
Portable exploitation of parallel and heterogeneous HPC
architectures in neural simulation using SkePU

Sotirios Panagiotou
National Technical University of

Athens, Greece
spanagiotou@microlab.ntua.gr

August Ernstsson
Linköping University, Sweden

august.ernstsson@liu.se

Johan Ahlqvist
Linköping University, Sweden

johan.ahlqvist@liu.se

Lazaros Papadopoulos
National Technical University of

Athens, Greece
lpapadop@microlab.ntua.gr

Christoph Kessler
Linköping University, Sweden

christoph.kessler@liu.se

Dimitrios Soudris
National Technical University of

Athens, Greece
dsoudris@microlab.ntua.gr

ABSTRACT
The complexity of modern HPC systems requires the use of new
tools that support advanced programming models and offer porta-
bility and programmability of parallel and heterogeneous architec-
tures. In this work we evaluate the use of SkePU framework in an
HPC application from the neural computing domain. We demon-
strate the successful deployment of the application based on SkePU
using multiple back-ends (OpenMP, OpenCL and MPI) and present
lessons-learned towards future extensions of the SkePU framework.

KEYWORDS
skeleton programming, neural simulation, HPC systems

1 INTRODUCTION
New generation HPC platforms consist of multiple heterogeneous
cores. The end of Dennard scaling points towards more hetero-
geneity at hardware level, further increasing the complexity of
applications. Examples include the upcoming exascale computing
systems in USA and Europe, which will be massively parallel and
highly heterogeneous, by integrating GPUs and various kinds of
accelerators (Multipurpose Processing Array, FPGA, etc.). A recent
trend is the combination of general-purpose CPUs with application-
specific accelerators in large-scale systems. Various HPC applica-
tion domains can benefit from this trend, including simulations and
machine learning.

Programming parallel computing systems and accelerators is
challenging. Effective exploitation of parallel systems requires tak-
ing into consideration synchronization, data locality and memory
management issues, requiring significant programming effort by
developers. With respect to acceleration, each type of accelerator
has its own toolchain and programming model, forcing application
developers to rewrite large parts of the codebase all over for each

accelerator backend. Tools that assist application developers in
the process of exposing parallelization and exploiting accelerators
by reducing the required programming effort are highly desirable.
SkePU1 [10] falls in this category. It is an open-source skeleton pro-
gramming framework for multicore CPUs and multi-GPU systems.
(Algorithmic) skeletons [6] are generic parallelizable high-level pro-
gramming constructs based on higher-order functions such as Map,
Reduce, Stencil or Scan, which model common dependence and data
access patterns and which can be parameterized in problem-specific
sequential code. Skeletons provide a high degree of abstraction and
portability with a quasi-sequential programming interface, as their
implementations encapsulate all low-level and platform-specific
details such as parallelization, synchronization, communication,
memory management, accelerator usage and other optimizations.
Each SkePU skeleton comes with a set of backends targeting the
different supported platforms, including OpenMP (multicore CPU),
OpenCL and CUDA (GPU) and StarPU-MPI (clusters).

Neural simulation, especially biophysically-detailed simulation,
is a HPC application type presenting a very high computational
load, due to both the numerical intensity of the models and the
large space and time scale of the simulations. This immense compu-
tational load is evidently efficiently handled on HPC infrastructure;
the required memory is provided by thousands of nodes, working
in a single cluster [1], and computational performance has been
greatly boosted by manycore [5], GPU [3] and reconfigurable [12]
accelerators.

The insight that makes such massively-parallel implementations
possible is that most parts of the neural network can be simulated
in parallel within a single simulation step. To that end, there is a
rich variety of data-parallel numerical schemes for time-driven sim-
ulation that have been devised since the dawn of supercomputing,
and that also apply to neural simulations.

