
Live Coding Machine Learning and Machine Listening: A Survey on the Design of
Languages and Environments for Live Coding

Chris Kiefer and Thor Magnusson
Experimental Music Technologies Lab
Department of Music
University of Sussex
UK

Introduction

The MIMIC (Musically Intelligent Machines Interacting Creatively) project explores how the techniques of
machine learning and machine listening can be communicated and implemented in simple terms for composers,
instrument makers and performers. The potential for machine learning to support musical composition and
performance is high, and with novel techniques in machine listening, we see emerging a technology that can shift
from being instrumental to conversational and collaborative. By leveraging the internet as a live software
ecosystem, the MIMIC project explores how such technology can best reach artists, and live up to its
collaborative potential to fundamentally change creative practice in the field.
 The project involves creating a high level language that can be used for live coding, creative coding and
quick prototyping. Implementing a language that interfaces with technically complex problems such as the design
of machine learning neural networks or the temporal and spectral algorithms applied in machine listening is not a
simple task, but we can build upon decades of research and practice in programming language design (Ko
2016), and computer music language design in particular, as well as a plethora of inventive new approaches in
the design of live coding systems for music (Reina et al. 2019). The language and user interface design will build
on recent research in creative coding and interactive machine learning, exemplified by the Rapid Mix project
(Bernardo et. al., 2016, Zbyszynski et. al., 2017). Machine learning continues to be at the forefront of new
innovations in computer music, (e.g. new sound synthesis techniques in NSynth (Engel et. al. 2017) and
WaveNet (van den Oord, 2016)); the language will seek to integrate models based around these new techniques
into live coding performance, and also explore the efficacy of live coding as an approach to training and
exploiting these systems for analysing and generating sound.
 Existing live coding systems and languages are often reported on, describing clever solutions as well as
weaknesses, as given, for example, in accounts of the development of Tidal (McLean, 2014), Extramuros
(Ogborn et. al, 2015) and Gibber (Roberts and Kuchera-Morin, 2012). Researchers are typically reflective and
openly critical of their own systems when analysing them and often report on its design with wider implications
(Aaron 2011; Sorensen 2018). However, they rarely speculate freely and uninhibitedly about possible solutions or
alternative paths taken; the focus is typically on the system described. Before defining the design of our own
system, we were therefore interested in opening up a channel where we could learn from other practitioners in
language design, machine learning and machine listening. We created a survey that we sent out to relevant
communities of practice - such as live coding, machine learning, machine listening, creative coding, deep
learning - and asked open questions about how they might imagine a future system implemented, given the
knowledge we have today. Below we report on the questionnaire and its findings.

Survey Design

In designing the questionnaire we decided to aim for open ended answers, speculative and cutting-edge ideas,
rather than implementation details or specific problematisations. We were interested in how people might see an
ideal future system that would be easy to learn, yet be powerful and easy to extend. Questions also involved
experiences in learning and teaching programming languages and what best practices in language design might
be in the context of education. The survey was split into two parts, a short compulsory section with fundamental
questions and a further and longer section with optional questions.

In the compulsory section, we wanted to find out why people use live coding systems, and what language and
environment features enable them to live code successfully.

[1] What are the high-level properties and features that you look for in a programming language? Why?
[2] If you have live coded or used dynamical programming environments before, how does it benefit you and
what do you use it for?

[3] What are the key features of programming languages or environments that enable you to achieve your
objectives?
[4] What features of the language or environment help you to express complicated ideas? Please give an
example if possible.

We were also interested in how a new system for live coding could aid novices in learning the fundamental
concepts and principles of computer programming:

[5] What key advice would you give to novice programmers?
[6] What key features should the language or environment have to help novices?
[7] In your opinion, what is the key hindrance to novices when learning programming?

Beyond these core questions, we wanted to elicit deeper responses around approaches to live coding, language
features and paradigms, and approaches to machine learning and listening:

[8] If you were to design a live coding language from scratch, which features would you implement? Can you give
an example?
[9] What are the tensions between brevity of code and expression in live coding language design?
[10] What do you think are good programming paradigms for live coding? (e.g., imperative, functional, OOP,
hybrid) Why?
[11] What features would you like to see in a live coding language for machine listening and machine learning?

The survey was advertised in popular public email lists related to computer music, data science and machine
learning, and was announced through social media channels.

