
Parallelizing Machine Learning as a Service

for the End-User

Daniela Loretia,∗, Marco Lippib, Paolo Torronia

aDISI – University of Bologna
bDISMI – University of Modena and Reggio Emilia

Abstract

As Machine Learning (ML) applications are becoming ever more pervasive,
fully-trained systems are made increasingly available to a wide public, al-
lowing end-users to submit queries with their own data, and to efficiently
retrieve results. With increasingly sophisticated such services, a new chal-
lenge is how to scale up to ever growing user bases. In this paper, we present
a distributed architecture that could be exploited to parallelize a typical ML
system pipeline. We propose a case study consisting of a text mining service,
and discuss how the method can be generalized to many similar applications.
We demonstrate the significance of the computational gain boosted by the
distributed architecture by way of an extensive experimental evaluation.

Keywords: Machine Learning as a Service, Parallelization, MapReduce

1. Introduction

In the last decade, ML has undoubtedly become one of the hottest top-
ics in computer science. By exploiting big data collections, ML algorithms
are now being implemented and deployed on a large scale across countless
application domains, including health-care, transportation, speech analysis,
computer vision, market analysis, life sciences, and many others [1].

Recently, ML applications have been moving to the cloud, in order to
exploit high performance parallel and distributed computing, which has given
rise to the concept of Machine Learning as a Service (MLaaS) [2]. This

∗Corresponding author

Preprint submitted to Future Generation Computer Systems June 1, 2020

ar
X

iv
:2

00
5.

14
08

0v
2

 [
cs

.D
C

]
 2

9
M

ay
 2

02
0

usually refers to the availability of online platforms and frameworks, which
has enabled to implement in the cloud all the customary stages of a ML
pipeline. Such stages include, for instance, input pre-processing, feature
extraction, and in particular the training phase, which is usually the most
expensive from a computational and memory consumption viewpoint [3].

In this paper, we turn our attention to a particular aspect of MLaaS,
that of deploying and parallelizing systems that have already been trained,
and need to be made available to (possibly many) end-users. Although not
computationally expensive as the training phase, prediction and forecasting
tasks may be nonetheless burdensome in terms of resources, especially when
results must be delivered within a close deadline, or when the service has to be
made available to a wide public. In this setting, an infrastructure for MLaaS
should support large-scale distributed batch processing, as well as run-time
stream processing. Besides, scalability and fault tolerance are fundamental
requirements. In this regard, since its first formulation in 2004, the MapRe-
duce [4] distributed programming model has gained significant diffusion in
the big data research community. This success is mainly due to its simple yet
powerful and intrinsically parallelizable paradigm. Several distributed com-
puting engines have been proposed since then, to support the development
of distributed programs for batch processing of very large data collections,
providing autonomous fault-tolerant mechanisms and run-time infrastruc-
ture scaling capabilities. The latest evolution of these frameworks [5, 6, 7]
offers stream processing support, alongside with the more traditional batch
processing, and leverages different programming paradigms, in addition to
MapReduce. All that together greatly simplifies the implementation of effi-
cient distributed applications for the analysis of big data flows.

Our aim with this paper is to show how a MapReduce-inspired program-
ming paradigm can be used to improve the performance and scalability of the
ML pipeline, by parallelizing the customary steps of the prediction process
and supporting the development of ready-to-use pre-trained services for the
end user. These are our main contributions:

• A structural characterization of systems addressing the prediction task
of different ML applications, from a MapReduce-inspired parallelization
viewpoint.

• The detailed discussion of a concrete application of the outlined struc-
ture in the natural language processing domain, specifically in the area

2

of argumentation mining, together with an empirical evaluation of the
performance and scalability of the approach.

• A discussion of the issues and challenges that must be addressed when
parallelizing the identified general ML pipeline, as well as the features
that might induce significant enhancements in performance and desir-
ability of the offered ML service.

The paper is structured as follows. Section 2 discusses related work,
introducing the concept of MLaaS and its interpretations in various domains
of computer science. Section 3 describes scenarios where the proposed parallel
architecture could play a role. Section 4 focuses on the proposal of MLaaS for
the end user by presenting a case study in the area of argumentation mining.
Section 5 illustrates the parallel architecture. Section 6 presents its empirical
evaluation, whereas Section 7 discusses the challenges the argumentation
mining case study has helped bringing up. Section 8 concludes.

2. Related Work

MLaaS is a phrase found in various areas of computer science, where it
is used to refer to various concepts. A significant body of literature focuses
on the description and analysis of platforms that implement a whole ML
pipeline. That may include, for instance, the capability to perform data pre-
processing and feature selection, to choose the best-performing classifier, to
train a model, and to predict the outcomes on query data. For example,
Yao et al. [3] compare the performance and complexity of several solutions
for building MLaaS applications implementing the entire ML pipeline. Sim-
ilarly, Chan et al. [8] describe the distributed architecture exploited in ML
applications in Uber, with a focus on model training and features selection.
A complete architecture for MLaaS is also described by Ribeiro et al. [2]
who present a specific analysis on three ML classifiers (multi-layer percep-
trons, support vector machines, K-nearest neighbors). In each of these works,
however, the parallelization of the final prediction stage is only superficially
addressed, or ignored altogether, whereas we believe that a ML tool provided
as-a-service to a wide public of end-users cannot disregard the parallelization
of this last step (although it is generally less computationally expensive then
the previous ones). In particular, we argue that the prediction stages of differ-
ent ML applications have common characteristics, which make the adoption
of a MapReduce-oriented approach [9] particularly suitable for the purpose.

3

The need for a ML tool as a service through the adoption of MapReduce is
also envisaged by other scholars. For instance, Chan et al. [10] and Baldomi-
nos et al. [11] do so while focusing on the features that such a tool should
expose, rather than on techniques to obtain scalability. The application of
MapReduce to the ML pipeline comes with the great advantages brought
by distributed computing architectures, which allow the developer to focus
on the implementation of its parallel program while disregarding lower-level
architectural and infrastructural details, such as the coordination between
nodes, the employment of heterogeneous hardware in the same data-center
[12, 13] or even the use of multiple cloud data-centers [14, 15, 16, 17].

Another line of research that uses the MLaaS term, focuses instead on the
parallelization of training algorithms for ML systems. For example, a mul-
ticore implementation for the training of many ML systems, which exploits
the MapReduce paradigm, is presented by Chu et al. [18]. Sergeev et al. [19]
present an interesting framework to enable faster and easier distributed train-
ing in TensorFlow [20]. Tamano et al. [21] illustrate an approach to job
scheduling optimization for MapReduce tasks in ML applications. The chal-
lenges and opportunities of exploiting MLaaS in the context of the Internet
of Things are discussed by Assem et al. [22], again with a focus on the aspects
related to training and classifier selection.

