
What Am I Looking At?: An Approach to Describing the Projected
Image in Live-Coding Performance

Shawn Lawson
Rensselaer Polytechnic Institute

lawsos2@rpi.edu

Ryan Ross Smith
Monash University

ryanrosssmith@gmail.com

ABSTRACT

डe authors investigate and deconstruct a live-coding performance’s projected image to develop an approach for describ-
ing what is within that projected frame. डe work of Roland Barthes, Michel Foucault, and Vilém Flusser serve as models
for constructing a descriptive framework based on text, graphic, annotation, interface, and image.

1 Introduction

In this paper we are focusing on the projected image commonly found in live-coding performance and developing an
approach for how to discuss what is seen within that visual and performative frame. We develop an understanding of
the objective diৰerences between textual and graphical elements. डis approach includes the deৱning of several terms:
Image, Text, Graphic, Annotation, Interface, and several hybrid combinations, upon which we will postulate how to
classify what it is we see and what it might mean, if anything.

Live-coding is deৱned as writing portions of a program while it is running (Ward et al. 2004). For our purposes we
contextualize this in a performance seऔing where the screen of the live-coding performer is projected for the audience
to see. While the projected image is not a requirement for a live-coded performance, the projection of one’s code is
certainly a hallmark of contemporary live-coding practices.

Using live-coding’s projected image, we analyze three perspectives of text and image; include Roland Barthes’s con-
notation and denotation, Michel Foucault’s unraveled calligram, and Vilém Flusser’s technical images. डrough these
diৰerent viewpoints we derive a method of categorically describing the contents of a live-coded projected image. Finally
we employ this descriptive method with some examples of live coding to demonstrate the method’s possible utilization.

2 Image

डe ৱrst term we consider is Image, which we deৱne to be the projected image as the container for all visual elements
in a live-coding performance. डere has been research on the perception of and response to the live-coder’s projected
image with various constituent groups (Burland and McLean 2016; zmölnig 2016; Rodrıǵuez and Rodrıǵuez 2015; Roberts
2016), the aesthetics of code (Cox, McLean, and Adrian 2004; Cox and McLean 2013), the semiotic meaning of live-coding
and sound (Sorensen, Swiऑ, and Riddell 2014), as well as a critique of the practice of projecting live-coding as a whole:

डis tradition of projecting screens is itself open to criticism; the audience members may feel distracted, or
perhaps even excluded by the projection of code wriऔen in a language they do not necessarily understand
(McLean et al. 2010, 1).

For our purposes, the Image does not include anything beyond the boundaries of the projection, meaning that the
performer, their computer, and anything else is super৲uous. It is also important to note that in this context there is
no Image if there is no projection. Clearly this is not meant to suggest that a projection-less, live-coding performance is
inferior, but that without the projected image, or Null-Image, there is no container for which the constituent elements
of the live-coder’s screen can be assessed.

1

mailto:lawsos2@rpi.edu
mailto:ryanrosssmith@gmail.com


3 Text

One of the primary elements found in a live-coding performance Image is the code or Text content. डis Text content of
the live-coder’s projected Image has been addressed by several authors, including arguments for live-coding as a type of
scoring (Magnusson 2014), live-coding as information or annotation (Roberts 2016; McLean et al. 2010), and the use of
an intertextuality of puns or meta-narratives (Rodrıǵuez and Rodrıǵuez 2015, @Herrera_Machuca_2016).

IOhannes m. zmölnig uses a four-layer approach to describing the perception of code: graphics, glyphs, text, and
instructions and algorithms. डe ৱrst layer, graphics, refers to the visuality or overall graphic quality that code has
(2016). In similar fashion, Rodríguez & Rodríguez have also talked about the visuality of code/text:

डe projection of the code transforms into a complex language to communicate something to the interface,
as well as a piece of a visual section that interacts with the spectator. … to construct and make possible the
interaction between a range of diৰerent texts, perceiving text as an image … (2015, 1).

But this interaction between the code and the spectator may take on diৰerent forms based on the spectator’s understand-
ing of the code. Rodríguez & Rodríguez further developed a framework of this relationship in order to identify diৰerent
models of understanding that range from completely uninitiated to the expert live-coding practitioner:

डese kind[s] of practices can not be perceive[d] with a simplistic point of view of a work of art that can be
[sold] or that can be held in a museum o[r] gallery context. So, these practices do not need somebody, as
a curator[,] but a community that works as a medium o[r] learning process to create not just readers but
producers (2015, 4).

How poorly or well a viewer comprehends the code presented in the Image is, as Rodríguez & Rodríguez suggested,
dependent on how well initiated the viewer is regarding live-coding practices, and speciৱcally, how well the viewer
understands the functionality of the code. It is here that we can begin to deৱne our second and third terms: Text, where
Text refers to the code, and Text-Image, where Text is perceived as an Image.

