic subscription system to allow clients to filter out notifications and receive only

the ones about NS instances they are interested about. Subscriptions are stored in the IWF Repository and the

MSO-LO northbound interface provides CRUD methods for their management. More details on supported

REST operations can be found in Section 3.6.2.4. A crucial part of the subscription information element is the

“uri”. This element must be a valid HTTP endpoint enabled by the subscribing client to receive notifications.

MSO-LO sends notifications via a POST request targeting the aforementioned “uri”.

The notifications management is delegated to specific components, responsible for checking the status of

operations applied to NS instances for each type of NFVO. To better understand how the specific components

works, we use a message sequence chart for each of them to show the interaction of the MSO-LO with the other

components of the 5G EVE ecosystem.

Figure 31 shows the use case of the ONAP NFVO located in the French Site. At first step, the MSNO sends a

request to instantiate an NS Instance, and the MSO-LO takes care to handle the request forwarding it to the

specific ONAP Translation Component. At step 2 the MSNO sends a request in order to create a subscription

for a specific NS Instance to the MSO-LO (the one that has been just created) and, if the request is valid, the

subscription is stored inside the IWF Repository.

As soon as the ONAP Translation Component has a change of state for an operation to be notified, it sends a

POST on the SBI of the MSO-LO, specifically on the endpoint “/nfvo/{nfvoId}/notifications”. At this point,

the MSO-LO takes care of the notification and checks whether there are any subscriptions related to the NS

Instance involved and it forwards the notification on the URI that was defined by the MSNO during the creation

of the subscription.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 55 / 80

Figure 31: Subscriptions and notifications management for ONAP

Figure 32 shows the use case of the OSM NFVO. The first two steps, the instance creation and the subscription

creation, are similar to the use case of the ONAP NFVO described above. Contrary to the previous case, the

OSM NFVO is not able to independently notify a change of state happening on one of its managed resources.

Then, a background process is activated within the MSO-LO that periodically check for any operations

happening in the OSM NFVO. The last state of a specific operation is stored in an in-memory storage

implemented with Redis, a key-value database. If a change in the operation’s state is detected, the MSO-LO

takes care of forwarding the notification to the subscribed client.

Figure 32: Subscriptions and notifications management for OSM

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 56 / 80

3.6.2.3 OSM specific features

The sites hosting the OSM NFVO have shown the need to support additional parameters during the instantiation

phase. To meet this request the MSO-LO, in accordance with the ETSI NFV-SOL 005 ([5]) standard, supports

the “additionalParamsForNs” field in the body of requests to the endpoint

“/nfvo/{nfvoId}/ns_instance/{nsInstanceId}/instantiate”. The information included in this field is only

processed by the OSM driver, while other drivers ignore it.

The following instantiation parameters are supported:

• vim network name: this allows the association of a VLD to an existing network in the targeted site,

useful when there is a static management network.

• vim account: this allows the MSO to specify in which VIM a particular VNF must be instantiated, useful

in case there are multiple VIMs within a site.

3.6.2.4 Open API description

For the implementation we adopt and extend the proposed implementation described in ETSI NFV-SOL 005

([5]). We try to adhere to the proposed standard as much as possible with similar paths, request bodies, and

responses.

The API description / documentation has been realized with Swagger24, an online tool to describe API adhering

to the OpenAPI25 Specification. The API is available as a YAML file in the 5G EVE public organization hosted

on GitHub26. Table 8 summarizes the API methods offered by MSO-LO interface.

Table 8: MSO-LO API interface

Service Path Method Input Output Description

MSO-LO /nfvo GET -
Array of

NFVO info

Retrieve list of

local NFVO.

MSO-LO /nfvo/{nfvoId} GET - NFVO info

Read an

individual

NFVO.

MSO-LO
/nfvo/{nfvoId}/ns_in

stances
POST

nsdId,

nsName,

nsDescription

NS identifier

Creates and

returns a

Network Service

identifier (nsId)

in a Nfvo

MSO-LO
/nfvo/{nfvoId}/ns_in

stances
GET -

Array of NS

instances

Retrieve list of

NS instances.

MSO-LO

/nfvo/{nfvoId}/ns_in

stances/{nsInstanceI

d}

GET - NS instance

Read an

individual NS

instance resource.

MSO-LO

/nfvo/{nfvoId}/ns_in

stances/{nsInstanceI

d}

DELETE - -

Delete an

individual NS

instance resource.

24 https://swagger.io/

25 https://www.openapis.org/

26 https://github.com/5GEVE/OpenAPI

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 57 / 80

MSO-LO

/nfvo/{nfvoId}/ns_in

stance/{nsInstanceId

}/instantiate

POST nsFlavourId -
Instantiate a NS

instance.

MSO-LO

/nfvo/{nfvoId}/ns_in

stance/{nsInstanceId

}/terminate

POST
terminationTi

me
-

Terminate a NS

instance.

MSO-LO
/nfvo/{nfvoId}/subsc

riptions
POST

filter,

callbackUri

subscription

identifier

Subscribe to NS

lifecycle change

notifications.

MSO-LO
/nfvo/{nfvoId/ns_lc

m_op_occs
GET -

Array of NS

LCM

operation

Query multiple

NS LCM

operation

MSO-LO

/nfvo/{nfvoId/ns_lc

m_op_occs/{nsLcm

OpOccId}

GET
nsLcmOpOccI

d

NS LCM

operation

Read an

individual NS

LCM operation

occurrence

resource.

MSO-LO
/nfvo/{nfvoId}/subsc

riptions
GET -

Array of

subscription

information

Query multiple

subscriptions.

MSO-LO

/nfvo/{nfvoId}/subsc

riptions/{subscriptio

nId}

GET -
subscription

information

Read an

individual

subscription

resource.

MSO-LO

/nfvo/{nfvoId}/subsc

riptions/{subscriptio

nId}

DELETE - -
Terminate a

subscription.

MSO-LO
/nfvo/{nfvoId}/notifi

cation
POST

nsInstanceId

operation

operationState

-

Notify a status

change of a

operation state to

MSO-LO

3.7 IWF Repository

The 5G EVE IWF Repository is the component in charge of storing shared information about sites and their

features. It acts as a centralized storage element, exposing its data to other components of the Interworking

Framework via a REST HTTP interface. The source code can be found in GitHub27.

