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The objective of this work is to develop, implement and evaluate a parallel computational framework for the 

simultaneous process synthesis and controllability assessment of absorption/desorption processes for post-

combustion CO2 capture. The framework employs a stochastic optimisation algorithm which is able to handle 

efficiently discrete design variables, pertaining to process flowsheet structural features represented through a 

generic superstructure. The discrete design parameters are introduced iteratively into a deterministic 

optimisation algorithm which is efficient for continuous design variables and operates internally within the 

stochastic algorithm. Every solution obtained by the continuous algorithm is transferred into a controllability 

assessment stage, implemented in the form of a non-linear sensitivity analysis approach which evaluates the 

effect of disturbances within an optimum control scheme. This layout is realized within a synchronous, parallel 

realization of a Simulated Annealing algorithm, where the primal-dual interior-point optimisation algorithm, as 

implemented by the Interior Point Optimizer (IPOPT) software, is used for steady-state process design and the 

predictor-corrector homotopy-continuation algorithm, using the PITCON software, for controllability assessment. 

The obtained results show that the parallelisation scheme is computationally very efficient and the obtained 

solution is 52 % better in terms of overall performance than a corresponding, conventional sequential process 

design and control approach. 

1. Introduction 

The synthesis and design of absorption/desorption flowsheets by using optimisation procedures has received 

increased attention in recent years as a means of reducing the capital and operating costs associated with CO2 

capture, as reported in Papadopoulos and Seferlis (2017). The optimal process operation point cannot always 

be guaranteed due to several exogenous disturbances, which may cause complete shifting of the process from 

its nominal and already proposed optimal solution point. Typical examples of such disturbances are associated 

with changes in the composition and volumetric flowrate of the flue gas, ambient conditions that may affect the 

operating conditions of the plant and imposed changes in the operating policy of the plant itself. Therefore, the 

performance of the plant at off-design operating points may significantly deviate from desired economic targets 

for CO2 capture. Evidently, there is a need for simultaneous consideration of process economics and 

controllability assessment of the plant design under these varying process conditions. However, the vast number 

of structural and operating options that need to be considered in view of disturbances result in prohibitive 

computational challenges.  

Currently, there are numerous approaches reported in published literature that propose integrated process 

design and controllability assessment. On the work of Kyriakides et al. (2019), the authors present an integrated 

process design and control framework for a membrane-based hydrogen production system based on low 

temperature methane steam reforming using an advanced control system under multiple disturbance scenarios. 

Furthermore, several alternative flowsheet configurations are designed and assessed by taking into 

consideration the economic and controller dynamic performance criteria simultaneously. Hauger et al. (2019) 
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present an optimal control solution based on nonlinear model predictive control (NMPC) for post-combustion 

CO2 capture processes to keep the CO2 capture ratio at a desired level while minimising the reboiler duty. In a 

similar base, a NMPC control strategy is also used by Zhang et al. (2019) and compared with the traditional 

proportional-integral-derivative (PID) controller. Moreover, a robust controller is developed for the control of a 

CO2 capture plant with due consideration of model uncertainty. A dynamic real time nonlinear optimisation 

framework for estimation and control is demonstrated by Thierry and Biegler (2019), along with a case study of 

a bubbling fluidized bed reactor for CO2 capture. A comprehensive summary of different methods and a detailed 

classification regarding the integrated design and control of chemical process can be found on the work of Vega 

et al. (2014). The aim of all these approaches is to reduce the computational effort while considering interactions 

between process design and controllability features of the problem. However, quite often the employed process 

representations are limited to mainly operating options, whereas structural flowsheet changes are rarely 

considered in combination with different control structures under multiple disturbance variations. Furthermore, 

solutions are obtained using local optimisation algorithms. Even in such approaches, computational challenges 

are mainly addressed through arbitrary reduction of process design decisions, operating interactions and 

disturbance effects, therefore hindering the identification of improved solutions. 