Beyond contemporary, live-coding-speciৱc analyses of live-coding’s Image there are more general approaches to unpack-
ing the Image. One method is to understand the relationship between the Image and the Text in the context of visual
rhetorics.

4 Rhetoric of the Image

Visual rhetoric is similar to that of textual literacy, where someone is able to analyze and evaluate text; in this case, the
analysis and evaluation is of images. When we discuss visual rhetorics, we are interrogating the message an image may
contain. डis relates to visual culture, and how individuals interpret what they see.

Roland Barthes was the ৱrst to look at how the intermingling of text and image had the potential to represent complex
interpretations. In his Book Image - Music - Text, Barthes describes a method for talking about the interplay of text
and image together, speciৱcally in regards to pre-computed images: drawing, painting, and chemical photography. In
regards to his critique of press photography he uses two primary terms that build on Saussure’s semiotic deৱnitions of
signiৱer and signiৱed:

Denotation: A sign turning into its literal, ৱrst order meaning. For example, an image of a bunny signiৱes a bunny; the
signiৱer.

Connotation: A sign turning into its associated, second order meanings, oऑen associated with personal history and
cultural speciৱcity. For example, an image of a bunny may signify soऑness, cuteness, an inclination for aggressive
reproductivity, or the Easter holiday; the signiৱed.

For Barthes, what the image depicts becomes a denoted meaning, while the process of creation, the creator’s decisions,
and material become the connoted message. डe connoted message oऑen relies on a common cultural history or knowl-
edge base to be clearly read. For example, a black and white, closely cropped photo of a dusty farmer in a ৱeld wiping
sweat from their brow might connote the impression of a stoic, hard-working, and possibly poverty-stricken individual.
डat same photo in brilliant color looking upward at the farmer might connote entrepreneurship, success, and have
aspirational vision. With both images the denoted message is simply a farmer.

From a historical perspective, image and text combinations were used as illustration: Text would provide the direct
literal meaning while the image would illustrate a connotated meaning. Regarding the introduction of photography and



captions, Barthes states the following: “Firstly, the text constitutes a parasitic message designed to connote the image,
to ‘quicken’ it with one or more second-order signiৱeds” (1977, 25). When the image was already intended to connote
a message, the caption now steam-rolls it with it’s literal connotation. Barthes is arguing that text-captions are now
secondary to the primary message of the image, as these text-captions forcefully push the connotation forward. Prior
to the photograph, images would help to depict or document what was being stated in a text. With the photograph,
someone could have an image of exactly what they wanted. If we reconsider our farmer, then a caption may state our
previously considered connotation: डis is a hard-working farmer living a quiet, stoic life. Barthes believes this caption
steals the impact of the image by helping when help is not needed.

Barthes continues, “Secondly, the eৰect of connotation probably diৰers according to the way in which the text is pre-
sented. डe closer the text to the image, the less it seems to connote it; caught as it were in the iconographic message …”
(1977, 26). डis implies that as the text is moved closer to, or even superimposed upon the image, it eৰectively merges
into the image and loses most of its connotation:

Here text (most oऑen a snatch of dialogue) and image stand in a complementary relationship; the words,
in the same way as the images, are fragments of a more general syntagm and the unity of the message is
realized at a higher level, that of the story, the anecdote, the diegesis … (Barthes and Heath 1977, 41).

डis indicates that when text and image are layered together they may create a more holistic message than if they are
placed further apart. We see this occurring in earlier forms of text and image mergers, for example, with illuminated
manuscripts where the ৱrst leऔer of a page or paragraph is also an image, see ৱgure 1¹. Here we see that the text, a leऔer,
is the image, and the image is the text.

Figure 1: e࠮ Pentacost, from an illuminated Catholic liturgical manuscript, c1310-1320.

In the next section we step back slightly and refocus on Text as the only component of an Image, because Text is typically
the primary component of the live-coder’s projected Image.

5 Text-Image and Live-Coding

In a live-coding performance, how is the Text in the Image functioning? Is the Text a caption? What are the denota-
tive and connotative meanings? डese questions are particularly di৳cult to answer in a situation where the primary
visual element is the Text itself, and, as alluded to previously, is further complicated based on whether or not the Text
can be interpreted by the viewer. Zmölnig speculates about this issue with regards to who is technically capable of
comprehending the Text, which in this case is the code:

However, having the source code available will only help those that are able to read and interpret it. In
this context ‘code’ is not only denotational ‘instruction code’ to be executed by the machine, but becomes
connotational ‘secret code’ that can only be deciphered by an initiated minority (2016, 207).