3.7.1 Software architecture

The IWF Repository is a REST HTTP Java application using a PostgreSQL database for persistent storage. To

enforce best practices and speed up the development process, we use the Spring Framework28 and the Spring

27 https://github.com/5GEVE/iwf-repository

28 https://spring.io/

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 58 / 80

Boot configuration convention. Figure 33 shows the IWF components that make use of the IWF Repository in

their operational workflows.

Figure 33: IWL components that use the IWF Repository

Information elements listed in Section 2.1.2 are encoded as Java classes and annotated with ‘@Entity’ following

the standard defined by the Java Persistence API. The Spring Framework, thanks to Hibernate29, uses the

annotations to define the data structures in PostgreSQL using the proper Data Definition Language. No direct

interaction with the database is required from the developer. The approach made it possible to create a complex

database schema in a short time. Figure 34 shows Entity-Relationship diagram of the generated database.

Figure 34: Entity-Relationship diagram for IWF Repository database

To expose the entities and related operation on an HTTP REST interface, we use the module ‘spring-data-rest’.

This Spring module automatically exposes a discoverable REST APIs by discovering the entities defined in the

29 https://hibernate.org/

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 59 / 80

project. The API supports CRUD operations in HTTP format, such as POST, GET, PATCH/PUT, DELETE

and generates sub-paths to navigate the associations. The amount of code and development effort to generate

all this is extremely limited.

For deployment, we use Dockerfile + docker-compose. The Dockerfile downloads all necessary dependencies

and builds the application. The docker-compose creates a multi-service environment including both the IWF

Repository application and a PostgreSQL database instance. The application is extremely portable and it can be

deployed on any environment with zero configuration.

3.7.2 Open API description

The OpenAPI documentation for IWF Repository interface can be found in GitHub30. Since it is auto-generated,

the documentation is very verbose.

Table 9: IWF Repository main REST API paths

Service Path Method Input Output Description

site-inventory /availabilityZones GET -

Array of

Availability

Zone entities

Retrieve list of

Availability

Zones entities.

site-inventory /availabilityZones POST
Availability

Zone entity

The newly

created entity

Create new

Availability Zone

entity.

site-inventory /availabilityZones/{id} GET -
Availability

Zone entity

Retrieve a single

Availability Zone

entity

site-inventory /availabilityZones/{id} PUT

Availability

Zone entity

with updated

values

Availability

Zone entity

Update an

existing

Availability Zone

entity.

site-inventory /availabilityZones/{id} DELETE - -

Delete an

existing

Availability Zone

entity.

site-inventory /availabilityZones/{id} PATCH
Fields to be

updated

Availability

Zone entity

Update an

existing

Availability Zone

entity.

site-inventory /dataShippers GET -

Array of Data

Shipper

entities

Retrieve list of

Data Shipper

entities.

site-inventory /dataShippers POST
Data Shipper

entity

The newly

created entity

Create new Data

Shipper entity.

site-inventory /dataShippers/{id} GET -
Data Shipper

entity

Retrieve a single

Data Shipper

entity

30 https://github.com/5GEVE/OpenAPI

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 60 / 80

site-inventory /dataShippers/{id} PUT

Data Shipper

entity with

updated

values

Data Shipper

entity

Update an

existing Data

Shipper entity.

site-inventory /dataShippers/{id} DELETE - -

Delete an

existing Data

Shipper entity.

site-inventory /dataShippers/{id} PATCH
Fields to be

updated

Data Shipper

entity

Update an

existing Data

Shipper entity.

site-inventory /subscriptions GET -

Array of

LccnSubscripti

on entities

Retrieve list of

LccnSubscription

entities.

site-inventory /subscriptions POST
LccnSubscri

ption entity

The newly

created entity

Create new

LccnSubscription

entity.

site-inventory /subscriptions/{id} GET -
LccnSubscripti

on entity

Retrieve a single

LccnSubscription

entity

site-inventory /subscriptions/{id} PUT

LccnSubscri

ption entity

with updated

values

LccnSubscripti

on entity

Update an

existing

LccnSubscription

entity.

site-inventory /subscriptions/{id} DELETE - -

Delete an

existing

LccnSubscription

entity.

site-inventory /subscriptions/{id} PATCH
Fields to be

updated

LccnSubscripti

on entity

Update an

existing

LccnSubscription

entity.

site-inventory /networks GET -

Array of

Network

entities

Retrieve list of

Network entities.

site-inventory /networks POST
Network

entity

The newly

created entity

Create new

Network entity.

site-inventory /networks/{id} GET - Network entity
Retrieve a single

Network entity

site-inventory /networks/{id} PUT

Network

entity with

updated

values

Network entity

Update an

existing Network

entity.

site-inventory /networks/{id} DELETE - -

Delete an

existing Network

entity.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 61 / 80

site-inventory /networks/{id} PATCH
Fields to be

updated
Network entity

Update an

existing Network

entity.

site-inventory /nfvOrchestrators GET -

Array of

NfvOrchestrat

or entities

Retrieve list of

NfvOrchestrator

entities.

site-inventory /nfvOrchestrators POST
NfvOrchestra

tor entity

The newly

created entity

Create new

NfvOrchestrator

entity.

site-inventory /nfvOrchestrators/{id} GET -
NfvOrchestrat

or entity

Retrieve a single

NfvOrchestrator

entity

site-inventory /nfvOrchestrators/{id} PUT

NfvOrchestra

tor entity

with updated

values

NfvOrchestrat

or entity

Update an

existing

NfvOrchestrator

entity.

site-inventory /nfvOrchestrators/{id} DELETE - -

Delete an

existing

NfvOrchestrator

entity.

site-inventory /nfvOrchestrators/{id} PATCH
Fields to be

updated

NfvOrchestrat

or entity

Update an

existing

NfvOrchestrator

entity.

site-inventory /ranOrchestrators GET -

Array of

RanOrchestrat

or entities

Retrieve list of

RanOrchestrator

entities.

site-inventory /ranOrchestrators POST
RanOrchestr

ator entity

The newly

created entity

Create new

RanOrchestrator

entity.

site-inventory /ranOrchestrators/{id} GET -
RanOrchestrat

or entity

Retrieve a single

RanOrchestrator

entity

site-inventory /ranOrchestrators/{id} PUT

RanOrchestr

ator entity

with updated

values

RanOrchestrat

or entity

Update an

existing

RanOrchestrator

entity.