Computer simulation is a crucial part of the neuroscience re-
search process. Simulation speed is also important on another as-
pect of neuroscience: It constrains the complexity of neuron models
that can be explored. Neural models can only be as large and as wide
in time-scale as they still can be simulated within a practical time-
frame. So, computational performance defines the scale of feasible
neural simulations; more so that even available computer memory
does, due to the high numerical intensity of the calculations.

1SkePU: https://www.ida.liu.se/labs/pelab/skepu



Panagiotou, et al.

This work is about the portable exploitation of HPC parallel
computing systems and accelerators by a neural simulator using the
SkePU programming framework. By using a state-of-the-art high-
level parallel programming framework, such as SkePU, the intra-
node parallelism of the application is exposed and the application
is deployed on a multicore CPU system. Additionally, the single-
node GPU implementation of the application is evaluated. Finally,
by using SkePU, the application is deployed on multiple nodes as
well. Apart from presenting the evaluation results for each backend,
this work also focuses on describing our experiences and lessons
learned by the use of SkePU in the neural simulator.

The rest of the paper is organized as follows: Section 2 introduces
the SkePU programming framework, and gives a short description
of the neural simulator. The experimental results are presented
in Section 3, while in Section 4 we describe our experiences to-
wards possible directions for future extensions of SkePU. Finally,
in Section 5 we draw our conclusions.

2 SKELETON PROGRAMMING, SKEPU AND
BRAIN MODELING APPLICATION

The skeleton programming framework SkePU [10], being devel-
oped at Linköping University, provides a single, sequential-like
programming interface extending modern C++ with data-parallel
skeletons. For each skeleton, implementation variants (backends)
for sequential C++, OpenMP, CUDA and OpenCL are available.
Currently, an additional backend for clusters targeting the MPI
bindings in the task-based StarPU runtime system [2] is being de-
veloped; first results for it are reported in Section 3. In the most
recent version of SkePU, the customization mechanism of skele-
tons by problem-specific user code has recently been generalized to
include externally defined platform-specific custom user functions,
which allow platform-experts to leverage platform-specific SIMD
instructions or special instructions without breaking the universal
portability of the SkePU source code [9]. An independent recent
study confirmed the programmability improvements of SkePU com-
pared to thread-based programming frameworks at insignificant
performance overheads for dataparallel PARSEC benchmarks [8].

Smart data-containers [7] are STL-like C++ data structures such
as Vector and Matrix that wrap array-based operands passed to
and from skeleton instance calls in SkePU code. They allow SkePU
to transparently perform runtime optimizations of data movement
to/from device memories, device memory allocation, and data lo-
cality optimizations across dependent skeleton calls.

The Brain modeling application is a time-driven simulator of bio-
physically detailed, Extended Hodgkin-Huxley (eHH) [11] models
of individual neurons. It is a ground-up new design that focuses on
supporting large-scale networks on HPC infrastructure. It is cur-
rently under development, and aims to support the entire NeuroML
standard [4]. The main features of this type of models are:

• The state variables and parameters involved in the models
correspond directly to electrochemical quantities, such as
membrane potential, concentration of various ions, neuro-
modulators etc. across the neuron.

• The chemical state of a neuron varies across its extent, allow-
ing investigation of how action potentials are propagated

through the dendrites and axon, and how different parts of
a cell have different properties.

Thanks to these properties, the Extended Hodgkin-Huxley neural
models are an effective tool to study the chemistry behind neural
activity, to investigate how the electrochemical dynamics facili-
tate neural computation and to examine the behaviour of neurons
changes under off-nominal physiological factors, such as drug ef-
fects or medical conditions.

3 PARALLELIZATION AND ACCELERATION
OF BRAIN MODELING USING SKEPU

3.1 SkePU applied in Brain modeling
We used SkePU in the brain modeling miniapp, to target multiple
parallelization platforms (single-node OpenMP and OpenCL GPU,
and multi-node MPI+OpenMP). The implementations generated by
SkePU for each target were then evaluated it terms of computational
performance. The original application code, and a basic OpenMP-
enabled version of that code were used as performance baselines.