डe initiated minority here are the programmers who are able to read and decipher the code. Zmölnig implies with
this statement that only live-coders can interpret the connotative meaning. डis appears an unfair presumption to the
uninitiated, who may develop their own valid connotative meanings. In this situation of live-coding, Barthes would say
that the Text denotes exactly what it is: an algorithm, description, or score. डe connotations might be tech-y, future-y,

¹hऔps://en.wikipedia.org/wiki/Illuminated_manuscript



or even voyeuristic in the moving image context of watching someone edit. Even if the uninitiated may not be able
to decipher the ‘secret code,’ for them, the code may be perceived as unreadable text, potentially becoming purely a
Text-Image. Is this also the case for the programmers if they aren’t actively following and interpreting the Text (code);
does the Text become a Text-Image for them?

डis ৲ip-৲opping of Text and Text-Image has been explored in other conceptual forms, like the calligram, which we now
turn to with Michel Foucault and René Magriऔe.

6 e࠮ Calligram

Michel Foucault writes in isࡂ is not a pipe that the calligram is text wriऔen or drawn in a shape where both the text is
readable and the shape is recognizable. Any related interplay of text to shape is deৱned by the creator of the calligram,
although oऑen the intent is that there is a symbiotic relationship between the two that enhances re৲exive and recursive
reading and viewing. See ৱgure 2² for an example calligram.

Figure 2: Calligram by Guillaume Aplollinaire, date estimated early 20th century.

Foucault takes an interest in the calligram format as it relates to René Magriऔe’s well known work La trahison des images
[Ceci n’est pas une pipe] (डe Treachery of Images [डis is Not a Pipe]), 1929. His argument is that La trahison des images
is a preserved, unraveled calligram (1983).

Figure 3: René Magritte’s La trahison des image, (1929)³.

To begin, Foucault declares that the calligram has three roles, “… to augment the alphabet, to repeat something without
the aid of rhetoric, to trap things in a double cipher” (1983, 20). Meaning that leऔers are augmented to become drawn
elements to comprise a shape. डen that the emergent image is created from the text and no other text is provided to
describe or as Barthes would say, connote the image. Lastly, for the calligram to work, the leऔers as image and image
as text must exist, with each encoded in the other. When looking at Magriऔe’s painting, Foucault uses these three roles,
and states that Magriऔe preserves them in an unraveled way.

Unraveling step one is extracting the Text from the Text-Image while retaining the Graphic of the pipe. डe leऔers of
Magriऔe’s calligram are removed from their shape (Text-Image) and placed in a linear line of Text, as a caption, to explain

²hऔps://en.wikipedia.org/wiki/Calligrams
³hऔps://collections.lacma.org/node/239578



or connote. However, Foucault is clear to note that the Text is within the same frame as the Graphic of the pipe (both
should be considered part of the complete Image). He even goes so far to say, “… the represented pipe is drawn by the
same hand with the same pen as the leऔers of the text …” (1983, 23) indicating that both Text and Graphic have the same
degree of hierarchical visual prominence.

Unraveling step two is to deny the message repetition. डe Graphic of the pipe is denied its ৱrst order denotation by the
extracted Text from it’s prior Text-Image. डe Graphic is a pipe, but when the Text performs, now, as a caption, it states
that the Graphic is not a pipe. डe Graphic seen and the Text read now deny each other.

Unraveling step three is to release the double cipher with the purposeful ambiguity of “Ceci” (डis). Does “Ceci” mean
the phrase “Ceci n’est pas une pipe” or the Graphic representation of the pipe? Foucault asks us to consider three cases:

• (Graphic of pipe) is not a pipe

• डis is not a (Graphic of pipe)

• डis (Graphic of pipe and the phrase “डis is not a pipe”) is not a (mixed combination of Graphic of pipe and
phrase “डis is not a pipe”)

In each of these propositions the encoding or cipher of leऔers as image and image as text fails to complete. Foucault
explains that the white space (separation) between the Text and the Graphic (the emptied Text-Image) reject their ability
to encode each other.

If, for a thought experiment, we re-raveled Magriऔe’s painting so that the Text once again ৱlled the Graphic to become
the Text-Image we may have the following, see ৱgure 4, a complete calligram.

Figure 4: An attempt at re-raveling Magritte’s La trahison des image as per Foucault.

7 Calligrams and Live-Coding

Using Foucault’s ideas consider the following example in the Python programming language as a calligram. Also, we
refer to the executed output: Text, Graphics, Sound, or error as the shape of the calligram.

this is not "a pipe"

Starting with the augmentation of alphabet, this straw-man example works as a calligram because the leऔers are also
functioning as executable, logical code. डat shape as an executable logical proposition is below.