Participants

The survey was completed by 47 participants . Participants were in age brackets 18-29 (12), 30-49 (19), 40-49 1

(9), 50-59 (6), 70 and above (1). 44 identified as male, 1 non-binary and 2 preferred not to say (we will comment
on gender balance later in the paper). Responses came from a wide range of international locations.
Professionally, the respondents were software engineers, musicians, data scientists, academics, students,
artists, composers, engineers and business professionals. Participants identified principally with the following
roles: machine learning practitioner (38%), machine listening practitioner (21%), data scientist (21%), live coder
(62%), programmer (77%), musician / artist (89%), teacher (53%). Asked ‘which programming languages and
environments do you use?’, the most commons responses were Python, C, C++, JavaScript, SuperCollider, Pure
Data, Max/MSP, Tidal Cycles, Processing, MATLAB and Jupyter Notebook. Participants were asked about their
experience in key areas to the survey on a Likert scale from 1 (None) to 7 (expert), responding as follows:

!

 https://goo.gl/forms/hTWMC9YhrnTgmRBT21

https://goo.gl/forms/hTWMC9YhrnTgmRBT2

!

!

Findings

This is the first survey on live coding language design. Live coders exist in a world that is often disconnected, and
people evolve their own specific abstractions that reflect the specific way they think and make music (as seen in
the responses that highlight the need for customisation and flexibility) or other domains of live coding practice.
However, the answers to the survey did demonstrate common threads that emerge from disparate practices, and
interestly show more agreement and convergence around key topics than disagreement.

The survey is ongoing, but these intermediate results were qualitatively analysed by two researchers, with plans
for further in-depth coding and analysis at a future date. Summaries of the responses to each question are given
below.

What are the high-level properties and features that you look for in a programming language? Why?
Brevity, expressiveness, consistency and readability were the terms that most often came up across the
participants’ replies. People want to talk high-level language with their machines, quickly and it should be in an
intuitive language that can be understood by laypeople. The language should support the easy formation of
mental models of the program, a fact that signifies the importance of clear metaphors, syntax and semantics.
Data structures should be flexible and it should be easy to make abstractions. Such a language needs to support
different ways of thinking, and a successful language can be judged “based on whether the designer has
attempted to understand how artists think, and ensure that the language thinks the same way as much as
possible.” How “artists think” is clearly a heterogeneous cluster of modes, but the point is solid: the programming
language should not force the the artist to think in computer science terms, but rather support alternative ways of
thinking, implying that the language should be flexible for diverse methods of domain representations. For
example the language should support creation of new language constructs.

If you have live coded or used dynamical programming environments before, how does it benefit you and
what do you use it for? It was noticeable how many of the replies suggested that dynamic coding enables a
method of sketching or “thinking-out-loud” in code, testing ideas, trying alternative approaches to a problem. “In
the moment” engagement with coding was also highlighted as key benefit, not only to enable live musical
performance, but also for allowing the development of algorithms to follow an emergent path, without predefined
goals. It was clear that for live coding practitioners, live coding is not only a performance method, but rather a
general way of conversing with computers and explore emerging ideas. Such emergence is enabled by the ability
to test ideas quickly with instant feedback, which might result in unintended but useful outcomes. Live coding has

enabled a different method of artistic composition and performance of music compared with traditional music
software, such as Digital Audio Workstations, and has also offered useful ways to engage with temporal
processes in all kinds of domains (Sorensen & Gardner 2017).

What are the key features of programming languages or environments that enable you to achieve your
objectives? The overriding theme in the responses was that coders looked for flexible languages and
environments that minimise unnecessary effort and stress for the user. To achieve this, language should be
stable, portable and expressive with good libraries and documentation. Participants reported that a flexible
dynamic structure would be helpful, mixing programming paradigms, such as OOP and functional programming.
Some pointed to the benefit of allowing functions to be first class citizen in the programming language, enabling
the user to pass functions around the system, as a parameter to other functions and objects. If languages in the
past brought dogmatic design philosophies (such as OOP or functional programming), the situation today is
much more practical: people see the benefits of the diverse paradigms, and would prefer to use a system that
enables a hybrid approach.

What features of the language or environment help you to express complicated ideas? Please give an
example if possible. Flexibility is seen as a key element in live coding, probably more so than in more traditional
programming languages. For this reason, polymorphism (in the form of ad hoc, where objects can behave
differently depending on the call it gets, or parametric, where different set of parameter inputs will result in
different operations) is seen as useful: it can be good in a realtime performative situation to be able to copy code
but pass different arguments types, change one’s mind in the middle of writing a function, or even experience the
serendipity of a surprise. This requires, however, that the user understands the structure of the object or function,
suggesting that a clear inspection system is built that enables the user to open the black box and study its
workings quickly and effectively in the flow of programming. In combination with flexible language features,
respondents highlighted the need for expressible and malleable data structures, that are adaptable in emergent
live coding processes and across evolving logic. Some mentioned object-oriented approaches were highlighted
for code-readability in comparison to functional syntaxes, but others mentioned lambda expressions (or
anonymous functions) for the simplicity of writing operations that can be plugged together or passed around the
system. Paradigms in functional programming, such as function composition and the avoidance of state, can
result in fewer bugs and more streamlined work processes.