site-inventory /ranOrchestrators/{id} DELETE - -

Delete an

existing

RanOrchestrator

entity.

site-inventory /ranOrchestrators/{id} PATCH
Fields to be

updated

RanOrchestrat

or entity

Update an

existing

RanOrchestrator

entity.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 62 / 80

site-inventory /ranZones GET -

Array of

RanZone

entities

Retrieve list of

RanZone entities.

site-inventory /ranZones POST
RanZone

entity

The newly

created entity

Create new

RanZone entity.

site-inventory /ranZones/{id} GET -
RanZone

entity

Retrieve a single

RanZone entity

site-inventory /ranZones/{id} PUT

RanZone

entity with

updated

values

RanZone

entity

Update an

existing RanZone

entity.

site-inventory /ranZones/{id} DELETE - -

Delete an

existing RanZone

entity.

site-inventory /ranZones/{id} PATCH
Fields to be

updated

RanZone

entity

Update an

existing RanZone

entity.

site-inventory /sites GET -
Array of Site

entities

Retrieve list of

Site entities.

site-inventory /sites POST Site entity
The newly

created entity

Create new Site

entity.

site-inventory /sites/{id} GET - Site entity
Retrieve a single

Site entity

site-inventory /sites/{id} PUT

Site entity

with updated

values

Site entity

Update an

existing Site

entity.

site-inventory /sites/{id} DELETE - -

Delete an

existing Site

entity.

site-inventory /sites/{id} PATCH
Fields to be

updated
Site entity

Update an

existing Site

entity.

site-inventory /vimAccounts GET -

Array of Vim

Account

entities

Retrieve list of

Vim Account

entities.

site-inventory /vimAccounts POST
Vim Account

entity

The newly

created entity

Create new Vim

Account entity.

site-inventory /vimAccounts/{id} GET -
Vim Account

entity

Retrieve a single

Vim Account

entity

site-inventory /vimAccounts/{id} PUT

Vim Account

entity with

updated

values

Vim Account

entity

Update an

existing Vim

Account entity.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 63 / 80

site-inventory /vimAccounts/{id} DELETE - -

Delete an

existing Vim

Account entity.

site-inventory /vimAccounts/{id} PATCH
Fields to be

updated

Vim Account

entity

Update an

existing Vim

Account entity.

3.7.3 Service description

The IWF Repository is accessed by other components of the Interworking Framework by means of its REST

API in their operations workflows. The API access is preferred for a number of reasons with respect to a direct

access to a Database Management system. Indeed, the API performs some validation checks on data entities

when they are created e.g., `not null` constraints, pattern matching for UUIDs and IP addresses. Furthermore,

having a REST API enables to limit the client operations on the data entities (e.g., for read-only entities) and it

keeps open the option to add security mechanisms in the future (at the moment, Site-Inventory interface listens

on a local subnet with restricted access through a VPN server). Spring offers some well-established modules in

order to support the developer in adding security features to its application.

Figure 35: Example HTTP requests to create new entities in IWF Repository

The creation of new entities in the IWF Repository through the REST API must take also an additional step to

create the associations. For example, let us consider the creation of a new Nfv Orchestrator entity as showed in

Figure 35. We can create the new database record in the proper table by performing a POST request to

/nfvOrchestrators (first message in the figure). The IWF Repository returns a 201 status code if this operation

is successful (second message in the figure). Now, to associate the newly created entity with a Site entity, an

additional PUT request is needed (third message in the figure). The request path, in our example, is

‘/nfvOrchestrators/{new-id}/site’. The headers must contain a Content Type header with value ‘text/uri-list’.

Finally, the request body must contain the path of the Site entity we want to associate: /sites/{id-of-desired-

site}. If the association has been created successfully, the IWF Repository returns a 204 status code (fourth

message in the figure).

3.8 Site adaptations

All the commands executed by Adaptation Layer’s components need to be translated to a form understandable

by local orchestrators. Each Site in the project requires a special driver that allows communication between the

MSO-LO interface endpoints. As different Sites use different implementations of a Local Orchestrator, different

drivers are needed to be implemented (for instance: ONAP driver, OSM driver, etc.). A thorough mapping of

functionalities to OSM and ONAP operations is reported in D3.2 ([2]).

The following subsections provide a description of the implementation process, software architecture and

technologies for each Site of 5G EVE platform.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 64 / 80

3.8.1 French site

The French Site Facility is deployed in various French cities with a central Management and Orchestration

(MANO) tool (local orchestrator) based in Chatillon, Paris, in Orange’s headquarter. The commercial and pre-

commercial experiments have been deployed locally at companies’ premises at Paris, Lannion and Sophia

Antipolis.

The ONAP solution has been selected as a main tool of management and orchestration in French Site. It is the

major point of interconnection with the I/W Framework. It creates a kind of gateway and umbrella over all the

experiments developed by the French companies. ONAP is an open-source, complete solution that provides a

comprehensive platform for real-time, policy-driven service orchestration and automation. In the French Site

we attach four different VIMs to be orchestrated by ONAP (Openstack instances, Kubernetes, OpenShift).

ONAP is also a platform with a full range of life-cycle management operations that can be steered by the

Runtime Configurator of I/W Framework. To fully integrate ONAP and the I/W Framework, a special ONAP

adapter needs to be implemented. The adapter will translate requests made by I/W Framework components to

the form understandable by ONAP using the set of ONAP external APIs.

In D3.4 we are providing implementation that allows to integrate ONAP with I/W Framework services, mainly

Service Orchestration and Multi-Site Catalogue. The second delivery of the MSO-LO interface (that provides

operations for the management of NS and VNF instances) will focus on Publish & Subscribe methods that

allows to notify user about services status changes (Simple VNF onboarding and initialization methods has been

already implemented in first release - D3.3). The second release of IWL supports as well basic ONAP catalog -

IWL catalog synchronization. More details are listed below. Architectural integration of IWL with ONAP as a

single point of contact is depicted in next figure.