As a first step for SkePU integration and evaluation, a SkePU
mini-app for the Brain Modeling workload was developed. The
mini-app is the most computationally intensive kernel of the origi-
nal application and simulates a tightly-connected cluster of simi-
lar neurons, which interact with each other through continuous-
time graded synapses. Each neuron is lumped into a single fi-
nite element. The electro-chemical dynamics follow a fixed set
of Hodgkin-Huxley equations for each neuron, which is a com-
mon reference point for biological neural network simulators. The
weight of synapses between neurons is stored on a square matrix,
and simulation of each neuron requires the respective row of a
matrix to estimate the influence of adjacent neurons.

Figure 1: Brain Modeling dataflow

The parallelism inherent in the simulation kernel, and the rele-
vant memory access patterns of the workflow, are demonstrated in
a comprehensive dataflow diagram in Figure 1. Note that V repre-
sents the neuron’s state, and I represents synaptic current between
neurons.

In the span of a simulation step, each individual neuron passes
through two main stages of processing:

• The first stage is, for a given neuron, to calculate the to-
tal synaptic electrical current, flowing from other neurons
connected to this neuron.

• The second stage is to use the total synaptic current, along
with the neuron’s internal electrochemical state and injected
stimulus, to advance the neuron’s state to the next timestep,
according the neuron’s differential equations.



Portable exploitation of parallel and heterogeneous HPC architectures in neural simulation using SkePU

The second part is straightforward to parallelize; computations
for each neuron run independently, and work on separate parts of
data. However, the first part is more challenging to accelerate: to
calculate synaptic current, computation for each neuron needs to
have random access to the state of other neurons. This adds a large
volume of memory traffic to the processing, and asserts the need
for each simulated neuron to have a synchronized view of other
neurons’ states, for each timestep.

The current flow between neurons is modeled by a non-linear
formula for this mini-app. This current is weighted by the corre-
sponding value in weight matrix, and summed for each neuron.

Thus, the synaptic current part of the simulation kernel has a
memory access pattern very similar to the Matrix-Vector Multiplica-
tion linear algebra operation. The differences are that two different
elements of the neuron’s state are used in the inner products with
the matrix weights, and that each inner product is passed through a
non-linear function before summation. These differences preclude
using the common optimized linear-algebra libraries; which un-
derscores the usefulness of a code-transformation middleware like
SkePU, which can automatically synthesize high-performance code
for the case in point.

3.2 Evaluation
The main part of the simulation is a loop: repetitive estimation of the
state of all neurons in the next timestep, until the whole duration of
the simulation is simulated. Estimating each neuron’s state depends
only on the present state of all neurons. Thus, simulation of each
neuron can be performed independently within a single timestep.

In our SkePU-enabled implementation of the miniapp, we lever-
aged the acceleration capabilities of the SkePU framework by ex-
pressing this parallelism of computations per individual neuron.
Simulation of neurons in a timestep is done as a parallel task, with
each work item consisting of the current status of a neuron, and
the code to compute the neuron’s state after the timestep.

Since each neuron is simulated individually, the Map skeleton
was employed. The simulation kernel essentially maps each neu-
ron’s state in the current timestep, to its updated state for the next
timestep. Since neurons communicate with each other through the
connectivity (weight) matrix, both the connectivity matrix and the
neuron state vector were passed as auxiliary read-only arguments,
to be used when simulating each neuron.

Another way to conceptualize the Map skeleton is to consider
how the original pseudocode was transformed, in Figure 2: the outer
loop was converted to a Map kernel invocation, and the code inside
that loop was transferred to the kernel’s inner get_stateNext
function. In the process, the fact that the loop body produces a
single neuron’s updated state is made explicit, since this is the only
value the get_stateNext function produces.

After applying the Map skeleton, we evaluated the SKEPU-ized
miniapp under the OpenMP and OpenCL backends, on a single
node. The node integrates twin Intel Xeon Gold 6138 processors (40
cores, 80 hyperthreads total), a nVidia Tesla V100 GPU(with 32GB
on-board memory) and 128 GB of main system memory. Run times
for various neural network sizes are shown in Figure 3.