Fewer strands of work are instead dedicated to the performance of par-
allel algorithms for already trained and deployed ML models. Xu et al. [23]
propose a software architecture that encompasses model deployment for real-
time analytics. Their emphasis is on the processing of big data collections,
including RESTful web services for data wrapping and integration, dynamic
model training, and up-to-date prediction and forecasting. The resulting ar-
chitecture relays on Sparks MLlib library to offer a set of already-parallelized,
popular ML functions to the end-user. Given the particular focus of their
study, Xu et al. do not propose a general methodology for distributing the
ML pipeline, and in particular for parallelizing the prediction task of possibly
more sophisticated applications and leave it to the developer to address such
a problem. Similarly, Harnie et al. [24] use the Apache Spark technology [7]
to achieve the desired scalability in chemoinformatics applications, which is
also a choice we made in our work. However, as their main target is obtain-
ing performance enhancements through the parallelization of the scientific
application at hand, they do not provide a general methodology for paral-
lelizing prediction services. Nonetheless, it can be observed how the software
implementation proposed by Harnie et al. (composed of two initial mapping

4

tasks and a subsequent aggregation by reduction) can be easily framed in
the methodology we propose (see Section 3). The focus of other works such
as that by Hanzlik et al. [25] is on model deployment, and in particular on
problems related to model stealing and reverse engineering. In the envisaged
scenario, the ML model is made available to the client for offline prediction
on sensitive data that cannot leave the clients data center. The authors de-
vote great attention to the performance of the security-enhanced forecasting
step, but do not address the parallelization of such a task.

The problem of parallelizing sophisticated artificial intelligence-based rea-
soning engines has been studied by Loreti et al. [26, 27] in the domain of
business process compliance monitoring. However, the focus of such study
lies in the input data-set partitioning strategies, whereas the present study
aims to identify common patterns in various ML tasks, which could lead back
to a MapReduce-inspired approach.

3. Prediction as a Service

The typical pipeline of a ML system to parallelize and distribute has the
following characteristics. A collection of data is given as input, either as a
set of batches, or as a continuous stream. As Figure 1 illustrates, a first
stage of computation is present, where all the instances of the input dataset
need independent processing. Such independence enables the distribution of
the computation load across many nodes. This set up is common to many

Figure 1: Generic pipeline of steps of a ML application

5

application domains. For instance, a great deal of natural language pro-
cessing tasks consider independent input elements such as single sentences,
paragraphs, or documents. Among such tasks we shall mention sentiment
analysis, whose goal is to assign a sentiment to a given segment of text,
being it a tweet, a post on a social network, or a comment to a newspaper
article. Document categorization aims to classify a piece of text into one or
more semantic categories. Fake news detection, as well as many other tasks,
aim to detect sentences or text portions with certain characteristics [28]. The
same can be said of many important tasks in computer vision. For example,
the goal of image tagging or image classification is to assign a label (or a set
of labels) to a given image. In video surveillance [29], as well as in many
other video processing tasks, the computation is often carried out at the
level of single frames, or small batches of frames. In other domains, such as
bioinformatics, chemoinformatics, or genomics data analysis, several different
predictors can be applied to input data, such as protein or DNA sequences,
so as to classify different properties of single sequence elements [30].

The output of this first stage of the pipeline if often used as input to a
second stage. In general, the first stage could be considered a sort of filtering,
or detection phase, whereas the second stage works as a sort of aggregation
phase, where the instances detected during the first round are matched and
compared with one another. That is the case in some natural language pro-
cessing setups, where the text segments selected during the first phase are
processed by a clustering algorithm, such as topic modeling, or by a further
categorization stage. For instance, single sentences could be first classified
according to coarse-grained categories, and then classification could be fur-
ther developed into fine-grained categories. That happens with fact-checking
systems, where candidate fake news items are first selected during an initial
processing phase, and then a fact-checking algorithm is applied to a collection
of instances found in the first phase [31], possibly relaying on a trustworthy
source. Fig 2a sketches the steps of this pipeline. In some consumer-oriented
applications [32], such as the detection of unfair contract clauses [33], a first
stage could identify sentences expressing potentially unfair clauses through a
coarse-grained classifier (see Figure 2b), whereas a second stage could addi-
tionally recognize the category of unfairness among a set of pre-defined cases
(e.g., arbitration, limitation of liability, etc.), usually on the basis of the con-
text provided by other relevant sentences within a certain document scope.
In bioinformatics, the output of the predictors developed during the first
stage are often aggregated into a higher-level set of predictions, that com-

6

(a)

(b)

(c)

Figure 2: Examples of pre-trained ML applications: detection of fake news (Fig. 2a),
unfair clauses in legal documents (Fig. 2b), and video segmentation. The steps of these
pipelines recall the MapReduce programming paradigm.

7

bine the information coming from the different classifiers [24]. In computer
vision, video segmentation is typically performed on frame groups, resulting
from a first processing stage [34]. Typically, as shown in Fig. 2c, the frames
are initially analyzed to extract low-level features such as brightness, con-
trast, etc. and later aggregated over a temporal basis to extract higher-level
information (e.g., scenes, objects, actions, etc.).

The general pipeline described so far recalls the principles of the MapRe-
duce programming paradigm [9]. MapReduce is a well-known technique for
simplifying the parallel execution of software, whereby the input data is par-
titioned into an arbitrary number of slices, each exclusively processed by a
mapper task emitting intermediate results in the form of key/value pairs. The
pairs are then passed on to other tasks, called reducers, which are in charge
of merging together the values associated with the same key, and emitting
the final result. As Figure 1 illustrates, the first phase of the general ML
pipeline could indeed be modeled as a mapping task, where each instance
undergoes the same processing to emit a key/value pair. The corresponding
reduction task is then carried out in the second phase of the pipeline, where
the outputs of the first phase are merged and processed together.

Programs reformulated according to the MapReduce model can be auto-
matically parallelized by means of a big data analytics platform [35], which
can turn a collection of computing nodes into a distributed infrastructure
able to automatically spread (and balance) the execution tasks across the
data center. Most of these platforms supply mechanisms to scale up or down
the cluster on demand and perform fault detection and recovery from fail-
ures at runtime. All these features seem particularly beneficial to a ML tool
provided as-a-service to a wide public.

In an effort to ground the general discussion and illustrate in concrete
how MLaaS can be enabled by a MapReduce-oriented approach, the section
that follows is devoted to a particular case study. The case study is a natu-
ral language processing application in the area of argumentation mining [36],
consisting of an argument component identification task followed by an argu-
ment structure prediction task, whose goal is to identify links and relations
between argument components.

4. A Case Study

Argumentation mining [36] defines the task of extracting arguments from
unstructured text by automated analysis methods. Such a task is usually,

8

Surveys of public attitudes across Europe and in many other countries show strong public support for wind power.

In Germany, for example, hundreds of thousands of people have invested in citizens' wind farms across the country

and thousands of small and medium sized enterprises are running successful businesses in a new sector that

in 2008 employed 90,000 people and generated 8 percent of Germany's electricity.

Wind power has gained very high social acceptance in Germany.

E1 (EVIDENCE)

C1 (CLAIM)

S
U
P
P
O
R
T
S

Figure 3: Example of the output of an argumentation mining system, taken from the IBM
Wikipedia corpus [40]. Given a text, this system detects evidence (in italics), claims (in
bold), and their support links.

but not necessarily, referred to a specific genre, such as legal texts, persuasive
essays, scientific literature, etc. One notable and increasingly popular appli-
cation area where argumentation mining plays a key role is that of debating
technologies [37], where the data to be processed may consist of “static”
Wikipedia pages as well as streamed audio signals. Owing also to the variety
of addressed genres, the argumentation mining literature offers several alter-
native definitions of argument [38], with varying degrees of sophistication.
For the aims of this work, and without loss of generality, we shall refer to a
common and rather basic claim/premise argument model [39], whereby an
argument is composed by an assertion, or statement (the claim) supported
by one or more premises, and the inference that connects claim and premises.