2. Motivating problem 

The design of absorption/ desorption processes for CO2 capture can be greatly benefited by the consideration 

of flowsheet modifications in order to improve the process economics (Damartzis et al., 2014). This is performed 

systematically through generic representations of process layouts, also known as superstructures, to avail a rich 

pool of design decisions and design advanced absorption/desorption process flowsheets for post-combustion 

CO2 capture. The employed superstructure consists of different modules representing generic process tasks 

such as chemical reactions, mass separation, heat transfer, and so forth. A mathematical model is assigned to 

each module representing a particular task. This modular approach provides great flexibility and allows easy 

generation of various flowsheet configurations. In addition, the orthogonal collocation method on finite elements 

(OCFE) technique is employed, approximating the molar and enthalpy flows inside each module. By the use of 

Lagrange polynomials, the transformation of the complex equations of the underlying model in study, into 

continuous polynomial functions of the module’s length is achieved. More details regarding the above method 

are reported in the work of Damartzis et al. (2014). The main advantage of OCFE is the characterisation of 

complex phenomena in a compact way (i.e., reduction of total number of modeling equations) in combination 

with low computational cost and satisfactory accuracy in model predictions. In this study, a generic 

superstructure is used with double section stripper and intercooled absorber (DSS-ICA), as in Damartzis et al. 

(2018), and an aqueous solution of monoethanolamine (MEA) 30 % wt. is chosen in order to absorb and 

separate CO2 from an industrial flue gas stream.  

3. Proposed approach 

3.1 Approach overview 

 

Figure 1: Generic solution procedure of the approach, invariant of the algorithms used. 



In this work, the simultaneous synthesis of absorption/desorption flowsheets under the influence of disturbances 

using a parallel optimisation approach is proposed. Unlike previous works, a generic superstructure for the 

representation of process design decisions is employed, following the work of Damartzis et al. (2018), which is 

combined with a systematic controllability assessment framework. The latter quantifies and assesses the 

sensitivity of different structural and operating options in the course of process optimisation for different and 

multiparametric disturbance scenarios. The optimisation is performed through a parallel implementation of a 

stochastic search method, combined with derivative-based algorithms. Prior to elaboration of the parallelisation 

approach, Figure 1 illustrates the main stages of the optimisation approach, which combines a stochastic 

optimisation algorithm to handle discrete decision variables with a local deterministic optimisation algorithm for 

continuous decision variables. 

The stochastic optimisation algorithm provides mechanisms to target the globally optimum domain in the context 

of a superstructure flowsheet representation that includes numerous discrete design decisions. The 

deterministic algorithm performs rigorous local searches considering continuous decision variables, within the 

range of the imposed discrete parameter space. Controllability assessment is addressed through a nonlinear 

sensitivity analysis approach, simultaneously with process design. In particular, the stochastic optimisation 

algorithm is used to handle discrete decision variables externally to the emulator of the physical material and 

process model. The latter includes different structural flowsheet configurations assigned to different/parallel 

computational units (e.g., cores, threads and so forth). For each set of discrete parameters, the deterministic 

optimisation algorithm uses continuous operating conditions as decision variables and performs optimisation 

based on an objective function (𝐹𝑆𝑡𝑒𝑎𝑑𝑦−𝑠𝑡𝑎𝑡𝑒) corresponding to each structural configuration. Subsequently, for 

each structural configuration, the solution obtained from the deterministic algorithm is investigated under the 

influence of multiple disturbances using a criterion (𝐹𝐷𝑖𝑠𝑡𝑢𝑟𝑏) that measures the deviation of the process variables 

from their target optimal values. The latter is performed within a nonlinear sensitivity analysis framework (Seferlis 

and Grievink, 2004) using an algorithm that computes a sequence of solution points along a one-dimensional 

manifold of a system of nonlinear equations. 

3.2 Parallelisation scheme 

To enable the investigation of a wide process design and disturbance space, the parallelisation of the time-

consuming simulations of the process model for different realizations of the discrete and continuous variables 

as well as of the disturbances is proposed. Such simulations are implemented internally by the deterministic 

optimisation algorithm and by the controllability assessment approach (Figure 1) in order to obtain the optimal 

design and to assess its performance under multiple disturbance scenarios. Although the presented approach 

is generic, the parallelisation scheme is tailored to the requirements of the employed stochastic optimisation 

algorithm. 