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'this' is not defined

Second, the tautology test holds, because the Text and the shape are saying the same thing. डe Text is stating that “this
is not ‘a pipe’ ”; and, the shape is a “NameError: name ‘this’ is not deৱned.” डere is a space here at which one could
argue that in the Text, it is true that we don’t really know what the variable ‘this’ is, which is supported by the above
error. If we execute the following

"this" is not "a pipe"



डe result evaluates to True as ‘this’ is a string and the logical test can execute. We know what ‘this’ is - it is the string
“this”. We know that “this” is not “a pipe” as does the interpreter. If we had previously deৱned ‘this’ to be something,
for example ‘null’, the statement would evaluate False, which we would also know.

Lastly, to complete the double cipher the text and shape must intertwine and encode each other. On the surface this
seems impossible: how does the output become encoded by the input and vice-versa? We must consider part three as
unraveled, with the Text and the output as separate and not intertwined. If we want to think about them being encoded
within each other, then it may be possible to think of both the Text and the shape (executed output) as representations
of a single collection of bits. डose bits when interpreted as Text give us the code on screen, and those exact same bits
interpreted to be executed code give us the output result. When perceived through this lens, then the double cipher
requirement holds.

Realistically this feels slightly unsatisfying to explain Text-Images, because now our Text-Image has morphed into the
shape of a calligram which is deৱned as the executed output. Whereas previously our Text-Image was deৱned as Text
that was not readable and comprehend-able code, acting in itself as a purely visual element.

At this point we re-consider our mangling of the double cipher as encoded bits with the help of Vilém Flusser through
his description of particles and technical images.

8 e࠮ Teࠫnical Image

Media theorist, Vilém Flusser, looked beyond traditional media in his book eࡂ Universe of Te࠼nical Images to consider
digitization and computation when developing his concept of the technical image. Technical images, as described by
Flusser, are entirely diৰerent from traditional images and cannot be understood with traditional methods:

डe diৰerence between traditional and technical images, then, would be this: the ৱrst are observations of
objects, the second computations of concepts (2011, 10).

What he’s saying is that drawing, painting, photography and so on are forms of representation based on the observation
of something that exists, whereas, technical images are ideas visualized through algorithms, data, and computation. In
Chromatic Algorithms, Carolyn Kane decodes in more detail how this diৰerentiation works:

Technical Images are a priori abstractions only later made concrete. डey are distinguished from “tra-
ditional images,” which are used to grasp or “depict” the world and the environment through “magical”
actions, which are translated onto a surface (2014, 228).

To clarify, the use of “magical” refers to Flusser’s use of the word to describe the interplay of signiৱer and signiৱed. Here
we see a reference to Barthes’s description of images with denoted and connoted messages, which as we indicated is
built on Saussure’s signiৱer and signiৱed terms. Kane is establishing that the prior semiotic methods of image rhetorics
is diৰerent from the methods needed for technical images. She continues this line of thought by saying that Flusser’s
technical images are post-hermeneutic (aऑer or without meaning, reference, history, or capable of being interpreted) and
cannot be observed, which describes one of Flusser’s primary tenets (2014, 228).

Kane quotes Flusser arguing that technical images must be known and decoded in terms of how the technical image
is created, but not what the technical image means; “डe semantic and pragmatic dimensions of technical images are
identical” (2014, 228; 2011, 49). डis means that technical images have no sign, therefore no signiৱer nor signiৱed. डe
sign (the object in the world that is to be represented by observation) does not exist except by concept alone. Another
way to think about this is to say that the what of the image is the same as the how.

A similar approach is taken by Zabat Paऔerson in his book Peripheral Vision, in which he uses the term “diagram” by
Wolfgang Lefevre and Gilles Châlet, which is traced from a history of Architecture; “In other words, the diagram both
questions and uncovers the process by which ideas are formed in the mind” (2015, 21). डis appears very similar to
technical images in that they are both emergent from concepts or ideas. Paऔerson further supports Flusser’s deৱnition
of the technical image as not meaningfully interpretable or post-hermeneutic:

डe diagram, on the other hand, is privileged as a ৱgure of use and transformation — not a representation
of reality, but something more akin to a stand-in. डe diagram — as a mode of representational practice —
marks a shiऑ from a concern with the perceptual qualities of the object to a concern with it’s undergirding
conceptual relationships. No longer mimesis — but rather system (2015, 22).



Paऔerson is clear to state that diagrams are not representations from observation, but that they are from concepts and
systems where systems could be an algorithms, data, and computation - the how, which is as we learned is also the what.

In summary, traditional images are depicted representations from observations that contain signs with meaningful sig-
niৱers and hermeneutic signiৱeds. Technical images are concepts or ideas visualized with algorithms, data, and compu-
tation to become visual, but without referential observed signs to interpret.