Figure 36: The overview architecture of French Site

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 65 / 80

A new additional component has been implemented between ONAP driver and adaptation layer. Main

responsibility of Translation Component is to provide communication compliance with ETSI NFV SOL005

standard. As far as MSNO is communicating using SOL005 standard and ONAP uses its own custom interface

- we introduced component that is translating SOL005 requests and calls ONAP external APIs. To be more

precise - when any requests comes from IWL to French Sites - in first step it is passed to Translation Component

that has defined REST APIs and may be treated as a “external APIs of French Site”. Depending on the type of

the request, Translation Component triggers action using directly ONAP internal or external API. That kind of

solution has been introduced to allow translate all SOL005 based requests and trigger appropriate action on

ONAP in both direction - to and from ONAP.

In this D3.4 delivery the following network service operations are implemented:

• create, instantiate, terminate and delete network service instances;

• retrieve a list of network services and life-cycle management operation occurrences;

• retrieve an information about selected network service or life-cycle management operation occurrence

resource.

New functionalities supported in current release of French Site are related to notifications about life-cycle

management operation occurrences of network services.

Table 10 describes in detail the API methods offered by Translation Component provided SOL005 compliance

for ONAP.

Table 10: API provided by Translation Component as a “external API of French Site”

Service Path Method Input Output Description

Translation

Component
/instances GET - Array of

NS

instances

Retrieve a list of

NS instances

Translation

Component
/instances/

{nsInstanceId}
GET - NS

instance
Read an

individual NS

instance resource.

Translation

Component
/create POST nsdId,

nsName,

nsDescription

NS

identifier
Creates and

returns a

Network Service

identifier (nsId)

in a Nfvo

Translation

Component
/instantiate/

{nsInstanceId}
POST - - Instantiate a NS

instance.

Translation

Component
/terminate/
{nsInstanceId}

POST terminationTime - Terminate a NS

instance

Translation

Component
/delete/

{nsInstanceId}
DELETE - - Delete a NS

instance

Translation

Component
/ns_lcm_op_occs GET - Array of

LCM
Retrieve a list of

NS LCM

operation

occurrences.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 66 / 80

Translation

Component
/ns_lcm_op_occs/

{nsLcmOpOccId}
GET - LCM

Info
Retrieve an

individual NS

LCM operation

occurrence

resource.

Translation

Component
/ns_lcm_op_occs/

ns_id/

{nsInstanceId}

GET - Array of

LCM for

NS

instance

Retrieve a list of

NS LCM

operation

occurrences for

NS instance

Translation

Component
/service_specification GET - Array of

NSD
Retrieve a list of

NSD

Translation

Component
/service_specification/{nsdId} GET - csar

archive

for NSD

Download csar

archive with

service tosca

model

Current D3.4 delivery focuses as well on integration of ONAP and MS-Catalogue. The main goal was to

synchronize ONAP services descriptors with I/W Layer catalog. To achieve that, dedicated API to retrieve

service specification from French Site was provided in Translation Component. It allows MS-Catalogue access

to ONAP and retrieve (download) selected service specification as a TOSCA CSAR archive dedicated ONAP

service description format. A dedicated tool has been also implemented inside MS-Catalog to translate ONAP

service model to the service description format required by I/W Layer. It allows to receive and store specific

information about services like topology, resource requirements, services management interfaces. More detailed

information regarding this custom tool will be provided in MS-Catalog description. Information retrieved in

synchronization ONAP-IWL catalog will be utilized by other components, like the 5G EVE Portal - to present

detailed information about use cases in French site, or Runtime Configurator - to access configurable interfaces

in VNFs.

3.8.2 Greek site

Several experiments for different use cases are planned to be executed at the Greek site. The key component for

the successful execution of these experiments is the Orchestrator. This component will be the connecting link

between the IWL and the Greek site and it will be responsible for translating the commands from the upper

layers into actions in the Greek site infrastructure (Figure 37). After carefully studying the available options,

OSM was selected for the role of the Greek site Orchestrator.

OSM is an ETSI-hosted open source community that delivers a production-quality MANO stack for NFV,

capable of consuming openly published information models, available to everyone, suitable for all VNFs,

operationally significant and VIM-independent. OSM is aligned to NFV ISG information models while

providing first-hand feedback based on its implementation experience. As far as the deployment is concerned,

it can either be distributed, derived from a set of pre‐built downloadable containers (Docker) that can be easily

deployed in minutes or as a single pre-configured vagrant box (pre-set VM). The deployment environments that

have been tested with the OSM deployment are Ubuntu 18.04 or 16.04 (64-bit variant required).

OSM provides a unified northbound interface (NBI), based on NFV SOL005, which enables the full operation

of system, Network Services and Network Slices under its control. In fact, OSM’s NBI offers functionalities for

managing the lifecycle of Network Services (NS) and Network Slices Instances (NSI), providing as a service

all the necessary abstractions to allow the complete control, operation and supervision of the NS/NSI lifecycle

by client systems, avoiding the exposure of unnecessary details of its constituent elements. It admits both

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 67 / 80

YAML/JSON formats and by default serves https (auto-signed certificate) on port 9999 and bearer

authentication (with token) is used. Basic authentication or no authentication is also possible by changing the

'nbi.cfg' file.

Figure 37: The overview architecture of Greek Site

The API implementation (Table 11) is inspired by the ETSI NFV SOL 005 specification to ensure a common

and standardized interface. Following a modular design, a driver implements the adaptation and translation

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 68 / 80

toward the specific orchestrator interface. In this release, a prototype driver for OSM is included supporting the

following features:

• Adaptation of NS instance management Multi-site Catalogue APIs into OSM NS instance management

API. Operations to retrieve, create, instantiate, scale, terminate, and delete NS instances are supported.

• Preliminary implementation of a subscription and notification system. This feature is not available in

OSM and it is realized in the driver.

Finally, OSM provides an intuitive web user interface that can be exploited for operating the system locally or

remotely. It can also be operated by using the OSM client that offers a Python client library and a command-

line tool to interact with OSM.