The proposed computational framework consists of three different algorithms, each one executing a particular 

task and contributing to a different detail in the overall approach. In particular, the first algorithm used is 

Simulated Annealing (SA) (Kirkpatrick et al. 1983), which is a stochastic optimisation technique. Its mathematical 

formulation is based on probability theory and Markov processes and provides venues to target the globally 

optimum solution or a close approximation of it. A variation of a parallel version of the aforementioned algorithm 

proposed by Ferreiro et al. (2013) is utilised to handle the discrete variables of the process. A starting 

temperature 𝑇0, a predefined number of iterations within every temperature level (Markov chain length-LMC), a 

starting point Xs (blue square in Figure 2), and bounds for the variables of the design vector X are necessary for 

the initialisation of the algorithm. For each Markov chain iteration of every parallel process, i.e. the green 

squares, as shown in Figure 2, under the current temperature level, a new randomly selected move 𝑋m  is 

applied, starting from the previously accepted move Xm
min and a set of discrete parameter values (i.e. structural 

variables of the process system such as the discretised lengths of the absorber/stripper column) is transmitted 

to every computational unit. 

 

Figure 2: Synchronous parallel simulated annealing algorithm architecture. 



Afterwards, for each set of discrete variables, a primal-dual interior-point optimisation algorithm for nonlinear 

programming (IPOPT), developed by Wächter and Biegler (2016), uses the continuous variables as decision 

variables and performs optimisation in the sense of minimising the objective function (𝐹𝑆𝑡𝑒𝑎𝑑𝑦−𝑠𝑡𝑎𝑡𝑒), which 

corresponds to each structural instance. Subsequently, the optimal solution obtained from the previous step 

(IPOPT) is investigated under the influence of multiple disturbances within a nonlinear sensitivity analysis 

framework using a predictor-corrector continuation method as implemented by the software PITCON, developed 

by Rheinboldt and Burkardt (1983). In essence, the green squares of Figure 2, execute in parallel multiple 

different realisations of discrete and continuous variables and disturbance scenarios. For a fixed temperature, 

each computational process/thread i.e. 𝑛 cores, runs for all LMC and reports its value. When all threads are 

finished, that is for every thread the optimised continuous design variables have been calculated and the 

controllability assessment has been determined, the Metropolis criterion, Metropolis et al. (1953), is employed 

by SA in order to obtain the next valid design state 𝑥𝑖, that corresponds to the minimum 𝐹𝑜𝑏𝑗 of all the 

computational units. The latter is the sum of both 𝐹𝑆𝑡𝑒𝑎𝑑𝑦−𝑠𝑡𝑎𝑡𝑒 and 𝐹𝐷𝑖𝑠𝑡𝑢𝑟𝑏, hence both the steady state and off-

design economic performance are evaluated. Notice that the parallelisation scheme is essentially implemented 

within the Markov Chain iterations. Once all iterations are completed (red square in Figure 2), the temperature 

is updated and the algorithm continues until the termination criteria are satisfied.  

4. Implementation 

4.1 Process design problem formulation 

An aggregate objective function comprised of the sum of the objectives of each subproblem of the form 

min 𝐹𝑜𝑏𝑗 =  𝐹𝑆𝑡𝑒𝑎𝑑𝑦−𝑆𝑡𝑎𝑡𝑒 + 𝐹𝐷𝑖𝑠𝑡𝑢𝑟𝑏 (1) 

is utilised. Due to the OCFE formulation by Damartzis et al. (2014), every column is separated into finite 

elements. In this case, the absorber and the stripper column are both divided into three elements to make up a 

total of six elements. The length of each element is considered a discrete variable and all together constitute 

the variables handled by the stochastic algorithm. The first term, 𝐹𝑆𝑡𝑒𝑎𝑑𝑦−𝑠𝑡𝑎𝑡𝑒, of Eq(1), is the economic cost 

function of the process in steady state conditions, encapsulating the capital and operating expenses while 

aiming to preserve the CO2 at a desirable level. The selected objective function has the form 

𝐹𝑆𝑡𝑒𝑎𝑑𝑦−𝑆𝑡𝑎𝑡𝑒 =  𝐶𝑎𝑏𝑠 + 𝐶𝑠𝑡𝑟 + 𝐶ℎ𝑒𝑥 + 𝐶𝑟𝑒𝑏 + 𝐶𝑝𝑢𝑚𝑝 + 𝐶𝑤𝑎𝑡 + 𝐶𝑎𝑚𝑖𝑛𝑒 + 𝐶𝑐𝑜𝑜𝑙 + 𝐶𝑠𝑡𝑒𝑎𝑚. (2) 

The first two terms express the total cost of the columns used, namely the absorber and the stripper column. 