Argumentation mining includes several sub-tasks, spanning from claim
and evidence detection (i.e., the identification of argument components), to
attribution (i.e., detection of the authorship of an argument), to increasingly
challenging tasks such as the prediction of the relations between arguments
(argument structure prediction), the inference of implicit argument compo-
nents (enthymemes), and so forth. Figure 3 offers an example of a possible
output produced by an argumentation mining system.

One such system is Mining ARGuments frOm Text (MARGOT) [41].
MARGOT exploits a combination of ML and natural language processing
techniques in order to perform argumentation mining on unstructured texts
of various genres. In particular, MARGOT exploits a Support Vector Ma-
chine (SVM)-based method for context-independent claim detection [42] us-
ing tree kernels, and extends its application to evidence detection, and to the
identification of their boundaries.

The initial version of MARGOT follows a pipeline of subsequent stages, by
initially segmenting the text into sentences, then performing the detection of

9

argumentative sentences, that is sentences that include argument components
(claims or evidence), and finally identifying the boundaries of each argument
component. The current MARGOT prototype [43], also available as a web
server,1 adopts the “traditional”, sequential architecture. It analyzes each
input sentence individually, thereby processing the document as a whole in a
sequential manner, in order for each sentence to undergo all the subsequent
steps of the pipeline. It does not address argument structure prediction. It is
worthwhile noticing that MARGOTs training phase is executed offline, once
and for all. It results in two trained models, one for claim detection and one
for evidence detection, which are then deployed for use of the online server.

In this work, taking MARGOT as a case study, we present a more ad-
vanced version of the system, where the claim and evidence detection stage
is followed by the application of a further SVM-based step, aimed to detect
the existing support links between all possible pairs of claims and evidence
found in each document. The offline training of this additional stage resulted
in a third model, which was deployed for our experimental analysis.

Following the model introduced in Section 3, we describe MARGOT’s
pipeline as composed of two subsequent phases. A first phase, shown in Fig-
ure 4, processes each sentence of the input file using the Stanford Parser [44],
a largely successful third-party software package. MARGOT uses the Stan-
ford Parser to obtain a first set of features, that is, the trees encoding the

1See http://margot.disi.unibo.it

Figure 4: The pipeline of steps implemented in MARGOT

10

http://margot.disi.unibo.it

grammatical structure of a sentence, known in the literature as constituency
parse trees. From the same sentence, MARGOT also extracts the bag-of-
words feature vector, which represents a binary encoding of its words. The
two sets of features are passed on to two different classifiers employing the
SubSet Tree Kernel (SSTK). The aim of these classifiers is to identify claims
and evidence, respectively. All and only the sentences containing the identi-
fied claims/evidence are then sent to the second phase of the pipeline, which
considers all the possible (claim, evidence) pairs in each file and calls an-
other SVM-based classifier to detect the possible links between the two (link
detection).

Given the complexity of the analysis to be carried out, especially when
large files are mined, the sequential execution of MARGOT’s pipeline can be
highly time- and resource-consuming. The problem is exacerbated when the
number of arguments detected in the first phase is large, since this entails to
consider, for each input file, the Cartesian product of large sets of the detected
premises and claims. Furthermore, as we envisage the future necessity of
argumentation mining analysis as a service, it is likely that such a service
would be required to consider streams of input text instead of documents
already materialized in a certain disk location. The run-time nature of stream
processing further amplifies the need for scalable and reliable architectures
to support argumentation mining as a service.

Nonetheless, as prescribed by the general model in Figure 1, the parser
and the feature extractor of the first phase can process each sentence indepen-
dently from the others, whereas the Cartesian product in the second phase
operates as a pair-wise sentence aggregator. This observation suggests a way
to distribute the computational load of MARGOT’s pipeline on a network of
computing nodes, leveraging a MapReduce-oriented approach and an engine
for large-scale batch and stream processing.

5. A Parallel Architecture

Among the existing variety of MapReduce-oriented engines for large-scale
data processing, some offer the possibility to analyze batches of documents
already materialized in a certain location [45]; others only deal with the
processing of data flows [5, 46, 47]; whereas a restricted number offer the
possibility – particularly desirable for the current work – to operate on both
batches and streams [6, 7]. For the purposes of this work, and without loss
of generality, we will describe how MARGOT can be re-implemented to be

11

automatically executed on a distributed infrastructure using the facilities
provided by Apache Spark [7]. Apache Spark has become increasingly popu-
lar in the last years also because it allows a developer to write her application
in several different languages, without forcing her to think in terms of only
map and reduce operators. Its good performance [48, 49, 50] and resilience
to faults [51] has been empirically verified by various studies. We will first
consider the case of large batches of input documents, and later refine the
algorithm in order to accommodate streams as well.

5.1. MARGOT for batch processing

In case of batch processing, all the documents to be analyzed are already
present in a certain (centralized or distributed) disk location, and the data
analytics infrastructure is in charge of spreading (and balancing) the compu-
tation load on the available nodes.

As Figure 5 illustrates, in the first phase of MARGOT’s pipeline the files
to be analyzed are split into sentences. A collection of (key, value) pairs is
thus produced, where the key is the file name and the value is the sentence
found.

Then, the core operations of the first phase are performed on each sen-

Figure 5: Distributed version of the first phase of MARGOT, working on batch input.

12

tence independently by applying a map function. This operation extracts
the parse tree and the bag-of-words feature vector, and passes them in input
to two third-party classifiers that emit, for each sentence, a claim and an
evidence score, respectively. As these functions require sizable models (the
parsing model, the stemmed dictionary and the claim/evidence models) to
operate on each sentence, we apply the general suggestion of loading such
models once at the beginning of the computation. The objects produced
are sent to all the computing nodes, by leveraging the concept of broadcast
variable offered by Apache Spark i.e., an immutable shared variable which
is cached on each worker node of the Spark cluster. The output of the map
function is again a (key, value) pair with the same key (the file name), but
with the values (which hosted just the sentence in the input) now enriched
by the phrase feature vector, claim and evidence score.

Finally, two filters are applied to select only claims and premises. Indeed,
two different collections of pairs are produced: one containing elements with
positive claim score, and another with positive evidence score.

The details of the first phase implementation on a distributed MapReduce-
oriented platform are presented in Listing 1 following an Apache Spark-
inspired approach with lambda functions. It is worthwhile underlining that,
since the SVM-based classifiers are realized by third-party C software [52]
that cannot be directly converted into a Spark broadcast variable, we at-
tempt to minimize the initial overhead of loading these external software
by resorting to a mapPartitions function. Differently from map and
mapValues functions, which are executed for each sentence (as in line 10),
mapPartitions operates on a collection of sentences, which is a partition
of the whole sentences in the input files. The size of this partition is optimized
by the underlying infrastructure, based on the number of available cores. As
a consequence, the call to external SVM-based classifiers and the loading of
the models in lines 16 and 17 is not repeated for each sentence (which would
be highly inefficient) but for each group of sentences the infrastructure has
partitioned the input in. We shall remark that this solution could be applied
to other MLaaS applications too, in order to deal with the frequent challenge
of reducing the overhead of third-party software invocation.

Since the result of mapPartitions is later accessed by two different
filters, cluster-wide caching (line 29) is employed to avoid a duplicated com-
putation of the same mapPartitions stage.