9 Teࠫnical Images and Live-Coding

To more fully grasp Flusser’s line of thought and to position technical images with the context of live-coding, we’ll build
on Flusser’s terminology.

Particles: Atoms or bits of information that follow the Second Law of डermodynamics by moving towards entropy,
meaning that in their natural state, the atoms or bits are in a state of complete randomness.

Teࠫnical Image: A mosaic (Image) of particles or bits.

Apparatus: A device that projects the conৱguration of particles or bits into technical images. For Flusser, to project
means to display or visualize; it does not literally mean video projection.

Keys: Buऔons that provide the input method for conৱguring (programming) the particles or bits for the apparatus to
display.

Envisioner: डe person with the concept who presses the keys to create the program or algorithm. Envisioners conৱgure
the particles (bits) to be in states of non-entropy.

To put this together, envisioners program on keys to conৱgure bits on an apparatus that projects (visualizes) those
conৱgured bits into a technical image. Stated another way: a person programs a computer to create an image.

Continuing with Flusser’s ideas a bit further, the receiver of a technical image can become a critic, and someone who can
engage in a dialog with the envisioner regarding the program (2011). डis is similar to the description by Rodríguez &
Rodríguez who use the terms transmiऔer (envisioner), receiver (receiver), image (technical image), and communication
(discuss) (2015). In this way we can begin to connect Flusser’s idea of the critic (receiver) to that of an live-coding
audience and Rodríguez & Rodríguez’s idea of community.

Our original concept of the Image (the live-coder’s projected image) was that it can be a Technical Image (live-coder’s
projected technical image). According to Flusser, the Image isn’t meaningful itself, but the abstract conৱguration method
(program) is. डe envisoner and receiver are able to critique and discuss the program’s meaning as abstractions without
the hermeneutic baggage of the concrete. For example, two people can discuss the abstract, numerical idea of PI without
there being a concrete PI to experience.

As an example, consider the live-coding of poetry. If in a technical image I see the leऔers that Matsuo Basho may have
wriऔen referring to a frog jumping into a pond, Flusser would say that this is the computation of concepts. डere is no
real frog jumping into a pond. And besides, which frog? Which pond? How did it jump? To project an image or image
sequence of a frog jumping into a pond would then be to represent a more traditional, concrete image. As long as I know
what a frog is, and have a good understanding of what it looks like when a frog jumps, the distinction above is obvious.
But imagine it’s wriऔen as code in some language I don’t understand.

frog.jump() => pond

If I don’t speak this language (programming or linguistic, which happen to be ChucK and English respectively), then this
technical Text-Image truly means nothing to me, supporting Flusser’s thesis. Suppose I do know both programming and
linguistic languages, then Flusser postulates that I am a technical image critic, and because we know a technical image’s
meanings is how, not what, I would engage in a dialog of programmatic concepts of the Text with the envisioner. I read
the Text as code, or instructions for some action, but not as a graphic element that looks text-ish.

Knowing that technical images have no meaning as they are something out of nothing, we are receiving the visualization
that an envisioner has projected out of their programmed bits. In the context of live-coding these programmed bits are
visualized as code in the projected Image. If we understand the programming language, what we perceive in the Image
is Text, but if not, we perceive the code as a Text-Image.



10 Live-Coded Graphics

Much of this paper has been the concerned with the output of live-coding as textual, and output that is viewable within
the Image. डe following will concentrate on the live-coding of Graphics as it applies to the Image and through the
lenses of Barthes, Foucault, and Flusser.

When applying Barthes’s concepts of Text and Graphics to live-coded Graphics we’ll consider three cases: Text adjacent
Graphic, Text atop Graphic, and Text merged with Graphic. For Barthes when the Text is adjacent to the Graphics they
would relate to each other as caption and image. डe Text steals the connotative message of the Graphic. If the Text is
atop the Graphics, the Text would appear to lose its connotative meaning and becomes a Text-Image, unless of course
the receiver understands the code of the Text in which case it remains as Text. But it is important to note that Barthes’s
frame of historical reference is for represented imagery. Let us emphasize here: the re-presention of something that is
concrete. In this context Barthes has no concept of algorithmic imagery or of technical images. Speculating, we would
think that he retains the Text-Image denotation as before AND the connotation. He has no cultural-historical reference
for understanding the graphics, and Barthes may infer that the graphics are once again illustrating the Text. When the
Text is merged with the Graphic, Barthes theories appear to not keep up.

When we apply the calligram to describe live-coded graphics we use Foucault’s three calligram roles: alphabet augmen-
tation, repetition without rhetoric, and the double cipher. Additionally, the calligram’s shape, the output, in the scenario
of live-coded Graphics is the Graphic.