These two are highly dependent on the selected columns length. The third term includes the total expenses of 

the heat transfer units employed that is the heat exchanger, the condenser at the top of the stripper column, the 

cooler and the intercoolers responsible to cool the absorber. The next in the above equation 𝐶𝑟𝑒𝑏, characterise 

the reboiler unit cost and the 𝐶𝑝𝑢𝑚𝑝 term express the cost of the pump equipment to keep the liquid flowing 

between the columns. The above-mentioned refer to the capital costs, whereas the last four terms of Eq(2) 

indicate the operating costs. The latter include 𝐶𝑤𝑎𝑡 and 𝐶𝑎𝑚𝑖𝑛𝑒 which are the total costs of water and amine 

respectively used in the process as well as the make-up amount in order to counter-balance the losses. 𝐶𝑐𝑜𝑜𝑙 

stands for the expenses regarding the cooler and the intercoolers and lastly 𝐶𝑠𝑡𝑒𝑎𝑚 is the cost of steam 

consumed for the operation of the reboiler unit. Every design variable, other than the absorber and stripper 

lengths, is considered continuous and the locally optimal values which minimise the objective function of Eq(2) 

subject to the model constraints are sought. Among them, the ones with increased interest are the CO2 loading 

of lean and rich flow stream that feed the absorber and the stripper respectively, the lean solvent flow rate, the 

duties of the cooler, intercoolers, condenser and reboiler. In addition, the temperature of the reboiler is of great 

importance along with the pressures at the bottom of the absorber and desorber. Finally, the split ratio of the 

rich stream that feeds the stripper at two points is to be optimised. 

4.2 Controllability assessment problem formulation 

Following the work of Damartzis et al. (2018), the controllability assessment framework is formulated as an 

optimisation problem in order to evaluate the steady-state response of the process under the various exogenous 

disturbances, as follows:  

𝐹𝐷𝑖𝑠𝑡𝑢𝑟𝑏 = (𝑥 − 𝑥𝑠𝑝)
𝑇

𝑊𝑥(𝑥 − 𝑥𝑠𝑝)  +  (𝑢 − 𝑢𝑠𝑝)
𝑇

𝑊𝑢(𝑢 − 𝑢𝑠𝑝) (3) 

The above equation denotes the disturbance cost function and is the second term of Eq(1), where 𝑥 and 

𝑢 represent the controlled and the manipulated vector variables respectively, [𝑥𝑠𝑝, 𝑢𝑠𝑝] is the optimal operating 

point, obtained from the previous, steady-state design step, which remains fixed during the controllability 



assessment and 𝑊𝑥, 𝑊𝑢 are weighing matrices that account for penalisation for any deviations of the optimised 

operating conditions. The goal of this subproblem can be summarised as follows. Given a set of structural design 

parameters, that is the column lengths of absorber and the stripper as generated by the stochastic algorithm, a 

set of optimal operating point from the operating optimisation section (i.e., IPOPT) and a set of process 

disturbances 𝜀, the minimisation of Eq(3) is to be determined, over the controlled and manipulated variables 

subject to variable bounds that define the allowable variation of the plant and the model constraints, described 

as a function of the disturbances. The latter are discretised for a wide range of possible disturbance values 

within predefined limits [𝜀𝑖,𝑟𝑒𝑓 , 𝜀𝑖,𝑒𝑛𝑑], according to the following equation: 

𝜀𝑖(𝜁) − 𝜀𝑖,𝑟𝑒𝑓

𝜀𝑖,𝑟𝑒𝑓
= 𝜃𝑖𝜁, (4) 

where 𝜃𝑖 represents the direction vector of the 𝑖-th disturbance component 𝜀𝑖. The term 𝜁 is chosen to lie within 

the unity interval and describes the corresponding disturbance magnitude coordinate.  

