
Ice Monitoring With ExtremeEarth

George Mandilaras1, Despina-Athanasia Pantazi1, Manolis Koubarakis1, Nick
Hughes2, Alistair Everett2, Åshild Kiærbech2

1 National and Kapodistrian University of Athens
{gmandi, dpantazi, koubarak}@di.uoa.gr

2 Norwegian Meteorological Institute
{nick.hughes, alistair.everett, aashild.kiaerbech}@met.no

Abstract. Accurate mapping and monitoring of sea ice and icebergs
hazards is a crucial task for the safety of ship traffic in the Arctic. In
this work, we present a system that addresses this problem by combining
Earth Observation techniques with large scale RDF analytics. To the best
of our knowledge, this is the first Semantic Web application in this field.

1 Introduction

The safety of ship navigation in the Arctic relies on the continuous task of
monitoring sea ice and icebergs. This task has recently become more critical,
due to changes in ice conditions in the Arctic driven by climate change that
have made the ice more mobile and driven an increase in ship traffic. To address
it, automatic techniques are now used to combine in-situ observational data with
satellite images.

In more detail, the Ice Watch project3 of the Norwegian Meteorological Insti-
tute collects data from ships performing visual sea ice observations while navigat-
ing the Arctic. These in-situ observational data record the time, point locations,
and other important properties of sea ice. Such in-situ data can be used to val-
idate and improve the interpretation of satellite images, and subsequently to
improve routine ice chart products and assist in building training sets for the
future development of machine learning algorithms.

Another valuable source of information is offered by various Earth obser-
vation programmes, such as the US Landsat program4 and the EU Copernicus
Programme5. Copernicus is currently one of the largest Earth Observation (EO)
programmes, providing users with reliable and up-to-date information on a range
of environmental and security issues under a free, full and open data policy. By
2030, it is expected to have sent 20 satellites, called Sentinels, in orbit.

In this work, we work with a set of satellite images that cover the Arctic
and coincide spatially and temporally with the in-situ observations. Our goal is
to interlink these two data sources, so as to identify in-situ observations that

3 https://icewatch.met.no/
4 https://www.usgs.gov/land-resources/nli/landsat
5 https://www.copernicus.eu/en



2 Authors Suppressed Due to Excessive Length

match closely in time and space to satellite images. The end result is useful for
building training sets with satellite images associated with high quality ground
observations and essential for the construction of a robust automatically de-
rived mapping product that could be updated frequently. Most importantly, by
expressing the end result as RDF statements, we can leverage a wealth of Se-
mantic Web tools for performing analytics, reasoning as well as visualization. A
crucial aspect in this process is the time efficiency, as the large volume of data
calls for scalable techniques.

More specifically, we have developed an open-source system that implements
the end-to-end workflow depicted in Figure 1. First, it performs a spatiotemporal
join between the two data sources using STARK [3], a framework built on top of
Apache Spark6 for massive parallelization. Then, it converts the interlinked items
into RDF triples using GeoTriples [7] along with a domain-specific ontology.
These triples are stored in a Strabon endpoint [6] and are visualized with Sextant
[8] using GeoSPARQL queries.

We describe our approach in more detail below. We delve into the data
sources we use in Section 2, while Section 3 discusses the components of our
system. We present a preliminary experimental study in Section 4 and conclude
the paper in Section 5 along with directions for future work.

2 Data Sources

The system takes as input three data sets: (i) a set containing observation points,
(ii) a set containing ice observation data, and (iii) a set containing information
about the satellite images.

The observation point set contains the time and the location of each obser-
vation. The ice observation set contains detailed information about the ice (such
as ice thickness, snow thickness, floe size, etc), which were recorded by the ob-
server, along with an observation id that links back to the observation. The ice
observation set contains more than 20,000 observations, however, since it is only
updated when a cruise has been out in the Arctic and uploaded its data, there
are large gaps with no observations. These sets are provided by the Ice Watch
project.

The set of satellite images contains information about images captured by
Sentinel-17 and is provided by the Copernicus project. This information includes
the location of the image, the satellite acquisition date and time, the coverage
(geographic extents of the images), as well as some other useful properties. Note
that the data source of satellite images is updated on a daily basis and contains
more than 200K images.