The collections computed during the first phase are then merged together
in the second phase of MARGOT, as shown in Figure 6. In particular, a

13

Listing 1: Distributed implementation of MARGOT’s first phase (batch mode).

Input: inputDir /∗directory containing the input documents∗/, stanfordModel /∗model for the
Stanford Parser∗/, stemmedDict /∗dictionary of stems for feature extraction∗/, claimModel,
evidenceModel /∗SVM classification models∗/

Output: claims, evidence /∗sentences containing claims/evidences∗/
1 stanfordParser = LexicalizedParser.loadModel(stanfordModel)
2 sparkContext.broadcast(stanfordParser)
3 sparkContext.broadcast(stemmedDict)
4 sparkContext.broadcast(claimModel)
5 sparkContext.broadcast(evidenceModel)
6 phrases = sparkContext
7 .wholeTextFiles(inputDir) //emit (fileName,fileContent) pairs
8 .flatMapValues(fileContent =>
9 fileContent.split(“[.!?]”)) //split into sentences and emit (fileName,sentence) pairs

10 .mapValues(sentence => {
11 tree = stanfordParser.apply(sentence) // generate parsing tree
12 fv = FeatureExtractor
13 .createBagOfWords(tree,dmStemmed) // generate feature vector
14 (sentence, tree, fv) })
15 .mapPartitions((partition) => {
16 svmC = SvmClassify.load(claimModel)
17 svmE = SvmClassify.load(evidenceModel)
18 outList = List()
19 l = partition.toList
20 l.foreach(x => { //compute claim and evidence score of each sentence in partition
21 filename = x._1
22 sentence = x._2._1
23 tree = x._2._2
24 fv = x._2._3
25 claimScore = svmC.getScore(tree, fv)
26 evidScore = svmE.getScore(tree, fv)
27 outList=(filename,(sentence,fv,claimScore,evidScore))::outList })
28 outList.iterator }) //emit a partition with the elements of the novel list
29 .cache
30 claims = phrases.filter(_._2._3>0) //only sentences with claimScore > 0
31 evidence = phrases.filter(_._2._4>0) //only sentences with evidScore > 0

14

Figure 6: Distributed version of the second phase of MARGOT, working on batch input.

distributed join operation is performed, to obtain a collection of all the
possible (claim,evidence) pairs in each file. The subsequent map function
considers each pair individually. Indeed, parallelizing the steps following the
aggregation – whenever possible – should help to speed up the computation.
Inside each map function, the link model and the pair of feature vectors
in each record are employed by a third-party SVM-based classifier to pre-
dict a link score, indicating whether the claim and evidence in each pair
are linked. As reported in Listing 2, similarly to claim/evidence detection, a
mapPartitions function (line 11) is actually performed at this stage, aim-
ing to minimize the initial overhead of loading the external software. Finally,
only elements with positive link scores are maintained (line 37 of Listing 2),
as these represent the final output of the argumentation mining algorithm.

5.2. MARGOT for stream processing

The distributed algorithm presented in the previous subsections can ac-
commodate streams of input text after only minor modifications. In par-
ticular, those operations conducted on each sentence independently, such as
map and filter, can be performed on streams and batches alike, whereas the
semantics of functions that merge together different collections of key-value
pairs, such as the join operation in the second phase of the pipeline, needs
further refining for stream processing.

15

Listing 2: Distributed implementation of MARGOT’s second phase (batch mode).

1 Input: claims, evidence /∗sentences containing claims/evidences∗/, linkModel /∗SVM
classification model∗/

2 Output: links /∗ (claim,evidence) pairs containing an argumentative link∗/
3
5 sparkContext.broadcast(linkModel)
7 pairs = claims.join(evidence)
9 links = pairs

11 .mapPartitions((partition) => {
13 svmL = SvmClassify.load(linkModel)
15 outList = List()
17 l = partition.toList
19 l.foreach(x => { //compute link score of each sentence in partition
21 filename = x._1
23 claim = x._2._1._1
25 evid = x._2._2._1
27 fvC = x._2._1._2
29 fvE = x._2._2._2
31 linkScore = svmC.getScore(fvC, fvE)
33 outList = (filename, (claim, evid, linkScore)) :: outList })
35 outList.iterator })
37 .filter(_._2._3>0) //only pairs with linkScore > 0

Link detection on a batch of documents implicitly entails a natural defi-
nition of “scope” which corresponds with the document at hand. Input files
should thus be considered independently, so as to identify the claims and
evidence therein, enabling link detection on a per-file basis, as shown in the
previous section. When dealing with a stream of data instead, two different
semantics for link detection are possible.

• Scope file pairing: if the stream itself contains the indication of the
input file transmitted, we might be asked to pair claims with evidence
in each file, with a semantics similar to the one adopted for batch pro-
cessing, thus keeping track of the currently identified claims/evidence
in each file along the stream.

• Scope window pairing: if there is no explicit or implicit concept of
document/file, a natural choice would be to detect the links on a sliding
window of sentences in the input stream, that is, to find a connection
between claims and evidence separated by at most n other sentences
in the stream. This sort of “locality principle” especially holds true in
such contexts as argumentation mining, where claims and supporting
evidence are typically near to each other in the input text [53].

16

Listing 3: Distributed implementation of MARGOT’s second phase (streaming mode).

Input: claims, evidence /∗sentences containing claims or evidences∗/, linkModel /∗SVM
classification model∗/, mode /∗file−wise or window−wise∗/, winDim /∗dimension of the join
window for window−wise link detection∗/

Output: links /∗ (claim,evidence) pairs containing an argumentative link∗/

5 if (mode==file−wise){
7 //join all claims and evidences in each file
9 claimsCollection = claims

11 .updateStateByKey(updateClaimCollection) //emits a stateful collection of all the claims
encountered since the beginning of the streamed document

13 pairs=claimsCollection.join(evidence)
15 }else{
17 //join on a specific window dimension
19 pairs = claims
21 .window(winDim)
23 .join(evidences.window(winDim))
25 }
27 links = pairs
29 .mapPartitions((partition) => {
31 svmL = SvmClassify.load(linkModel)
33 outList : List[(String, (String, String),Double)] = List()
35 l = partition.toList
37 l.foreach(x => { //compute link score of each sentence in partition
39 filename = x._1
41 claim = x._2._1._1
43 evid = x._2._2._1
45 fvC = x._2._1._2
47 fvE = x._2._2._2
49 linkScore = svmC.getScore(fvC, fvE)
51 outList = (filename, (claim, evid, linkScore)) :: outList })
53 outList.iterator })
55 .filter(_._2._3>0) //only pairs with linkScore > 0

The implementation of the second phase of MARGOT for stream pro-
cessing, presented in Listing 3 enables our system to accommodate both
semantics. We do not report the details of the first phase, since it is rather
similar to that of batch processing.

To perform link detection on a sliding window of the input stream (lines 17
to 23), the flows of claim and evidence collections are sliced using a basic
window operation before performing the join. In this way, only the claims
and evidence inside each window are paired. To perform link detection with
scope file, instead, a stateful operation is performed to maintain a growing
collection of claims encountered in each streamed file (line 11). This set of
past claims is joined with each new evidence detected in the stream (line 13).