First, Text adjacent to Graphics, we previously established in our Python example that Text is augmented alphabet, that
the Text and Graphic are tautological, and that the Text is separate from the Graphic. डis would give us the same result
as the Python example: raveled, raveled, and unraveled.

Second, Text atopGraphic, Text continues as augmented alphabet, tautology holds, Text is on top of the Graphic, meaning
that it is visually inside the shape, but more of a composite than an encoding. For the double cipher to work each part
must be encoded in the other. डe result here is raveled, raveld, and unraveled.

डird, Text merged with Graphic, augmentation remains, tautology remains, the merger of Text and Graphic (Text-
Graphic-Image) is more ambiguous. From a visual standpoint, one could argue that Text and Graphic are not really
encoding each other; whereas from a conceptual standpoint a Text-Graphic-Image is a symbiotic encoding of Text and
Graphic. डis is leऑ as an open question, with the thought that while this is possible, live-coding Text merged into
Graphic could be incredibly di৳cult to perform. In this last case we have a result of raveled, raveled, and unclear.

Extending technical images into live-coded Graphics is the easiest. We have demonstrated that the Image is a visual-
ization of the bits, and logically following that is the Text-Image. For Text adjacent to Graphic and Text atop Graphic,
there is only the addition of a second visualization method of the bits into the Graphic form. डe exact same bits can be
visualized as Text and visualized as Graphics. डe diৰerence with Text merged with Graphic into a Text-Graphic-Image
is that there is a single visualization.

In all of these, it’s clear that Flusser’s idea of the technical image is most relevant to the live-coder’s projected image.
Moreover, in the calligram thought experiment earlier, it might be possible to use Flusser’s deৱnition of particles to
complete the double cipher raveling of Foucault’s calligram. In this case, Barthes’s concepts become relegated to only
traditional images.

11 Annotations

Live-code annotations are bits of Text or Graphic in the Image that provide additional information. For example, high-
lighting a line of code to show where an error may be, bolded Text to demonstrate which line or block is currently
executing, or Text output from a terminal prompt.

Barthes could have relevance here if the annotations take on an iconographic form, which when thought of as a sign
could hold some denoted interpretation. For Foucault’s calligram, the annotations might be a shape (output), although
annotations typically change, we ৱnd Foucault stumbling to deৱne these aऔributes as calligrams are static images. Postu-
lating from the perspective of Flusser, annotations are another form of visualization. डe data within the bits is visualized
in another textual or graphic form. If the live-coding is of graphics, then the annotation would be the third visualization.
First the Text, second the Graphics, third the Annotation, all of which are visualizations of the underlying programmed
bits.



12 e࠮ Terms

Over the course of this paper, we have been positioning our investigation with respect to the speciৱc contents of the
projected image itself. How can we accurately describe what it is we see within the projected frame, and speciৱcally,
how can we discern the various layers of visual content? डat framework is deৱned as follows:

Text: डe characters, ideograms, or other equivalent methods of programming/wriऔen communication. At its most basic
the Text would be the live-coder’s code.

Graphic: Any visual element that is not the Text but is directly related to the Text. Naturally, the use of text as a graphic
element is well within the boundaries of this deৱnition, although that text would be independent of the Text as deৱned
above.

Image: डe entirety of the live-coder’s projected image. For the purposes of this framework, the Image does not include
anything beyond the boundaries of the projection.

Null-Image: डe absence of the live-coder’s projected screen.

Text-Image: डis combination of Text and Image refers to the live-coder’s Text as a Graphical abstraction of its intended
function. डe live-coder’s Text becomes a Text-Image when the Text cannot be interpreted, or the viewer chooses not to
interpet it.

Graphic-Image: डe Graphic-Image includes all Graphic elements within the Image, while the Text is absent.

Text-Graphic-Image: Text-Graphic-Image describes an Image that contains merged Text and Graphics.

Annotation: Informative or assistive data that visually represents some functional aspect.

Text-Annotation: An annotation in Text form.

Graphic-Annotation: An annotation in Graphic form.

Interface: Any visual element that is not the Text, Annotation, or Graphic as deৱned above for the functional purpose
of user interaction with the apparatus.

Text-Interface: Interface in text form, like that of a drop-down menu.

Graphic-Interface: Interface in a graphic form, like that of a color-chooser.

13 Application of Terms

As a test of this framework we examined several examples of live-coding practices, and considered each as though they
were being projected.