4.3 Technical data 

The considered disturbance scenario accounts for a variation up to 3 % of the CO2 composition in the flue gas 

flowrate, which represents a realistic type of potential disturbances in an industrial power plant. The manipulated 

variables are the amine make-up flowrate, the reboiler duty, the cooler and intercooler duties, and the stripper 

split ratio. The first two are associated with a higher weight than the rest, as being costlier, and a small deviation 

from their optimal values translates to a higher cost increase in the objective function. The control variables, in 

descending order of importance, are the percentage of CO2 captured, the lean stream loading and temperature. 

The mathematical model consists of a total of 557 design variables, where 50 are held fixed, 505 equality 

constraints, and 2 inequality constraints. The simulations ran on an Intel Xeon Gold 5120 @ 2.2GHz computer 

consisting of 28 physical cores (56 hyper-threads) and 62 GB of memory on GNU/Linux (Ubuntu 18.04 x86-64) 

operating system. The computational code is written in Fortran and compiled using the Open MPI (2.1.1) 

implementation of the Message Passing Interface (MPI) protocol. 

5. Results and discussion 

5.1 Acceleration due to parallelisation 

This section discusses computational results, while the next section discusses the quality and economical 

insights of the obtained solutions. To compare the acceleration obtained from increasing the number of cores, 

we consider two different simulation cases: case (a) with 20 cores (40 threads) and case (b) with 28 cores (56 

threads). The remaining input parameters are kept the same. In both cases, the SA algorithm reached the same 

optimum solution point, with 𝐹𝑜𝑏𝑗 = 11.68, as depicted in Figure 3. However, in case (b) as shown in Figure 3b 

where more cores are used, the algorithm starts converging to the optimum denoted by a flat line in the objective 

function value by iteration 1,800, compared to case (a) where the flat line appears after approximately iteration 

3,600. The termination criteria are also satisfied earlier in case (b), at iteration 4,800, compared to iteration 

6,300 of case (a). The CPU time required in case (b) is 39,818 s (11 h), whereas if the problem was solved in a 

single thread it would need approximately 63 CPU h. This result strengthens the argument for implementing a 

parallel framework, which is very efficient in quickly identifying the optimum solution point as fewer iterations 

have a direct impact on the total time needed by the application. Furthermore, as the number of computational 

units increases, more process flowsheet designs and operating realisations are tested and this improves the 

quality of the solution. 

  

Figure 3: Global optimum solution point obtained by simulated annealing algorithm (a) 20 cores, (b) 28 cores. 



5.2 Sequential vs. simultaneous process design and controllability assessment 

Table 1 illustrates results between the proposed simultaneous design approach, Case A (combining 

SA+IPOPT+PITCON) and a conventional, sequential one, Case B. The latter employs only IPOPT as the overall 

process design algorithm, identifies an optimum process configuration without considering disturbances and is 

then followed by PITCON to evaluate the controllability performance of the proposed steady-state design. The 

starting point, the variable bounds and all the input simulation parameters are kept the same in both approaches. 

The results show that the solution from Case A is improved by about 52 % in terms of overall performance, 

compared to Case B. The main advantage of Case A is that the simultaneous consideration of the controllability 

assessment as part of process design (and not as an afterthought as in the sequential case) is able to identify 

a design which is both robust to disturbances and economically optimum. The solution of Case A indicates that 

a larger absorption column size (5 stages) and solvent flowrate (25 t/y) are chosen to alleviate the effects of 

disturbances. Furthermore, the solution proposed in Case A saves 156 MWh/y in reboiler duty and 232 MWh/y 

in overall cooling. 

Table 1: Comparison of the design optimisation results between the two approaches, Case A: 

SA+IPOPT+PITCON, Case B: IPOPT+PITCON. 