What key advice would you give to novice programmers? Many responders gave the advice that deciding
upon a simple and clear goal which can be achieved as a small project is an ideal way to learn a programming
language, especially if this goal is approached in a simple and incremental manner. There was very clear support
for practice-based learning approaches, and also open-ended approaches that involved making mistakes and
learning to resolve them through engagement with community support resources. Artists should learn to
challenge themselves and go beyond the available resources. To practise programming regularly was seen as
necessary in reaching the level of competency required for live coding.

What key features should the language or environment have to help novices? There was a very strong
emphasis on good quality documentation and examples that are tightly integrated with the development
environment, along with autocompletion. Human-readable error messages are very important for novices to learn
new languages. Environments such as Processing and SuperCollider suffer greatly here as the error messages
can be quite obscure and it can be hard for the novel user to detect the relevant information in the lengthy dump.
Conversely these environment benefit from a large collection of help examples and user communities.
Furthermore, participants expressed that ways to visualise complex data structures can be a very useful aid to
beginners.

In your opinion, what is the key hindrance to novices when learning programming?
Respondents pointed out pragmatic hindrances, including poor documentation, obtuse terminology and
challenging overheads, for example library management and linker configuration. They also highlighted
emotional factors that can hold novices back; fear of making mistakes, feelings of intimidation and being
overwhelmed, and imposter syndrome. They warned against approaches that involved copying and pasting code
without understanding it fully, and pointed out that understanding of systematic and logical approaches to coding
underpins a successful approach. Whilst learning methods that are not practice-based can be a hindrance, the
general view was that a hybridity of approaches would be ideal strategy, both as people are different and they
might need different approaches depending on where they are in the learning process.

If you were to design a live coding language from scratch, which features would you implement? Can
you give an example? Answers clustered around the need for hybridity, representations of time and brevity.
Hybrid features, including object-oriented and functional features, give the programmer flexibility to express ideas

to match their thought process. Representations of time are not often prioritised in standard languages but are
essential for music live coding so a good abstraction is needed here. Concise syntax is needed to allow fast
expression of ideas in code. Small, compact, and stable were common replies, but good libraries are seen as
important too. There was a tension between building on existing language or implementing something completely
new, both strategies having some benefits.

What are the tensions between brevity of code and expression in live coding language design? There was
little common agreement in the responses here, probably because this is a challenging problem with multiple
constraints to satisfy. Factors included user preference, readability, memorisability, language aesthetics,IDE
autocompletion, and consideration of the audience.

What do you think are good programming paradigms for live coding? (e.g., imperative, functional, OOP,
hybrid) Why? Participants were almost unanimous in supporting hybrid languages that allow for flexible
approaches.

What features would you like to see in a live coding language for machine listening and machine
learning?
A common theme linking responses was flexibility, to be able to link processes and data structures across
boundaries of format, temporality and category, to be able to plug anything into anything else. Models should be
accessible and hackable, and introspective methods (e.g. visualisations) should aid the user in building models.
Musicality should be a priority in the design of the language, and there was a suggestion to be able to repeat
machine learning transformations to build musical structure, i.e. to instrumentalise the machine learning training
API. This is interesting because it proposes to bring typically offline, non realtime processes into realtime
performance.

Discussion

The results have highlighted potential methodological issues with the survey. 44 of 47 participants identified as
male. We acknowledge therefore that the results are not representative of the wider live coding community, but
they might be representative of the gender situation of the live coding systems hitherto released, as
acknowledged by Armitage who calls for more support for female systems designers (Armitage 2018). The
survey is still open at the time of publication, and we welcome further responses that represent the diversity of
the live coding community.

The survey responses were highly interesting, confirming what we also consider good practice for live coding
system design: brevity, simplicity, expressivity, flexibility, adaptability, and plurality. The language should be fast,
expressive, high level, and allow for different paradigms of programming, applying OOP principles when that suits
and functional programming at other occasions. Some answers hint at challenges ahead: off-line vs. real-time
processes, building complex hybrid language features into custom DSLs, or how we design this ‘plug anything
into anything’ cross-domain expressive data manipulation system? How do we foreground musicality? (and
define it in terms of language design) - what makes a DSL musical? And what about Tanimoto’s levels of liveness
(Tanimoto 2013) for example? How will live coding work when intelligent programming languages write code for
us, complete tasks, suggest approaches, and so on? How will this affect artistic expression?
 