Figure 5: Screenshot of Charlie Roberts demonstrating Gibber with Javascript in the Gibber IDE

डe screenshot, ৱgure 5⁴, of Gibber by Charlie Roberts shows several lines of code, the Text, that produces a rising
or descending scale with transposition. If we understand the functionality of the Text, we would describe this as an

⁴hऔps://www.youtube.com/watch?v=iwbmJWw-0z8



Image that contains Text. If not, the Text would be described as a Text-Image. डere are no Graphics contained within
the Image so many of the other descriptors are not applicable. However, the highlighted “13” and “1 8” represent an
annotation. डe comments in the Image read “Gibber notations can show changes to data” and these white highlights
৲ash in correspondence to the current pitch and the beginning of each sonic event respectively. Given that this annotation
is a white rectangle we would refer to this as Graphic-Annotation, and again, depending on our understanding of the
Text, could describe this example of Gibber as an Image that includes Text (or Text-Image if are not familiar with the
language) and Graphic-Annotation.

Figure 6: Screenshot of Reniࠪ Bell performing a live stream to the Idiotic Code: On Resistant Usership seminar (2015)
with Conductive in VIM.

A diৰerent form of annotation can be seen in the example by Renick Bell, ৱgure 6⁵. डe Text is conৱned to the right side
of the screen with the leऑ side reserved for printing commands from the Text as well as reporting back the state of the
system. Unlike Gibber, this type of annotationwould be described as Text-Annotation as the Annotation follows the same
language as the Text. डis example of the Image contains Text (again, so long as we understand it) and Text-Annotation.

Figure 7: Screenshot of Alex McLean performing a live stream improvisation (2015) with TidalCycles in EMACS

In our next examplewe look at AlexMcLean’s TidalCycles. In ৱgure 7⁶, the ৱrst itemwe see is the familiar Text occupying
center screen, and we will make the assumption that in this case the viewer has an understanding of how TidalCycles

⁵hऔps://www.youtube.com/watch?v=oTMuzM_-_0M
⁶hऔps://www.youtube.com/watch?v=8y_47ExSLRE&t=789s



works. To the right side of the screen are several windows that provide Text-Annotations regarding the consumption of
various processes on the CPU, and below the Text a string of Text-Annotations that provide information on the state of
TidalCycles. To the leऑ is a chat window that indicates who has logged into the livestream, who has leऑ, and who might
have something to say while they are present. डis too is a Text-Annotation and the heart emoji is a Graphic-Annotation,
but like the Text-Annotations along the right side of the screen, these Text-Annotations are only tangentially related to
the live-coding happening in the center. Yet, given that they are included in the Image, they contribute to the Image
as a whole. Similarly, the application icons along the top edge of the screen are within the Image, yet their functional
independence from the Text renders them Interface-Graphic. डis particular Image could be described as containing
Text, Text-Annotation, Graphic-Annotation, and Interface-Graphic.

Figure 8: Screenshot of Ryan Ross Smith and Shawn Lawson performing EV9D9 (2017) at the GENERATE! Festival
with Tidal Cycles and GLSL in e࠮ Dark Side IDE

For our ৱnal example we use डe Force by Shawn Lawson, who is also a co-author of this paper. डe Force uses the
OpenGL Fragment Shader as its live-coding language for graphics, and the following screenshot, ৱgure 8⁷, is an example
of डe Force operating in Graphic-only mode, creating an Image that contains a Graphic-Image.

Figure 9: Screenshot of Mike Hodniࠪ and Shawn Lawson performing aMint (2016) recording with Tidal Cycles and
GLSL in e࠮ Dark Side IDE

If the Text were visible in डe Force, as in ৱgure 9⁸, then the Image would contain Text (to reiterate again, if we don’t
understand the code then we refer to it as Text-Image), Graphics, Graphic-Annotations for audio input frequency infor-

⁷hऔps://vimeo.com/261648424
⁸hऔps://vimeo.com/192920872



mation and error highlights, and a Text-Annotation of render frame rate. Both audio and frame rate annotations are in
the boऔom leऑ in light gray.

डe examples in this section should not be considered exhaustive. डere exist many diৰerent live-coding languages and
many diৰerent live-coders, each with their own individual style. In addition, the authors are less familiar with visual
programming languages and these, in particular, could be explored in more depth.

14 Conclusion

Over the course of this paper we aऔempted to employ traditional methods of image rhetorics through Roland Barthes
and a unique method of Text and Image combination with Foucault’s calligram to beऔer understand the live-coder’s
Image. In the end we found Vilém Flusser’s idea of the technical image to match most closely to a live-coder’s projected
image. डrough this technical image deৱnition we realized with Carolyn Kane that these images are post-hermeneutic
and devoid of the traditional image models of meaning interpretation. To truly grasp the Image, the receivers (audience)
must critique with the envisioners their conceptual programming ideas.