6 https://spark.apache.org/
7 https://www.esa.int/Applications/Observing_the_Earth/Copernicus/

Sentinel-1



Ice Monitoring With ExtremeEarth 3

Fig. 1. The end-to-end workflow implemented by our system.

3 Approach

Our system workflow consists of four main steps:

1) We perform a spatiotemporal join in order to interlink our data sets, using
STARK. STARK [3] is an open-source framework8 that extends Apache Spark
with spatiotemporal functionalities, by introducing new classes and spatiotem-
poral operators to standard RDDs. As a result, users are able to use the main
functionalities of Spark and to perform spatiotemporal transformations to their
data. Furthermore, the STARK framework supports spatial partitioning and in-
dexing to achieve better data distribution and enables the user to perform join
queries based on spatiotemporal relations like CONTAINS and INTERSECTS.
STARK is probably the only framework that extends Spark, not only with spa-
tial but also with temporal operations, and it is considered one of the fastest big
spatial data processing frameworks [4].

In our case, we wanted to find which satellite images captured the ice obser-
vation points at the same day that the observations occurred. Consequently, the
temporal dimension has a deterministic role as we are examining ice thickness
which can alter from days to days. Therefore, we use STARK to perform a spa-
tiotemporal join using the CONTAINS relation. This way, we link the images to
the observation points that are spatially contained in the coverage of the image
and also their timestamp is within a range of a day from the time that the image
was shot.

2) We transform the results into RDF triples using GeoTriples. GeoTriples
[7] is an open-source system that transforms geospatial data from a wide variety
of original data formats into RDF.

As input, GeoTriples requires a mapping file, which contains the mapping
rules that will be applied in the transformation, and also information about the
data. Hence, it offers a mapping generation procedure, in which it parses the
input data, and then produces the mapping file, which then the user may edit
in order to fit his needs. Given, though, that we already know the form of the

8 https://github.com/dbis-ilm/stark



4 Authors Suppressed Due to Excessive Length

data and the mapping rules that need to be applied, we have pre-constructed
this mapping file and forwarded it to GeoTriples.

Additionally, in this mapping file the user also defines the ontology that the
produced triples follow. For the purpose of the project ExtremeEarth, we have
developed an ontology9 based on the Sea Ice GeoReferenced Information and
Data - SIGRID-3 document[5], which describes a set of standards to code, ex-
change, and archive digital ice charts. The central class of the ontology is the
IceObservation class, which indicates the generic ontology for an ice observation.
Using the property polar:hasForm, we describe the form of an ice observation as
Iceberg, PancakeIce, FastIce, etc, while the property polar:hasDevelopmentStage
describes its development stage, which is determined by the thickness of the ice,
represented by certain classes of the ontology. Therefore, the mapping file is ad-
justed so that the produced triples follow this specific ontology. Then, regarding
the transformation, GeoTriples extracts the mapping rules from the mapping file
and uses them to convert the input data into RDF. The generated triples are
stored in the NTRIPLES format. We have automated the procedure of forward-
ing the results from STARK to GeoTriples, by combining these two tools into
one, which we called STJ2rdf.

3) We store the produced triples into the spatiotemporal RDF store Strabon
[6], a state-of-the-art open-source spatiotemporal triplestore that efficiently exe-
cutes GeoSPARQL and stSPARQL queries. Strabon supports spatial datatypes,
enabling the serialization of geometric objects in the OGC standards WKT and
Geography Markup Language (GML). It has been implemented by extending
the established RDF store Sesame (now called RDF4J10), using the spatially-
enabled database PostGIS11 as back-end so as to exploit its large variety of
spatial functions and operators. It has been experimentally shown that Strabon
is the most efficient spatiotemporal RDF store available today [1, 2].

4) The end result is visualized via Sextant [8], as shown in Figure 2. Sextant
constitutes a web-based application for exploring, interacting, and visualizing
time-evolving linked geospatial data. Sextant is also capable of creating, sharing,
searching, and collaboratively editing maps and of producing statistical charts
out of statistically enhanced data sets. Even though it relies heavily on Semantic
Web technologies, it offers an intuitive interface that allows both domain experts
and lay users to exploit all available features.

4 Experiments

The implementation of our system is publicly available as an open-source project12.
We experimentally assessed its performance on a server with Intel Xeon E5-4603
v2 (2.2GHz, 16 physical cores), 128 GB RAM, running Ubuntu 14.04.5 LTS.