The simulations ran for 200 simulation steps of 10 𝜇sec simulated
time. The maximum network size examined was 90000 neurons,

Figure 2: Using SkePU in brain modeling (pseudocode)

Figure 3: Execution time using the OpenMP and OpenCL
backends

Figure 4: Speedup vs. single-threaded miniapp

which fully utilizes the GPU’s memory for all-to-all connectivity.
CPU-based OpenMP acceleration was evaluated under 40 and 80
threads, to assess the effect of hyperthreading on performance.

We observe that the SkePU’s GPU backend outperforms the rest,
reaching a 10x speedup over the best CPU-based implementation,
for up to 40000 neurons. For larger network sizes, GPU performance
starts to degrade down to 3x the speed of the best CPU implemen-
tation. Thus, it is likely some part of the architecture becomes a
system bottleneck for the GPU, and profiling of such cases will help
determine the issue and to incorporate the resulting solution into
SkePU, for general use.

Another observation is that the SkePU-ized OpenMP backend
performs better than the OpenMP backend, when 40 threads are
run and when the network is large. This probably is because the



Panagiotou, et al.

Figure 5: Mini-app using the MPI backend on up to 32 nodes.

SkePU backend uses more aggressive defaults in OpenMP tuning
parameters; the baseline implementation mostly used OpenMP
defaults and did not try optimizing for the miniapp’s case.

Figure 5 shows the scaling behavior of the mini-app for the
StarPU-MPI backend on the CPU cluster Tetralith, using up to 32
nodes each with 32 cores (in 2 Intel Xeon Gold 6130 CPUs) and
96GiB main memory, interconnected by a 100 GiB/s Intel Omni-Path
network (fat-tree), for 90K neurons, 200 time steps and density 0.12.
Here the user function of the Map skeleton uses the new SkePU-3
MatRow proxy of the Matrix data-container for 1D-distributable
matrix operands, which avoids the expensive broadcast commu-
nication pattern that results from using the general Mat container
proxy. We observe that the very good intra-node scaling (using
OpenMP-only up to 32 cores) flattens out with Mat across multiple
nodes but continues with MatRow at only slightly lower slope, and
a speedup of 531x is achieved with 1024 cores (vs. 119x with Mat).

4 DISCUSSION AND LESSONS LEARNED
Portability is an increasingly important quality for HPC applica-
tion developers. In systems with various accelerators, having the
opportunity to evaluate applications in each of them without code
modifications is very important. The SkePU portability feature en-
ables developers to maintain a single application codebase, which
is portable to various systems and platforms.

SkePU fits very well in applications which are dominated by data
parallelism. The Brain Modelling workload is highly data-parallel,
however it presents the following challenges with respect to using
SkePU framework:

The heterogeneity of the equations involved among different
parts of different neurons means that different work items may
use different code kernels to run. At the same time, the formulas
in these equations may change frequently while novel models for
neurons are being developed and evaluated. So for effective use by
neuroscientists, the toolchain and code-generation considerations
of the SkePU package should be encapsulated in a user-friendly
package.

The sparse connectivity between parts of each cell is a common
feature in neural simulation. The random-access considerations and
impact on each hardware backend must be encapsulated and taken
care of by the SkePU package, since the acceleration strategies
crucially depend on the underlying hardware architecture. To that
end, SkePU is being extended with a SparseMatrix data container

with row-compressed storage format, which can then be employed
instead of the dense Matrix container.

The work items to be run in parallel often have irregular cor-
responding data sizes. While an upper limit on such sizes can be
enforced and the extra data size be replaced with dummy compo-
nents, this may not always be the appropriate case for the hardware
backends and it introduces SkePU-specific changes into the original
application.

Finally, using the SkePU-3 MatRow container for distributable
matrix operands was found significant for scaling up to multi-node
or multi-GPU configurations.