17

6. Empirical Analysis

The objective of the analysis we are going to discuss here is gaining a
quantitative understanding of the performance enhancement that can be ob-
tained when a ML task is distributed on a network of computing nodes.
We are not interested here in evaluating the accuracy of the ML methods
themselves, since that measure would be independent of the architecture be-
ing parallel or otherwise, and anyway it has been studied in previous works
[41, 42]. Indeed, MARGOT here works as a case study for investigating
the scalability of a MLaaS application, in case of both batch and stream
processing.

6.1. Simulation setup

We evaluate the performance of the proposed distributed system for argu-
mentation mining on a cluster of 126 physical nodes. One of these machines,
configured as a Spark master, coordinates the work of the others 125 slaves.
All the computers are equipped with 8 CPUs, 16GB of RAM, and a 400GB
hard disk. The nodes are interconnected by a 100Mbit/s bandwidth local
network. We evaluate the distributed version of MARGOT on a collection
of input files downloaded from the Project Gutenberg web site.2 As we need
to operate on texts containing a significant number of claims and evidence,
common novels are not suitable as input. We therefore restrict our atten-
tion to essays in English language. The considered dataset includes 50 files,
yielding 466,483 total sentences. The complete source code of the distributed
version of MARGOT is available on GitHub [54].

6.2. Evaluation approach

We run separate experiments to evaluate the performance of the system
in the two execution modes: with batch input documents and text streams.

To investigate batch processing, we stored the documents downloaded
from Project Gutenberg into a Hadoop Distributed File System (HDFS)
[55], which automatically slices and distributes the files on the network of
computing nodes. When studying the system for stream processing, instead,
we must consider an input flow of text with a certain rate, measured in
bytes per second. In that case, it is crucial for the system to be able to
perform all the steps in the pipeline, while keeping up with the input rate.

2https://www.gutenberg.org

18

https://www.gutenberg.org

If the computation is slower than the input flow, not only will the system
introduce an increasing delay in the time to emit the output, but also the
buffer area employed by Spark to temporarily store the data waiting to be
analyzed may eventually become saturated. The Spark Streaming module
treats the flow by periodically slicing it into portions called micro-batches,
which are later distributed on the network and separately processed on each
node. The period of micro-batch slicing is a configurable parameter. As a
general recommendation large micro-batch period helps to keep up with high
input rates at the price of an increased latency in the results. Because our
goal is not to evaluate the performance of the Spark Streaming’s micro-batch
processing mechanism, but to evaluate the scalability of the system, we fixed
the batch time to 100 seconds for all the tests on streams.

Real-world stream processing services usually experience increases and
decreases of the input rate over the day. In order to evaluate the proposed
MLaaS application we progressively increase the input rate during each test,
so as to identify the maximum input rate that the system can sustain before
it starts falling behind.

In both streaming and batch cases, we conduct three scalability tests:

• Test 1 – experiment with increasing input size (i.e., increasing file di-
mension for batches, and larger window for streams). The objective is
to determine the scalability of the overall MLaaS application.

• Test 2 – experiment with increasing number of (key, value) pairs emit-
ted by the first phase (i.e., the number of emitted claims and evidence
that would be later joined and processed in the second phase). The
objective is to study the effect of the aggregation step bottleneck on
the performance.

• Test 3 – experiment with increasing number of support vectors in the
employed SVM model. The objective is to study the impact of compu-
tationally demanding ML tasks.3

We shall remark that Tests 1 and 2 are independent of the specific ML ap-
plication considered, whereas Test 3 has been specifically conceived in the
context of MARGOT, because it is strictly related to the kind of operations

3Because the features of each sentence must be compared with all the vectors, it is
well-known that for an SVM classifier larger models yield longer computation times.

19

Dataset Sentences Claims Evidence Links

DS1 9,783 1,244 2,739 4,489
DS2 67,917 8,050 16,267 9,827
DS3 233,254 13,597 76,173 29,027
DS4 466,483 27,193 152,345 58,464

Table 1: Details of the datasets employed in batch processing evaluation of Figure 7a

conducted in its pipeline. However, it is of general interest, since SVM classi-
fiers are widely popular due to their excellent performance in a large variety
of tasks.

6.3. Results

Concerning Test 1, Figure 7 illustrates the scalability of the distributed
system by increasing amounts of input data. In particular, the plot on the
left (Figure 7a) shows the time required to process datasets of different size
using batch processing with increasing numbers of computing nodes. The
size of datasets are reported in Table 1.

As desired, the total execution time greatly benefits from the introduction
of additional nodes. The most significant improvements are observed between
1 and 50 nodes. After 50 nodes, the cost of distributing the tasks on the
network balances off the benefits yielded by the additional computational
resources. Furthermore, when dealing with small input files such as the

(a) (b)

Figure 7: System performance by varying size/rate of the input, and computing nodes.
Batch mode (left) and stream mode (right).

20

“DS1” series, a slight performance loss is observed as the number of nodes
increases from 25 to 50 and above. That could be the effect of the overhead
generated by partitioning and distributing in the network small amounts of
data.

The other plot (Figure 7b) illustrates the system’s performance with text
streams. The y-axis reports the maximum input rate in bytes per second that
the system can tolerate without falling behind. The graph has been plotted
by periodically increasing the input rate and checking when the process-
ing time of each micro-batch in the stream started to exceed the configured
micro-batch period. Hence, the higher is the curve in the figure, the better is
the system performance. We have made several experiments by varying the
windows size. For example, with w = 5, 000s we indicate the performance
of the system when claims and evidence are joined over a window of 5,000
seconds, that is fifty times bigger than the micro-batch period. In this case,
when employing 125 nodes, the system cannot keep up with an input fre-
quency higher than 600 bytes/s. If we assume the average sentence length to
be 200 characters, this means that the system cannot process more than 3
sentences per second. Although such a performance may seem unimpressive
at a first glance, we should consider the sheer number of claim/evidence pairs
to be analyzed by the link classifier. In particular, with a 600 bytes/s input
rate and a 100s micro-batch period, a 5,000 seconds window contains around
15,000 sentences.

Figure 7b also reports the performance in the “scope-file” series, when

(a) (b)

Figure 8: Scalability of the system by increasing amount of (key, value) pairs emitted by
the first phase. Left: batch processing; right: stream processing.

21

(a) (b)

Figure 9: System performance by varying complexity of the model. Left: batch processing;
right: stream processing.

Model Dimension (MB) Support Vectors

M1 6.7 7,085
M2 17.3 18,604
M3 29.9 30,363

Table 2: Details of the model employed in Test 3

no window is employed, but instead the claim/evidence join is executed on a
per-file basis. The performance are worse than those obtained with a window
of size 100s (up to around 900 sentences per window processed on 125 nodes)
and better than 1,000s (around 72,000 sentences per window). As the average
number of sentences in each file is 9,000, the position of the “scope-file” curve
between series “w=100s” and “w=1,000s” appears reasonable.

Figure 8 illustrates the results of Test 2. In order to obtain different
amounts of elements to be analyzed in the second phase, in Test 2 we arti-
ficially varied the filtering thresholds that MARGOT uses to identify claims
and evidence at the end of the first phase. The names of the series (5%,
35%, 65% and 90%) report the percentage of input sentences that reach the
second phase. As expected, both batch (Figure 8a) and stream (Figure 8b)
processing reveal a significant effect of this parameter on the processing time
and the maximum input rate. This confirms the bottleneck effect of the
aggregation step in the ML pipeline. Nonetheless, the scalability trend is
evidently maintained for all the series in the graphs.