Table 11 OSM API definition for Greek site

Network Service Descriptor Management

Adaptation Layer Operation OSM equivalent Operation

Retrieve NSD GET /nsd/v1/ns_descriptors/<nsd_id>/nsd_content

Onboard NSD POST /nsd/v1/ns_descriptors

Modify NSD PUT /nsd/v1/ns_descriptors/<nsd_id>/nsd_content

Delete NSD DELETE /nsd/v1/ns_descriptors/<nsd_id>/

Retrieve list of NSDs GET /nsd/v1/ns_descriptors

VNF Descriptor Management

Adaptation Layer Operation OSM equivalent Operation

Retrieve VNFD GET /vnfpkgm/v1/vnf_packages/<vnfPkgId>/ package_content

Retrieve list of VNFD GET /vnfpkgm/v1/vnf_packages

PNF Descriptor Management

Adaptation Layer Operation OSM equivalent Operation

Retrieve PNFD GET /nsd/v1/pnf_descriptors/<pnfdId>/pnfd_content

Retrieve list of PNFD GET /nsd/v1/pnf_descriptors

Network Service Instance Management

Adaptation Layer Operation OSM equivalent Operation

Retrieve NSI GET /nslcm/v1/ns_instances /<nsInstanceId>

Create NSI POST /nslcm/v1/ns_instances

Instantiate NSI POST /nslcm/v1/ns_instances/<nsInstanceId>/instantiate

Delete NSI DELETE /nslcm/v1/ns_instances /<nsInstanceId>

Terminate NSI POST /nslcm/v1/ns_instances /<nsInstanceId>/terminate

Scale NSI POST /nslcm/v1/ns_instances/<nsInstanceId>/scale

Retrieve list of NSI GET /nslcm/v1/ns_instances

VNF Instances Management

Adaptation Layer Operation OSM equivalent Operation

Retrieve VNFI GET /nslcm/v1/vnf_instances/<vnfInstanceId>

Retrieve list of VNFI GET /nslcm/v1/vnf_instances

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 69 / 80

PNF Instances Management

Adaptation Layer Operation OSM equivalent Operation

Retrieve PNFI GET /nslcm/v1/vnf_instances/<vnfInstanceId>

Retrieve list of PNFI GET /nslcm/v1/vnf_instances

3.8.3 Italian site

The Italian site facility is deployed in the city of Turin, where a test lab environment is running in TIM

headquarters for the verification of components and functionalities of 5G NSA architecture. In parallel, 5G

technologies provided by Ericsson are being deployed in different sites in Turin for the experimentation of

Smart Transport and Smart City use cases.

As shown in the following figure, the NFV orchestration in the Italian site facility is performed by two solution

that coexists: an open source OSM orchestrator, and an Ericsson orchestrator called EVER. In particular, the

OSM orchestrator is mostly dedicated to the coordination of the vertical VNFs (i.e. those providing the specific

Use Case applications), while EVER orchestrator coordinates 4G/5G network related VNFs and functionalities

(e.g. EPC, 5G Core, RAN).

Figure 38: NFVO Orchestrators at the Italian site

In D3.4 we provide a first implementation of EVER and related driver for the Adaptation layer (called “EVER

Driver”). The EVER orchestrator is formed by an NFV orchestrator based on Cloudify31 that handles the 4G/5G

network NFV and by Resource Layer framework released in GitHub32 and developed in EU H2020

5GTransformer33 project that is used to handle the infrastructure resources. The following operations are

handled by EVER orchestrator:

31 https://cloudify.co/

32 https://github.com/5g-transformer/5gt-mtp

33 http://5g-transformer.eu/

https://cloudify.co/
https://github.com/5g-transformer/5gt-mtp
http://5g-transformer.eu/

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 70 / 80

• create, instantiate, terminate and delete 4G/5G network service instances (e.g. network services lifecycle

management or LCM);

• retrieve a list of network services and life-cycle management operation occurrences;

• retrieve information about selected network service or life-cycle management operation occurrence

resource.

The retrieve operations are implemented and tested, while the LCM is partially implemented and will be

finalized in the next Deliverable D3.5. The reason is the LCM in EVER orchestrator is handled according the

3GPP RAN slice model described in [10] and [12]. This model requires extending the current IWL

implementation by adding “3GPP RAN Slice” specific NS parameter for RAN orchestration. Such extension

will be provided and described in final D3.5, so a final version of EVER orchestrator with the complete

integration tests will be described in that deliverable.

Regarding the EVER driver, it is included in the adaptation layer repository (“mso-lo” project) and related tests

are details in D3.7.

Table 12 describes in detail the API methods offered by EVER orchestration that are used by the driver.

Table 12: API provided by EVER orchestrator to EVER driver

Service Path Method Input Output Description

Retrieve

NS list
/instances GET - Array of NS

instances
Retrieve a list of NS

instances

Retrieve

NS by id
/instances/

{nsInstanceId}
GET - NS instance Retrieve an individual

NS instance resource.

LCM

Network

Service

/create POST nsdId,

nsName,

nsDescription

NS

identifier
Creates and returns a

Network Service

identifier (nsdId) in a

NFVO

LCM

Network

Service

/instantiate/

{nsInstanceId}
POST - - Instantiate a NS instance

identified by the

nsInstanceId

LCM

Network

Service

/terminate/
{nsInstanceId}

POST terminationTime - Terminate a NS instance

identified by the

nsInstanceId

LCM

Network

Service

/delete/

{nsInstanceId}
DELETE - - Delete a NS instance

identified by the

nsInstanceId

Retrieve

LCM list
/ns_lcm_op_occs GET - Array of

LCM
Retrieve a list of NS

LCM operation

occurrences.

Retrieve

LCM by Id
/ns_lcm_op_occs/

{nsLcmOpOccId}
GET - LCM Info Retrieve an individual

NS LCM operation

occurrence resource.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 71 / 80

3.8.4 Spanish site

In order to carry out the experimentation planned to be performed at the Spanish site, here we present an NFV

system mainly constituted by a software MANO stack and two standalone private cloud platforms as depicted

in Figure 39. The cloud platforms comprise the NFV infrastructure that enables the deployment of VNFs both

at the cloud and/or at the edge sides, depending on the experimentation procedure. Related with the resource

orchestration, ETSI OSM is in charge of providing the MANO implementation and, in particular, this platform

utilizes OSM Release SEVEN [6]. To facilitate the installation and the deployment of the NFVO and VNFM

stack, ETSI OSM is executed as a virtual machine within the 5TONIC laboratory and in compliance with the

requirements established by the OSM community.

Figure 39: MANO at the Spanish site

Besides the NFVO and VNFM stack, the 5TONIC laboratory hosts the two aforementioned cloud platforms,

both based on OpenStack release Ocata. For the first platform, two high-profile servers provide a total amount

of computational capability of 48 vCPUs, 256 GB of RAM and 8 TB for storage.