5 CONCLUSION
We evaluated the use of an advanced programming framework,
SkePU, in a neural computing application. We demonstrated the
flexibility that SkePU provides: the execution of an application in
different HPC architectures using a single application codebase.
Programming frameworks such as SkePU that express application
parallelism and enable portability across a wide range of different
HPC platforms are very useful for application developers, consider-
ing the complexity of modern HPC applications and architectures.

ACKNOWLEDGMENTS
This work has received funding from the European Union’s Horizon
2020 research and innovation programme, under grant agreement
No. 801015 (EXA2PRO, www.exa2pro.eu). We thank NSC Linköping
and SNIC for access to the Tetralith cluster (SNIC 2016/5-6).

REFERENCES
[1] R. Ananthanarayanan, S. K. Esser, H.D. Simon, and D.S. Modha. 2009. The

Cat is out of the Bag: Cortical Simulations with 109 Neurons, 1013 Synapses. In
Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis.

[2] C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier. 2011. StarPU: A Uni-
fied Platform for Task Scheduling on Heterogeneous Multicore Architectures.
Concurrency Comput.: Pract. Exp. 23 (2011), 187–198. Issue 2.

[3] R. Ben-Shalom, N.S. Athreya, C. Cross, H. Sanghevi, A. Korngreen, and K.J. Bender.
2019. NeuroGPU, software for NEURON modeling in GPU-based hardware.
bioRxiv (2019).

[4] R.C. Cannon, P. Gleeson, S. Crook, G. Ganapathy, B. Marin, E. Piasini, and R.A.
Silver. 2014. LEMS: a language for expressing complex biological models in
concise and hierarchical form and its use in underpinning NeuroML 2. Frontiers
in Neuroinformatics 8 (2014), 79.

[5] G. Chatzikonstantis, H. Sidiropoulos, C. Strydis, M. Negrello, G. Smaragdos,
C.I. De Zeeuw, and D.J. Soudris. 2019. Multinode implementation of an extended
Hodgkin–Huxley simulator. Neurocomputing 329 (2019), 370 – 383.

[6] M. Cole. 2004. Bringing skeletons out of the closet: a pragmatic manifesto for
skeletal parallel programming. Parallel Comput. 30, 3 (2004), 389–406.

[7] U. Dastgeer and C. Kessler. 2016. Smart containers and skeleton programming
for GPU-based systems. Int. J. of Parallel Progr. 44 (June 2016), 506–530. Issue 3.

[8] D. De Sensi, T. De Matteis, M. Torquati, G. Mencagli, and M. Danelutto. 2017.
Bringing Parallel Patterns Out of the Corner: The P3ARSEC Benchmark Suite.
ACM Trans. Archit. Code Optim. 14, 4, Article 33 (2017), 33:1–33:26 pages.

[9] A. Ernstsson and C. Kessler. 2020. Multi-variant User Functions for Platform-
aware Skeleton Programming. In Parallel Computing: Technology Trends, series:
Advances in Parallel Computing, vol. 36. IOS press, 475–484. Proc. of ParCo-2019
conference, Prague, Sep. 2019.

[10] A. Ernstsson, L. Li, and C. Kessler. 2018. SkePU-2: Flexible and Type-Safe Skele-
ton Programming for Heterogeneous Parallel Systems. International Journal of
Parallel Programming 46, 1 (01 Feb 2018), 62–80.

[11] E.R. Lewis. 1966. Neuroelectric potentials derived from an extended version of
the Hodgkin-Huxley model. Journal of Theoretical Biology 10, 1 (1966), 125 – 158.

[12] A. Sripad, G. Sanchez, M. Zapata, V. Pirrone, T. Dorta, S. Cambria, A. Marti,
K. Krishnamourthy, and J. Madrenas. 2018. SNAVA—A real-time multi-FPGA
multi-model spiking neural network simulation architecture. Neural Networks 97
(2018), 28 – 45.