22

Figure 9 illustrates the results of Test 3, whose aim was to study the
impact of the number of support vectors in the link prediction model on the
system’s performance. Table 2 summarizes the details of each model.

As the SVM classifier checks the features of each (claim,evidence) pair
with all the support vectors in the model, one could imagine that larger mod-
els cause longer computation times. Instead, rather surprisingly, we observed
that the effect of this parameter on the overall batch (Figure 9a) and stream
processing (Figure 9b) performance is insignificant and that scalability is not
visibly affected.

7. Discussion

Our empirical analysis indicates a promising scalable behaviour in all the
considered scenarios. In addition, our study was instrumental in identifying
challenges and opportunities that could arise in general from the paralleliza-
tion of other ML services.

7.1. Challenges of ML pipeline parallelization

Independently of the particular ML application, the implementation of
the pipeline initially depicted in Figure 1 on a network of cooperating com-
puting nodes presents three major architectural and technological challenges.
First of all, while the first phase enjoys the benefits of a highly parallelizable
structure, the aggregation step in the second phase needs careful considera-
tion, to prevent it from turning into a bottleneck. Indeed, combining several
records together is an expensive operation in distributed environments be-
cause it causes massive data shuffle over the network. This is actually a
known issue for many MapReduce applications. In case of MLaaS, it may be
crucial to apply, if possible, a filtering operation aimed to reduce the input
space for the aggregation function. For instance, one could anticipate some
steps that conceptually may belong further down in the pipeline, in an effort
to narrow down the data emitted at the end of the first phase.

A second challenge has to do with the trained model supervised or semi-
supervised ML applications commonly use in order to process the input data
and provide predictions. When a distributed engine is employed, each com-
puting node must be provided a copy of such a model alongside with the input
data. However, depending on the application and the underlying ML tech-
nologies, the dimension of the trained model can be significant. Nonetheless,
if the learning process is not continuous, meaning that the model evolution is

23

limited to the training phase, such a model is stable during the whole predic-
tion process. Accordingly, the model could be distributed to all computing
nodes at the beginning of the computation once and for all (e.g., thanks to
mechanisms such as the broadcast variables of Apache Spark), and then em-
ployed by each node independently to process/filter its portion of the input.

A final technological challenge has to do with the third-party software ML
applications often employ at different stages of the pipeline. The integration
of third-party methods into the framework of a distributed data processing
engine might not be a straightforward operation. Ad-hoc solutions (such as
Spark’s mapPartitions) might be required, for instance, to limit the number
of calls to external processes executing the third-party software.

7.2. Other aspects of MLaaS on large-scale data processing engines

The implementation of MLaaS on large-scale data processing engines not
only offers architectural and technological challenges, but it also often re-
quires making some detailed choices whose impact on the performance of the
offered service may be crucial. For example, although the aggregation step of
the second phase works by collecting together the output of the previous pro-
cessing, performing the subsequent processing/filtering step on a single node
is not mandatory, and indeed it is generally worth avoiding. If a certain de-
gree of parallelism is possible (because for example the instances emitted by
the aggregation step can be considered independently for one another, as was
for MARGOT’s claim/evidence pairs), a good practice would be to split the
second phase too into tasks that can be carried on concurrently. Modern big
data analytics engines support the implementation of distributed programs
not strictly limited to a map and a reduce phase. More complex variants
and combinations of the two are possible. As far as MLaaS is concerned, a
further map step following the aggregation could contribute to boosting the
performance of the second phase.

Furthermore, when the processing/filtering steps involve a large trained
model, the task of loading such model can be time consuming and should
be performed carefully. Consider for example a natural language processing
system whose first phase classifies the sentences of a text according to the
features of a large trained model. In such a system it is certainly not rec-
ommended to load the model for each sentence. A much preferable solution
would be to load the model once, and then use it to analyze a consistent num-
ber of phrases together. Nonetheless, grouping too many sentences together
reduces the degree of parallelism of the pipeline step, thus slowing down the

24

computation. Depending on the specific predictive task to be carried out
and on the degree of parallelism allowed by the underlying infrastructure, a
trade-off must be found between the need to avoid unnecessarily repeating
costly operations (such as model loading) and that of splitting the work to
speed up the computation.

A similar conundrum regards the features extracted from the input data
which might be used in multiple subsequent steps of the pipeline. Feature
extraction may be a costly operation, in which case it would be worthwhile
performing it only once, and then hand over the features to the following
steps until they are no longer needed. This is indeed the solution adopted
by MARGOT, where the features extracted in the first phase are passed
along the pipeline together with the relevant sentence. However, one must
consider that between each pair of steps of the pipeline a data shuffle over the
network might occur. Therefore, if feature extraction produces large outputs,
the shuffling of such data on a network with limited bandwidth might cause
poor performance. In these cases, there is a trade-off to consider, between
recomputing large features when needed and shuffling them between nodes.

Finally, a common feature of MLaaS applications is the requirement to
accommodate a variety of input modes, in particular document batches and
data streams. From a developer’s standpoint, a shift of perspective is un-
avoidable when passing from a ML application working on input files that are
already materialized and stored in a specific location (i.e., batch processing)
to the analysis of a flow of input data (i.e, stream processing). Nonetheless,
some relatively recent MapReduce-oriented platforms [6, 7] allow this shift at
the price of slight changes in the application implementation. Since the first
phase of our reference ML pipeline operates in theory on each input instance
independently, it could operate on batches and streams alike. The second
phase instead is likely to be dependent on the input mode, because it focuses
on the aggregation and processing of the previous step’s output. Indeed, for
stream processing aggregation entails the need to specify not only the col-
lections of data to be merged, but also the period over which such operation
must be performed. For example, aggregation could be based on the last n
occurrences in the flow, on a specific time window, or on all the data received
so far. Each option would have a different meaning from the others and may
produce completely different results. In the case of batch processing, instead,
the aggregation task has a less varied range of semantics, because there are
no concepts like “time window” or “arrival instant” of an input entry.

25

8. Conclusions

A growing number of ML applications are being deployed as ready-to-
use, already trained services for the end-users. This calls for implementing
distributed architectures able to scale up such services to broader user com-
munities, and larger data collections.

In this paper, we presented a distributed architecture inspired by the
MapReduce paradigm, which could be used to parallelize the prediction phase
of a typical ML pipeline. We conducted experimental results on a real-world
text mining application case study. We also discussed how the methodology
is general enough to be applied to many other different scenarios. We con-
sidered both batch and stream processing, and studied the performance gain
that can be achieved by this architecture under many angles.

An interesting open challenge is how to effectively extend this architec-
ture to accommodate ML applications dealing with structured data, such
as sequences, trees, and graphs. In that case, since the relations between
the input data are as relevant as the data themselves, it is unlikely that the
first phase could be implemented through a simple split operation, followed
by independent map processes. Instead, we expect that a more elaborated
slicing procedure would be needed at the beginning of the pipeline, in or-
der to correctly partition the data across the nodes. A technique used to
achieve a desired level of parallelism with input sequences of data in another
application domains involved data replication [27]. The idea was to divide
sequences into slices and replicating the data on the extremities, before as-
signing each slice to a different nodes. The identification of patterns for the
split step that can be applied and reused in case of more elaborated input
structures would be an interesting subject for future investigation. An even
more challenging setting would be the case where the input data has a highly
connected structure, hindering any kind of split and re-partition of the work.
Then a completely different approach could be explored: instead of slicing
the data, one could provide each node with the whole dataset, but only a
portion of the trained model. In this way, each machine of the distributed
architecture could conduct a lightweight prediction analysis on all the input.
Like in the pipeline described in this work, the results of those analyses will
have to be conveniently aggregated in the following phase.