To manage this amount of resources that cover a portion of the NFVI, the OpenStack node that fulfils the VIM

operations (i.e., the OpenStack controller) runs in a virtual machine with 4 vCPUS, 16 GB RAM and 180 GB

of storage. This cloud platform is represented as 5TONIC-cloud in Figure 39.

The second cloud platform included in the 5TONIC laboratory has one server computer with 4 vCPUs, 8 GB

RAM and 256 GB of storage as computation capabilities.

As in the previous platform, the VIM is based on an OpenStack controller, which runs in a virtual machine with

4 vCPUs and 12 GB RAM, 600 GB of storage.

In reference to this second cloud platform is indicated as 5TONIC-edge in Figure 39.

Even though these two platforms are independent and managed by their own VIM, both are compliant with

ETSI OSM Release SEVEN and integrate the OpenStack Telemetry service, supporting the performance metrics

collection of the allocated VNFs. Thus, the experimentation procedure can benefit from the auto-scaling

functionality provided by ETSI OSM. Moreover, both infrastructures implement the OpenStack networking

service, where both the pre-created and tenant networks options have been configured.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 72 / 80

On the other hand, it is worth mentioning that the testbed also integrates the required networking that enables

the proper operation of the complete NFV system, supporting the orchestration and deployment of multi-site

network services over the three cloud platforms comprising the NFVI. These networks can be summarized as

follows:

• Infrastructure management networks (i.e., the blue round dot line in Figure 39): the aim of these types

of networks is to allow each VIM to be capable of managing the computational resources of the cloud

platform under its control. Therefore, these networks are present independently in all the parts of the

NFVI testbed.

• Orchestrator-to-VIM networks (i.e., the green long dash line in Figure 39): these networks are in charge

of supporting the reservation and allocation of the necessary resources for enabling the subsequent

network services deployment. In addition, these networks are in charge of the lifecycle management of

the stated network services and slices. In this context, the ETSI OSM is able to interact with each of the

VIMs included in the testbed and handle the designed deployments in the experimentation procedure.

• Orchestrator-to-VNF networks (i.e., the red solid line in Figure 39): the objective in this case is to allow

the ETSI OSM platform to control and monitor the VNFs lifecycle (i.e., get the VNFs state information

and support the scaling operations based on this information), as well as the VNF configuration. For

this reason, ETSI OSM requires IP connectivity with each of the VNFs hosted by their respective

platform. This network is exposed outside the infrastructure to allow other 5G EVE components, like

the Runtime Configurator, to manage all VNFs.

• Service-oriented networks (i.e., the purple long dash dot line in Figure 39): this latter encompasses the

networks among the different VNFs comprising a network service (regardless of the platform on which

they are executed) to ensure the proper functioning of the implemented service.

• IWL network (i.e., the orange dotted line in Figure 39): this network is used to provide access to the

Spanish OSM to the IWL components hosted by TIM at the Turin site.

It is important to highlight that 5TONIC provides specific network services to support all the networks

mentioned above, even with the other three sites of the 5G EVE infrastructure to enable the user data plane,

further away from the 5TONIC laboratory (located in Madrid, Spain). Similarly, the communication between

the MSNO and the site adaptors available in Turin can access the OSM deployed in 5TONIC, where a dedicated

project is available to the 5G EVE project. To this end, we leverage on the NAT box provided by IMDEA

Networks to connect with the VPN tunnel established with TIM, through the Internet. On the one hand, the

traffic dissemination in the case of 5TONIC is delivered through RedIRIS, which is the high-performance

national research and education network in Spain.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 73 / 80

4 Inter-site connectivity status

As reported in D3.3 [3], we selected a star architecture for connecting the 5G EVE sites, being Turin’s site the

centre of the connectivity. Using this, we selected a distributed deployment for the 5G EVE Framework, with

the 5G EVE Portal in 5TONIC and the IWL in Turin’s site.

As we planned, we interconnect three networks:

• Orchestration and Management network, required for connecting 5G EVE components and for the IWL-

site connectivity.

• Control plane network, for connecting 5G Core elements.

• User plane network, for connecting elements in the data path of the 5G users.

Figure 40: 5G EVE site integration

One issue we faced is the IP addressing overlapping among the 5G EVE sites. Since this is not an issue easy to

solve, as it involves parts of the networks that are not related with 5G EVE project, we decided to use an IP

translation system, which allows us to define common subnets for all the 5G EVE sites.

We describe in the Figure 40 the integration of the 5G EVE lab with TIM’s lab.

The performance measurements of the inter-site connectivity are described in the Deliverable 3.7, which will

be published at the same time of this deliverable.

ITALY5TONIC

FRANCE GREECE

TIM

Control P subnet
172.17.73.0.24

User subnet 1
172.17.74.0/23

User subnet 2
172.17.76.0/24IWL server

172.17.73.6

PoliTO

CP subnet

10.50.7.0/24

10.50.80.0/24

MANO

10.50.7.21

Service Subnet

10.50.160.0/23

subnet1
172.17.252.0.24

subnet2
172.17.253.0/24

ControlP subnet
172.17.254.0/24

TUNNEL SITE

Control Plane
10.154.144.0/24

User Plane
10.154.145.0/24

User Plane
10.3.16.48/28

EVE Portal

193.147.105.235

UC3M

ERICSSON

FORTINET

subnet1
172.17.107.0.24

subnet2
172.17.106.0/24

CP subnet
172.17.105.0/24

TUNNEL SITE

subnet1
172.17.44.0.24

subnet2
172.17.43.0/24

CP subnet
172.17.42.0/24

TUNNEL SITE

TUNNEL SITE

VLAN 333

INTERNET

KAFKA

IP?

mgmt vertical VM

10.20.5.0/24

MSNO

10.3.5.4:8000

OSM

10.5.7.5

O
R

A
N

G
E

Nokia

Eurécom

BCOM

INTERNET
VLAN 330

VLAN 332

VLAN 331

Control Plane
10.102.46.0/24

Data Plane
10.102.0.20/32

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 74 / 80

5 Updated roadmap

According to the proposal (Figure 41), the 5G EVE project has two official deliveries of the I/W framework:

the previous D3.3 and the delivery described in this document , with the full I/W framework.