9 http://pyravlos-vm5.di.uoa.gr/polarUC.svg
10 http://rdf4j.org
11 https://postgis.net
12 https://github.com/GiorgosMandi/SpatioTemporal-Join



Ice Monitoring With ExtremeEarth 5

Fig. 2. The results of our system as they are presented to the user.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2 4 8 16 32

min 

Cores 

Fig. 3. The wall-clock time of the spatiotemporal join as the number of core increases.

Figure 3 depicts the evolution of the wall-clock time that is required by the
spatiotemporal join of our system, as the number of available cores increases.
We observe that even with the minimum number of cores, less than 3 minutes
are required for joining >20,000 ice observations with ∼200,000 satellite images.
Most importantly, the running time decreases to a half, when doubling the min-
imum number cores. However, there is no significant improvement when using 8
or more cores. This should be attributed to the expensive data shuffles that are
performed when splitting the input data into more partitions.



6 Authors Suppressed Due to Excessive Length

5 Conclusions

We have presented a novel system for monitoring sea ice and icebergs in the
Arctic. For high time efficiency, it relies on a spatiotemporal join operation that
is carried out on top of Apache Spark. To make the most of the detected data
associations, it relies on Semantic Web technologies for querying and visualiza-
tion.

This system was developed as part of the ExtremeEarth project13, which
focuses on Artificial Intelligence and Big Data technologies that scale to the
petabytes of big Copernicus data. ExtremeEarth applies these technologies in
two of the thematic exploitation platforms of the European Space Agency: one
dedicated to Food Security and one dedicated to the Polar regions. Its goal is to
develop techniques and software that will enable the extraction of information
and knowledge from big Copernicus data using deep learning techniques and
extreme geospatial analytics, making this information and knowledge available
as linked data.

In the future, we plan to improve the scalability of the spatiotemporal join,
reducing the data shuffles that are performed when Apache Spark uses more
cores. We also plan to integrate more Semantic Web technologies into our system,
such as a semantic reasoner, so as to provide users with more useful information.

Acknowledgements. The present work was co-funded by the European
Union’s Horizon 2020 research and innovation programme under grant agreement
No 825258 (ExtremeEarth).

References

1. Bereta, K., Smeros, P., Koubarakis, M.: Representation and querying of valid time
of triples in linked geospatial data. In: ESWC. pp. 259–274 (2013)

2. Garbis, G., Kyzirakos, K., Koubarakis, M.: Geographica: A benchmark for geospa-
tial RDF stores (long version). In: ISWC. pp. 343–359 (2013)

3. Hagedorn, S., Götze, P., Sattler, K.: The STARK framework for spatio-temporal
data analytics on spark. In: Datenbanksysteme für Business, Technologie und Web
(BTW). vol. P-265, pp. 123–142. GI (2017)

4. Hagedorn, S., Götze, P., Sattler, K.U.: Big spatial data processing frameworks:
Feature and performance evaluation pp. 490–493 (2017)

5. JCOMM Expert Team on Sea Ice: Sigrid-3: A vector archive format for sea ice
georeferenced information and data (2014)

6. Kyzirakos, K., Karpathiotakis, M., Bereta, K., Garbis, G., Nikolaou, C., Smeros, P.,
Giannakopoulou, S., Dogani, K., Koubarakis, M.: The spatiotemporal RDF store
strabon. In: Advances in Spatial and Temporal Databases - 13th International Sym-
posium (SSTD). vol. 8098, pp. 496–500 (2013)

7. Kyzirakos, K., Savva, D., Vlachopoulos, I., Vasileiou, A., Karalis, N., Koubarakis,
M., Manegold, S.: Geotriples: Transforming geospatial data into RDF graphs using
R2RML and RML mappings. J. Web Semant. 52-53, 16–32 (2018)

13 http://earthanalytics.eu



Ice Monitoring With ExtremeEarth 7

8. Nikolaou, C., Dogani, K., Bereta, K., Garbis, G., Karpathiotakis, M., Kyzirakos,
K., Koubarakis, M.: Sextant: Visualizing time-evolving linked geospatial data. J.
Web Semant. 35, 35–52 (2015)