Acknowledgements

This work has been partially supported by the H2020 Project AI4EU (g.a.

26

825619).

References

References

[1] T. J. Sejnowski, The deep learning revolution, MIT Press, 2018.

[2] M. Ribeiro, K. Grolinger, M. A. Capretz, Mlaas: Machine learning as a
service, in: Machine Learning and Applications (ICMLA), 2015 IEEE
14th International Conference on, IEEE, pp. 896–902.

[3] Y. Yao, Z. Xiao, B. Wang, B. Viswanath, H. Zheng, B. Y. Zhao, Com-
plexity vs. performance: empirical analysis of machine learning as a
service, in: Proceedings of the 2017 Internet Measurement Conference,
ACM, pp. 384–397.

[4] J. Dean, S. Ghemawat, MapReduce: Simplified data processing on large
clusters, in: E. A. Brewer, P. Chen (Eds.), 6th Symposium on Oper-
ating System Design and Implementation (OSDI 2004), San Francisco,
California, USA, December 6-8, 2004, USENIX Association, 2004, pp.
137–150.

[5] Apache Storm, http://storm.apache.org (accessed June 1,
2020), 2020.

[6] Apache Flink, https://flink.apache.org (accessed June 1,
2020), 2020.

[7] Apache Spark, http://spark.apache.org (accessed June 1, 2020),
2020.

[8] L. E. Li, E. Chen, J. Hermann, P. Zhang, L. Wang, Scaling machine
learning as a service, in: International Conference on Predictive Appli-
cations and APIs, pp. 14–29.

[9] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large
clusters, Commun. ACM 51 (2008) 107–113.

27

http://storm.apache.org
https://flink.apache.org
http://spark.apache.org

[10] S. Chan, T. Stone, K. P. Szeto, K. H. Chan, Predictionio: a distributed
machine learning server for practical software development, in: Q. He,
A. Iyengar, W. Nejdl, J. Pei, R. Rastogi (Eds.), 22nd ACM International
Conference on Information and Knowledge Management, CIKM’13, San
Francisco, CA, USA, October 27 - November 1, 2013, ACM, 2013, pp.
2493–2496.

[11] A. Baldominos, E. Albacete, Y. Sáez, P. Isasi, A scalable machine learn-
ing online service for big data real-time analysis, in: 2014 IEEE Sympo-
sium on Computational Intelligence in Big Data, CIBD 2014, Orlando,
FL, USA, December 9-12, 2014, IEEE, 2014, pp. 112–119.

[12] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, I. Stoica, Im-
proving mapreduce performance in heterogeneous environments, in:
R. Draves, R. van Renesse (Eds.), 8th USENIX Symposium on Oper-
ating Systems Design and Implementation, OSDI 2008, December 8-10,
2008, San Diego, California, USA, Proceedings, USENIX Association,
2008, pp. 29–42.

[13] D. Cheng, J. Rao, Y. Guo, C. Jiang, X. Zhou, Improving performance
of heterogeneous mapreduce clusters with adaptive task tuning, IEEE
Trans. Parallel Distrib. Syst. 28 (2017) 774–786.

[14] G. Antoniu, A. Costan, J. Bigot, F. Desprez, G. Fedak, S. Gault,
C. Pérez, A. Simonet, B. Tang, C. Blanchet, R. Terreux, L. Bougé,
F. Briant, F. Cappello, K. Keahey, B. Nicolae, F. Suter, Scalable data
management for map-reduce-based data-intensive applications: a view
for cloud and hybrid infrastructures, IJCC 2 (2013) 150–170.

[15] F. J. Clemente-Castelló, B. Nicolae, K. Katrinis, M. M. Rafique,
R. Mayo, J. C. Fernández, D. Loreti, Enabling big data analytics in
the hybrid cloud using iterative mapreduce, in: [56], pp. 290–299.

[16] D. Loreti, A. Ciampolini, Mapreduce over the hybrid cloud: A novel
infrastructure management policy, in: [56], pp. 174–178.

[17] D. Loreti, A. Ciampolini, A hybrid cloud infrastructure for big data ap-
plications, in: 17th IEEE International Conference on High Performance
Computing and Communications, HPCC 2015, 7th IEEE International
Symposium on Cyberspace Safety and Security, CSS 2015, and 12th

28

IEEE International Conference on Embedded Software and Systems,
ICESS 2015, New York, NY, USA, August 24-26, 2015, IEEE, 2015, pp.
1713–1718.

[18] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, K. Olukotun,
A. Y. Ng, Map-reduce for machine learning on multicore, in: Advances
in neural information processing systems, pp. 281–288.

[19] A. Sergeev, M. D. Balso, Horovod: fast and easy distributed deep learn-
ing in tensorflow, CoRR abs/1802.05799 (2018).

[20] TensorFlow, https://www.tensorflow.org (accessed June 1,
2020), 2020.

[21] H. Tamano, S. Nakadai, T. Araki, Optimizing multiple machine learning
jobs on MapReduce, in: Cloud Computing Technology and Science
(CloudCom), 2011 IEEE Third International Conference on, IEEE, pp.
59–66.

[22] H. Assem, L. Xu, T. S. Buda, D. OSullivan, Machine learning as a service
for enabling internet of things and people, Personal and Ubiquitous
Computing 20 (2016) 899–914.

[23] D. Xu, D. Wu, X. Xu, L. Zhu, L. Bass, Making real time data analytics
available as a service, in: Quality of Software Architectures (QoSA),
2015 11th International ACM SIGSOFT Conference on, IEEE, pp. 73–
82.

[24] D. Harnie, M. Saey, A. E. Vapirev, J. K. Wegner, A. Gedich, M. Stei-
jaert, H. Ceulemans, R. Wuyts, W. De Meuter, Scaling machine learning
for target prediction in drug discovery using apache spark, Future Gen-
eration Computer Systems 67 (2017) 409–417.

[25] L. Hanzlik, Y. Zhang, K. Grosse, A. Salem, M. Augustin, M. Backes,
M. Fritz, Mlcapsule: Guarded offline deployment of machine learning
as a service, arXiv preprint arXiv:1808.00590 (2018).

[26] D. Loreti, F. Chesani, A. Ciampolini, P. Mello, Distributed compli-
ance monitoring of business processes over MapReduce architectures,
in: W. Binder, V. Cortellessa, A. Koziolek, E. Smirni, M. Poess (Eds.),

29

https://www.tensorflow.org
http://arxiv.org/abs/1808.00590

Companion Proceedings of the 8th ACM/SPEC on International Con-
ference on Performance Engineering, ICPE 2017, L’Aquila, Italy, April
22-26, 2017, ACM, 2017, pp. 79–84.

[27] D. Loreti, F. Chesani, A. Ciampolini, P. Mello, A distributed approach
to compliance monitoring of business process event streams, Future
Generation Comp. Syst. 82 (2018) 104–118.