The survey replies did not include any paradigm shifting or transformative ideas in terms of new language design.
There can be many reasons for this, for example that existing paradigms work well, and the combination of them
has been suggested, but perhaps also that the survey format is not necessarily the right forum to explain a new
vision of language design. This could be because an online form is not the most inspiring medium for writing
down new ideas (it is not clear what will happen to the answers, or how they will be used). Furthermore a new
language or a publication of some sort is the ideal platform to introduce ideas, so we understand why people
might hold back from innovative ideas in an anonymous survey. That said,, we have benefitted immensely from
the survey and take with us some key findings for the workshops and development sessions that we are planning
to further implement our system.

Our survey is largely design and technology focussed, expounding the questions of language design and thought
processes in computer programming. However, some respondents pointed to the importance of good user
communities, where online fora and mailing lists can be extremely helpful in aiding equally the novice and the
more experienced user during the development of their project. The real time, and often performative, nature of
live coding does make that less relevant in a real-time situation, but such community support is invaluable in the
pre-gramming (design) of the live coding system. Perhaps community is the most important thing of any live
coding language, but for a community to establish, clearly the environment has to be good.

Acknowledgements

Thank you to all the respondents who give their time to complete the survey. This research is funded by the UK
Arts and Humanities Research Council, ref AH/R002657/1.

References

Armitage. Joanne (2018). “Spaces to Fail in: Negotiating Gender, Community and Technology in Algorave” in
Journal of Electronic Dance Music Culture, 10 (1). 
 
Bernardo, F., Zbyszynski, M., Fiebrink, R., & Grierson, M. (2016). Interactive Machine Learning for End-User
Innovation. American Association for Artificial Intelligence (AAAI).

Engel, J., Resnick, C., Roberts, A., Dieleman, S., Eck, D., Simonyan, K., & Norouzi, M. (2017). Neural audio
synthesis of musical notes with wavenet autoencoders. arXiv preprint arXiv:1704.01279.

Ko, Andrew (2016). “A Human View of Programming Languages (Keynote),” in Companion Proceedings of the
2016 ACM SIGPLAN International Conference on Systems, Programming, Languages and Applications:
Software for Humanity (SPLASH Companion 2016). ACM, New York, NY, USA, 2–2. DOI: http://dx.doi.org/
10.1145/2984043.2998390

McLean, A. (2014). Making programming languages to dance to: live coding with tidal. In Proceedings of the 2nd
ACM SIGPLAN international workshop on Functional art, music, modeling & design (pp. 63-70). ACM.

Ogborn, D., Tsabary, E., Jarvis, I., Cárdenas, A., & McLean, A. (2015). Extramuros: making music in a browser-
based, language-neutral collaborative live coding environment. In Proceedings of the First International
Conference on Live Coding, University of Leeds, ICSRiM (p. 300).

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., ... & Kavukcuoglu, K. (2016).
WaveNet: A generative model for raw audio. In SSW (p. 125).
Reina, Patrick; Ramsona, Stefan; Linckea, Jens; Hirschfelda, Robert and Papea, Tobias (2019). “Exploratory and
Live, Programming and Coding A Literature Study Comparing Perspectives on Liveness” in The Art, Science, and
Engineering of Programming Journal, 3 (1).

Roberts, C., & Kuchera-Morin, J. (2012). Gibber: Live coding audio in the browser. In Proceedings of the
International Computer Music Conference, Ljubljiana.

Sorensen, Andrew & Gardner, Henry (2017). “Systems Level Liveness with Extempore” in Proceedings of
Onward! 2017, Vancouver, BC, Canada.

Sorensen, Andrew. (2018) Extempore: The design, implementation and application of a cyber-physical
programming language. PhD Thesis, Brisbane: The National Australian University.

Tanimoto, Steve L. (2013) A perspective on the evolution of live programming, Proceedings of the LIVE 2013
workshop on Live Programming. ICSE conference. San Francisco.

Zbyszynski, M., Grierson, M., & Yee-King, M. (2017). Rapid Prototyping of New Instruments with CodeCircle.
Proceedings of New Interfaces for Musical Expression, Copenhagen, Denmark.

http://dx.doi.org/10.1145/2984043.2998390
http://dx.doi.org/10.1145/2984043.2998390