Figure 41: Task plan for WP3 for the 5G EVE second year

In Table 13 we show the plan for supporting each of the features included in D3.2, based on WP3 plan and the

5G EVE project roadmap published in WP1. We decided to concentrate both Drop 2 and D3.4 in the same

software drop, and for this reason we merged the roadmap as described in the table below.

One of the impacts of the COVID-19 situation is in the effort required for integrating all the components of the

5G EVE project, concretely those components with a hard dependency with the sites. For that reason, we re-

planned the development of the IWL for postponing those features that are not essential for the MS9, basically

related to the support of Multi-site experiments.

The multi-site experiments are supported as we have in place the inter-site connectivity. What we delayed is the

automatic deployment of Network Services in more than one 5G EVE site. We assume that those kinds of

deployments can be done using several single site deployments.

For the next delivery (D3.5, M35) of the IWL we plan to include:

• Support of multiple site NFV-O, by selecting the appropriate NFV-O depending on the availability of

the VNF.

• Enhance the support of RAN controllers.

• Implement the deployment of multi-site network services using a single experiment.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 M29 M30

Task 3.4

2020

Task 3.3

2019

Task 3.2

D3.1

D3.2

D3.3 D3.4

D3.6 D3.7

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 75 / 80

Table 13: 5G EVE Interworking Framework Roadmap

Key Features Category Brief Description D3.3 (M16) Drop 1 (M18) D3.4 (M24)

Orchestration Plane

Interworking
Connectivity

Low Bandwidth performance but

secure connectivity among sites for

orchestration traffic

Italian and French

sites
Fully provided Fully provided

Single-site

Experiment

Monitoring Support

Monitoring

Capability of translating the

monitoring requirements defined by

experimenters (based on selected

KPIs) to the requested site. Sites

will typically have different local

monitoring tools and mechanisms.

-
Support of basic

UC (one per site)
Fully provided

Single-site

Applications

Deployment

Support

Operation

Capability to deploy the required

VNFs, hosted in the 5G EVE

Catalogue, at the requested site.

Sites will typically have different

local orchestrators.

-
Support of basic

UC (one per site)
Fully provided

Single-site Network

Automation Support
Operation

Capability to deploy the required

connectivity services (first phase)

and slices (second phase) to the

requested site. Sites will typically

have available different local

controllers and network

infrastructure.

-
Support of basic

UC (one per site)
Fully provided

Control Plane

Interworking
Connectivity

Low Bandwidth performance but

secure connectivity among sites for

control traffic

- - Fully provided

Data Plane

Interworking
Connectivity

Secure connectivity among sites for

user traffic. Low bandwidth
- - Fully provided

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 76 / 80

performance experiments will

employ best effort connectivity.

High bandwidth performance

experiments will employ a parallel

high bandwidth low latency

network, which will be available at

least between two sites.

Multi-Site

Experiment

Monitoring support

Monitoring

Capability of translating the

monitoring requirements defined by

experimenters (based on selected

KPIs) to the sites taking part in the

same experiment. Sites will

typically have different local

monitoring tools and mechanisms.

- - Fully provided

Multi-Site E2E

Orchestration

Support

Operation

Capability to deploy the required

slices, and VNFs hosted in the 5G

EVE Catalogue on top of them, to

the sites taking part in the same

experiment. Sites will typically

have different local orchestrators,

controllers and network

infrastructure.

- -

Support of multi

orchestration

scenarios for

single sites

Vertical Slicing Slicing
End-to-end slice that satisfies the

requirement of the Vertical
- Selected UC Fully provided

Multi-Site Slicing Slicing
Vertical Slice that spans across

multiple sites
- -

Supported for

connectivity

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 77 / 80

6 Conclusions

We present in this document the result of the work of WP3 during the second year of the project.

The focus of the Inter Working Layer development was in the integration of the 5G EVE components. For this

reason, we released two software deliverables for the Milestone 8 and the Milestone 9, with all required features

for executing the vertical use cases with the scope defined in each Milestone.

This report shows how IWL solves the integration of heterogenous sites by providing a unique interface for the

orchestration and management of experiments on the sites. We successfully integrate the 5G EVE sites and now

a vertical is able to deploy and execute an experiment regardless the underlying technology implemented in the

site.

Also, we demonstrate that the modular and open approach incorporates easily new requirements (Telefónica

gaming use case) and component (RAN orchestrator, IWL repository) and we think that this is a good baseline

for future integration with new sites, e.g. coming from ICT-19 projects.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 78 / 80

Acknowledgment

This project has received funding from the EU H2020 research and innovation programme under Grant

Agreement No. 815074.

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 79 / 80

References

[1] 5G EVE D3.1: Interworking capability definition and gap analysis document, available at

https://www.5g-eve.eu/wp-content/uploads/2019/01/5geve-d3.1-interworking-capability-gap-

analysis.pdf

[2] 5G EVE D3.2: Interworking reference model, available at https://www.5g-eve.eu/wp-

content/uploads/2019/09/5geve_d3.2-interworking-reference-model.pdf

[3] 5G EVE D3.3: First implementation of the interworking reference model, available at

https://doi.org/10.5281/zenodo.3628179

[4] 5G EVE D3.6: Interworking test suites, available at https://doi.org/10.5281/zenodo.3628189

[5] ETSI GS NFV-SOL 005 V2.6.1: Network Functions Virtualisation (NFV) Release 2; Protocols and

Data Models; RESTful protocols specification for the Os-Ma-nfvo Reference Point, available at

https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/005/02.06.01_60/gs_nfv-sol005v020601p.pdf

[6] OSM, "Open Source MANO: ETSI-hosted project to develop MANO software stack aligned with

ETSI NFV", Accessed on: Jun. 1, 2020.[Online]. Available: https://osm.etsi.org/

[7] 5G EVE D.2.6: Participating vertical industries planning. Available at

https://doi.org/10.5281/zenodo.3628261

[8] ETSI GS NFV-SOL 001 V2.6.1: Network Functions Virtualisation (NFV) Release 2; Protocols and

Data Models; NFV descriptors based on TOSCA specification. Available at

https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/001/02.06.01_60/gs_NFV-

SOL001v020601p.pdf

[9] 5G EVE D4.1: Experimentation tools and VNF repository. Available at

https://doi.org/10.5281/zenodo.3628201

[10] ETSI GS NFV-SOL 004 v2.4.1: Network Functions Virtualisation (NFV) Release 2; Protocols and

Data Models; VNF Package specification .Available at https://www.etsi.org/deliver/etsi_gs/NFV-

SOL/001_099/004/02.05.01_60/gs_nfv-sol004v020501p.pdf

[11] 3GPP TS28.530, V15.1.0, Telecommunication management; Management of 5G networks and

network slicing; Concepts, use cases and requirements, 2018

[12] 3GPP TS28.540, V15.1.0 Management and orchestration; 5G Network Resource Model (NRM); Stage

1

[13] E. Gamma, "Design patterns: elements of reusable object-oriented software," Pearson Education India,

1995.