[28] C. D. Manning, C. D. Manning, H. Schütze, Foundations of statistical
natural language processing, MIT press, 1999.

[29] C. Steger, M. Ulrich, C. Wiedemann, Machine vision algorithms and
applications, John Wiley & Sons, 2018.

[30] P. Baldi, S. Brunak, F. Bach, Bioinformatics: the machine learning
approach, MIT press, 2001.

[31] G. L. Ciampaglia, P. Shiralkar, L. M. Rocha, J. Bollen, F. Menczer,
A. Flammini, Computational fact checking from knowledge networks,
PLoS ONE (2015) 1–13.

[32] M. Lippi, G. Contissa, F. Lagioia, H.-W. Micklitz, P. Pa lka, G. Sartor,
P. Torroni, Consumer protection requires artificial intelligence, Nature
Machine Intelligence (2019).

[33] M. Lippi, P. Pa lka, G. Contissa, F. Lagioia, H.-W. Micklitz, G. Sar-
tor, P. Torroni, Claudette: an automated detector of potentially unfair
clauses in online terms of service, 2019.

[34] A. M. Tekalp, Digital video processing, Prentice Hall Press, 2015.

[35] D. Singh, C. K. Reddy, A survey on platforms for big data analytics,
Journal of Big Data 2 (2014) 8.

[36] M. Lippi, P. Torroni, Argumentation mining: State of the art and
emerging trends, ACM Trans. Internet Techn. 16 (2016) 10:1–10:25.

[37] S. Mirkin, G. Moshkowich, M. Orbach, L. Kotlerman, Y. Kantor,
T. Lavee, M. Jacovi, Y. Bilu, R. Aharonov, N. Slonim, Listening com-
prehension over argumentative content, in: Proceedings of the 2018

30

Conference on Empirical Methods in Natural Language Processing, As-
sociation for Computational Linguistics, Brussels, Belgium, 2018, pp.
719–724.

[38] A. Peldszus, M. Stede, From argument diagrams to argumentation min-
ing in texts: A survey, IJCINI 7 (2013) 1–31.

[39] D. N. Walton, What is reasoning? what is an argument?, The Journal
of Philosophy 87 (1990) 399–419.

[40] R. Rinott, L. Dankin, C. A. Perez, M. M. Khapra, E. Aharoni,
N. Slonim, Show me your evidence-an automatic method for context
dependent evidence detection, in: Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pp. 440–450.

[41] M. Lippi, P. Torroni, MARGOT: A web server for argumentation min-
ing, Expert Syst. Appl. 65 (2016) 292–303.

[42] M. Lippi, P. Torroni, Context-independent claim detection for argument
mining, in: Q. Yang, M. Wooldridge (Eds.), Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, July 25-31, 2015, AAAI Press, 2015, pp.
185–191.

[43] Mining ARGuments frOm Text (MARGOT), http://margot.
disi.unibo.it (accessed June 1, 2020), 2020.

[44] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, D. Mc-
Closky, The stanford corenlp natural language processing toolkit, in:
Proceedings of the 52nd Annual Meeting of the Association for Com-
putational Linguistics, ACL 2014, June 22-27, 2014, Baltimore, MD,
USA, System Demonstrations, The Association for Computer Linguis-
tics, 2014, pp. 55–60.

[45] Apache Hadoop, https://hadoop.apache.org/ (accessed June 1,
2020), 2020.

[46] Apache Samza, http://samza.apache.org (accessed June 1,
2020), 2020.

31

http://margot.disi.unibo.it
http://margot.disi.unibo.it
https://hadoop.apache.org/
http://samza.apache.org

[47] Google Cloud Dataflow, https://cloud.google.com/
dataflow/ (accessed June 1, 2020), 2020.

[48] J. Veiga, R. R. Expósito, X. C. Pardo, G. L. Taboada, J. Touriño, Perfor-
mance evaluation of big data frameworks for large-scale data analytics,
in: J. Joshi, G. Karypis, L. Liu, X. Hu, R. Ak, Y. Xia, W. Xu, A. Sato,
S. Rachuri, L. H. Ungar, P. S. Yu, R. Govindaraju, T. Suzumura (Eds.),
2016 IEEE International Conference on Big Data, BigData 2016, Wash-
ington DC, USA, December 5-8, 2016, IEEE, 2016, pp. 424–431.

[49] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holder-
baugh, Z. Liu, K. Nusbaum, K. Patil, B. Peng, P. Poulosky, Benchmark-
ing streaming computation engines: Storm, flink and spark streaming,
in: 2016 IEEE International Parallel and Distributed Processing Sym-
posium Workshops, IPDPS Workshops 2016, Chicago, IL, USA, May
23-27, 2016, IEEE Computer Society, 2016, pp. 1789–1792.

[50] J. Samosir, M. Indrawan-Santiago, P. D. Haghighi, An evaluation of data
stream processing systems for data driven applications, in: M. Connolly
(Ed.), International Conference on Computational Science 2016, ICCS
2016, 6-8 June 2016, San Diego, California, USA, volume 80 of Procedia
Computer Science, Elsevier, 2016, pp. 439–449.

[51] M. A. Lopez, A. G. P. Lobato, O. C. M. B. Duarte, A performance
comparison of open-source stream processing platforms, in: 2016 IEEE
Global Communications Conference, GLOBECOM 2016, Washington,
DC, USA, December 4-8, 2016, IEEE, 2016, pp. 1–6.

[52] A. Moschitti, Efficient convolution kernels for dependency and con-
stituent syntactic trees, in: J. Fürnkranz, T. Scheffer, M. Spiliopoulou
(Eds.), Machine Learning: ECML 2006, 17th European Conference on
Machine Learning, Berlin, Germany, September 18-22, 2006, Proceed-
ings, volume 4212 of Lecture Notes in Computer Science, Springer, 2006,
pp. 318–329.

[53] S. Eger, J. Daxenberger, I. Gurevych, Neural end-to-end learning for
computational argumentation mining, in: R. Barzilay, M. Kan (Eds.),
Proceedings of the 55th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August

32

https://cloud.google.com/dataflow/
https://cloud.google.com/dataflow/

4, Volume 1: Long Papers, Association for Computational Linguistics,
2017, pp. 11–22.

[54] ParallelMargot, https://doi.org/10.5281/zenodo.3251016
(accessed June 1, 2020), 2020.

[55] Hadoop Distributed File System, https://hadoop.apache.org/
docs/r1.2.1/hdfs_design.html (accessed June 1, 2020), 2020.

[56] I. Raicu, O. F. Rana, R. Buyya (Eds.), 8th IEEE/ACM International
Conference on Utility and Cloud Computing, UCC 2015, Limassol,
Cyprus, December 7-10, 2015, IEEE Computer Society, 2015.

33

https://doi.org/10.5281/zenodo.3251016
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

	1 Introduction
	2 Related Work
	3 Prediction as a Service
	4 A Case Study
	5 A Parallel Architecture
	5.1 MARGOT for batch processing
	5.2 MARGOT for stream processing

	6 Empirical Analysis
	6.1 Simulation setup
	6.2 Evaluation approach
	6.3 Results

	7 Discussion
	7.1 Challenges of ML pipeline parallelization
	7.2 Other aspects of MLaaS on large-scale data processing engines

	8 Conclusions