Case A/ Optimum 

design 

A/ setpoint 

deviation 

B/ Optimum 

design 

B/ setpoint 

deviation 

Improvement of 

A compared to B 

CO2 capture (%) 90.0 0.0 90.0 0.0 - 

Lean loading (mol CO2/mol amine) 0.25 0.0 0.25 0.0 - 

Rich loading (mol CO2/mol amine) 0.53 0.0 0.48 0.0 0.05 

Absorber / Stripper length (m) 29 / 24 - 24 / 23 - - 

Reboiler temperature (K) 387.8 0.0 387.5 0.0 - 

Reboiler duty (MWh/y) 43,064 785 43,220 728 156 

Cooler duty (MWh/y) 12,045 288 11,810 135 
232 

Intercooler duty (MWh/y) 7,835 / 6,132 155 / 108 8,302 / 6,132 240 / 147 

Solvent make-up flow (t/y) 201.509 0.034 176.145 0.90 -25.364 

Absorber bottom pressure (kPa) 147.2 - 121.7 - - 

Stripper bottom pressure (kPa) 158.0 - 156.3 - - 

Stripper split ratio (%) 0.9 0.0 3.5 0.0 - 

Objective function value (-) 11.68 - 23.99 - - 

Table 2 lists two different scenarios regarding the operating conditions of the previous cases. In particular, in 

the first scenario, it is assumed that the process is operating at the optimum design point for half of the total 

time while the other half of the time it is operating off-design, under the influence of disturbances. In the second 

scenario, a more frequent shift from the optimal design is investigated. In this case, the process is operating 80 

% of the total time under disturbances and only for the remaining 20 % of the time at the optimum design point. 

In each strategy, the disturbance level is chosen to be normally distributed over its respected time span. In both 

strategies, the solution proposed in Case A continues to yield lower reboiler duty and total cooling duties 

compare to Case B, as in the case where no disturbances are present. However, the process operates for a 

long period of time at an off-design point or equivalently as the disturbance level grows, a clear downwards 

trend of the aforementioned duties is observed. The same declining trend holds for the solvent make-up flowrate 

for Case A and B in both scenarios but it decreases at a much lower rate compared to the reduction rate of 

reboiler duty and overall cooling duties. 

Table 2: Comparison of the off-design operation between the two approaches, Case A: SA+IPOPT+PITCON, 

Case B: IPOPT+PITCON. 

Case A/ 50 % of 

time off-

design 

B/ 50 % of 

time off-

design 

Improvement 

of A compared 

to B 

A/ 80 % of 

time off-

design 

B/ 80 % of 

time off-

design 

Improvement 

of A compared 

to B 

Reboiler duty (MWh/y) 43,260 43,402 142 43,378 43,511 133 

Cooler duty (MWh/y) 12,115 11,843 
225 

12,158 11,863 
191 

Intercooler duty (MWh/y) 7,874 / 6,159 8,362 / 6,168 7,898 / 6,175 8,398 / 6,191 

Solvent make-up flow (t/y) 201.514 176.369 -25.145 201.517 176.503 -25.014 



6. Conclusions 

In the present work, a parallel computational framework for the simultaneous process synthesis of 

absorption/desorption processes for post-combustion CO2 capture alongside with a nonlinear sensitivity 

analysis and controllability assessment is proposed. A generic superstructure with a double section stripper and 

intercooled absorber modelled after the OCFE formulation to describe the process flowsheet is employed. The 

optimisation approach consists of a parallel synchronous variation of Simulated Annealing to manage the 

structural parameters, a nonlinear interior-point algorithm responsible to yield a local optimum point and a 

nonlinear predictor-corrector continuation method to evaluate the effects of the disturbances. Optimisation 

results showed the efficiency of the parallel framework, firstly because the obtained economic performance is 

much better than that of a conventional approach and secondly because the parallelisation of the stochastic 

algorithm proved time-efficient allowing the investigation of multiple design options at the same time. A limitation 

of this work is that the controllability assessment is emulated as a series of steady-state process simulations 

under various disturbance scenarios. The use of dynamic process models could improve the controllability 

assessment. The optimisation framework can be extended by allowing the SA to handle other parameters. 

Moreover, various code optimisation and approximate computer techniques can be applied to further reduce 

the execution time. 
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