By developing this framework based around the Image as the container for anything that may appear on the live-coder’s
projected screen we hope to develop a beऔer understanding of the distinctions that may exist between visual elements.
Most important was the distinction between Graphic and Text elements, and how to consider the Text as a visual element
while remaining independent of Graphic elements. It is unclear at this point how well this framework would do under
a more rigorous stress test incorporating a broader selection of approaches to live-coding.

References

Barthes, Roland, and Stephen Heath. 1977. Image, Music, Text. New York: Hill; Wang.

Burland, Karen, and Alex McLean. 2016. “Understanding Live Coding Events.” International Journal of Performance Arts
and Digital Media 12 (2): 139–51. https://doi.org/10.1080/14794713.2016.1227596.

Cox, Geoৰ, and Alex McLean. 2013. Speaking Code: Coding as Aesthetic and Political Expression. Computer soऑware
Studies. Cambridge, Mass.: डe MIT Press.

Cox, Geoৰ, Alex McLean, and Ward Adrian. 2004. In, edited by Olga Goriunova and Alexei Shulgin, 2004 ed, 161–74.
Aarhus: Digital Aesthetics Research Centre, University of Aarhus.

Flusser, Vilém. 2011. Into the Universe of Te࠼nical Images. Electronic Mediations. Minneapolis: University of Minnesota
Press.

Foucault, Michel. 1983. isࡂ Is Not a Pipe. Berkeley: University of California Press.

Kane, Carolyn L. 2014. Chromatic Algorithms: Synthetic Color, Computer Art, and Aesthetics A࠺er Code. Chicago, IL: डe
University of Chicago Press.

Machuca, Mauro Herrera, Jaime Alonso Lobato Cardoso, José Alberto Torres Cerro, and Fernando Javier Lomelı́ Bravo.
2016. “Live Coding for All: डree Creative Approaches to Live Coding for Non-Programmers.” International Journal of
Performance Arts and Digital Media 12 (2): 187–94. https://doi.org/10.1080/14794713.2016.1227598.

Magnusson, डor. 2014. “Algorithms as Scores: Coding Live Music.” In NIME’14 Proceedings. New Interfaces for Musical
Expression.

McLean, Alex, Dave Gri৳ths, Nick Collins, and Geraint Wiggins. 2010. “Visualisation of Live Code.” In Proceedings of
the 2010 International Conference on Electronic Visualisation and the Arts, 26–30. EVA’10. Swindon, UK: BCS Learning &
Development Ltd. http://dl.acm.org/citation.cfm?id=2227180.2227185.

Paऔerson, Zabet. 2015. Peripheral Vision: Bell Labs, the S-c 4020, and the Origins of Computer Art. Platform Studies. MIT
Press.

Roberts, Charles. 2016. “Code as Information and Code as Spectacle.” International Journal of Performance Arts and Digital
Media 12 (2): 201–6. https://doi.org/10.1080/14794713.2016.1227602.

Rodrıǵuez, Jessica, and Rolando Rodrıǵuez. 2015. “LiveCoding Readings. Algorithms Viewed as Text/Image.” In Pro-
ceedings of the 21st International Symposium on Electronic Art - Isea2015: Disruption. ISEA 2015. Vancouver, BC, Canada:
Simon Fraiser University.

Sorensen, Andrew, Ben Swiऑ, and Alistair Riddell. 2014. “डe Many Meanings of Live Coding.” Computer Music Journal
38 (1): 65–76. https://doi.org/10.1162/comj_a_00230.

https://doi.org/10.1080/14794713.2016.1227596
https://doi.org/10.1080/14794713.2016.1227598
http://dl.acm.org/citation.cfm?id=2227180.2227185
https://doi.org/10.1080/14794713.2016.1227602
https://doi.org/10.1162/comj_a_00230


Ward, Adrian, Julian Rohrhuber, Fredrik Olofsson, Alex McLean, Dave Gri৳ths, Collins Nick, and Amy Alexander. 2004.
In, edited by Olga Goriunova and Alexei Shulgin, 2004 ed, 242–61. Aarhus: Digital Aesthetics Research Centre, University
of Aarhus.

zmölnig, IOhannes m. 2016. “Audience Perception of Code.” International Journal of Performance Arts and Digital Media
12 (2): 207–12. https://doi.org/10.1080/14794713.2016.1227604.

https://doi.org/10.1080/14794713.2016.1227604

	Introduction
	Image
	Text
	Rhetoric of the Image
	Text-Image and Live-Coding
	The Calligram
	Calligrams and Live-Coding
	The Technical Image
	Technical Images and Live-Coding
	Live-Coded Graphics
	Annotations
	The Terms
	Application of Terms
	Conclusion
	References