[14] Ramon Perez, Jaime Garcia-Reinoso, Aitor Zabala, Pablo Serrano, Albert Banchs, “A Monitoring

Framework for Multi-Site 5G Platforms”, 2020 European Conference on Networks and

Communications (EuCNC): Operational \& Experimental Insights (OPE), pp. 52-56, 2020.

[15] ONAP TOSCA model: available at

https://wiki.onap.org/display/DW/4.+ONAP+Internal+TOSCA+Modeling+and+Data+Model

https://www.5g-eve.eu/wp-content/uploads/2019/01/5geve-d3.1-interworking-capability-gap-analysis.pdf
https://www.5g-eve.eu/wp-content/uploads/2019/01/5geve-d3.1-interworking-capability-gap-analysis.pdf
https://www.5g-eve.eu/wp-content/uploads/2019/09/5geve_d3.2-interworking-reference-model.pdf
https://www.5g-eve.eu/wp-content/uploads/2019/09/5geve_d3.2-interworking-reference-model.pdf
https://doi.org/10.5281/zenodo.3628179
https://doi.org/10.5281/zenodo.3628189
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/005/02.06.01_60/gs_nfv-sol005v020601p.pdf
https://osm.etsi.org/
https://doi.org/10.5281/zenodo.3628261
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/001/02.06.01_60/gs_NFV-SOL001v020601p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/001/02.06.01_60/gs_NFV-SOL001v020601p.pdf
https://doi.org/10.5281/zenodo.3628201

Deliverable D3.4 Second implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 80 / 80

Annex A. Example of TCB based on the information model

proposed for the scripts

Related to the Runtime Configurator described at section 3.5, we include an example of Test Case Blueprint:
testCaseBlueprint:
 description: Example for integration with the RC
 name: Example TCB
 configurationScript: [! -e hosts] || rm hosts && touch hosts && echo \"server
ansible_host=vnf.<vnfdB_id>.extcp.<extcp_id>.ipaddress ansible_user=$$userB
ansible_ssh_pass=$$passwordB ansible_become_pass=$$passwordB\" | tee -a hosts && export
ANSIBLE_HOST_KEY_CHECKING=False && ansible-playbook -i hosts execute_script.yml -e
'script=\"/bin/bash /home/eve/install_datashipper.sh delay_iface $$metric.topic.delay_iface
$$metric.site.delay_iface $$metric.unit.delay_iface $$metric.interval.delay_iface
$$metric.deviceId.delay_iface\"'; [! -e hosts] || rm hosts && touch hosts && echo \"server
ansible_host=vnf.<vnfdA_id>.extcp.<extcp_id>.ipaddress ansible_user=$$userA
ansible_ssh_pass=$$passwordA ansible_become_pass=$$passwordA\" | tee -a hosts && export
ANSIBLE_HOST_KEY_CHECKING=False && ansible-playbook -i hosts execute_script.yml -e 'script=\"sudo
apt-get install python3\"'
 executionScript: [! -e hosts] || rm hosts && touch hosts && echo \"server
ansible_host=vnf.<vnfdA_id>.extcp.<extcp_id>.ipaddress ansible_user=$$userA
ansible_ssh_pass=$$passwordBA ansible_become_pass=$$passwordA\" | tee -a hosts && export
ANSIBLE_HOST_KEY_CHECKING=False && ansible-playbook -i hosts execute_script.yml -e 'script=\"ping
-c5 vnf.<vnfdB_id>.extcp.<extcp_id>.ipaddress\"'; sleep $$sleep_time; [! -e hosts] || rm hosts
&& touch hosts && echo \"server ansible_host=vnf.<vnfdB_id>.extcp.<extcp_id>.ipaddress
ansible_user=$$userB ansible_ssh_pass=$$passwordB ansible_become_pass=$$passwordB\" | tee -a hosts
&& export ANSIBLE_HOST_KEY_CHECKING=False && ansible-playbook -i hosts execute_script.yml -e
'script=\"ping -c5 vnf.<vnfdA_id>.extcp.<extcp_id>.ipaddress\"'
 resetConfigScript: [! -e hosts] || rm hosts && touch hosts && echo \"server
ansible_host=vnf.<vnfdA_id>.extcp.<extcp_id>.ipaddress ansible_user=$$userA
ansible_ssh_pass=$$passwordA ansible_become_pass=$$passwordA\" | tee -a hosts && export
ANSIBLE_HOST_KEY_CHECKING=False && ansible-playbook -i hosts execute_script.yml -e 'script=\"sudo
systemctl stop filebeat\"'; [! -e hosts] || rm hosts && touch hosts && echo \"server
ansible_host=vnf.<vnfdB_id>.extcp.<extcp_id>.ipaddress ansible_user=$$userB
ansible_ssh_pass=$$passwordB ansible_become_pass=$$passwordB\" | tee -a hosts && export
ANSIBLE_HOST_KEY_CHECKING=False && ansible-playbook -i hosts execute_script.yml -e
'script=\"/bin/bash /home/eve/stop_datashipper.sh\"'
 userParameters:
 userA: $$userA
 passwordA: $$passwordA
 userB: $$userB
 passwordB: $$passwordB
 sleep_time: $$sleep_time
 infrastructureParameters:
 $$metric.topic.delay_iface
 $$metric.site.delay_iface
 $$metric.unit.delay_iface
 $$metric.interval.delay_iface
 $$metric.deviceId.delay_iface
 vnf.<vnfdA_id>.extcp.<extcp_id>.ipaddress
 vnf.<vnfdB_id>.extcp.<extcp_id>.ipaddress

 version: '2.0'

