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Abstract—Artificial Intelligence has become increasingly im-
portant for organizations. Pioneers in the Artificial Intelligence
industry are asking how to better develop and maintain Artificial
Intelligence software. This paper focuses on Machine Learning,
the branch of Artificial Intelligence that deals with the automatic
generation of knowledge models based on sample data. This study
aims to understand the evolution of the processes by which
Machine Learning applications are developed and how state-
of-the-art lifecycle models fit the current needs of the fintech
industry. We conducted an exploratory case study at ING, a
global bank with a strong European base. We interviewed 17
people with different roles and from different departments within
the organization. We analyze existing lifecycle models in the
literature and refine them by adding stages for data collection,
a feasibility study, documentation, model monitoring, and a sub-
stage of model risk assessment within model evaluation. The
results indicate that the existing lifecycle models CRISP-DM
and TDSP largely reflect the current development processes
of Machine Learning applications, but there are crucial steps
missing from the fintech perspective, including a feasibility
study, documentation, model evaluation, and model monitoring.
Our work shows that the real challenges of applying Machine
Learning go much beyond sophisticated learning algorithms –
more focus is needed on the entire lifecycle.

Index Terms—Machine Learning Lifecycle, Case Study, Fin-
tech

I. INTRODUCTION

Artificial Intelligence (AI) has become increasingly im-
portant for organizations to support customer value creation,
productivity improvement, and insight discovery. Pioneers in
the AI industry are asking how to better develop and maintain
AI software [1]. This paper focuses on Machine Learning,
the branch of AI that deals with the automatic generation of
knowledge models based on sample data.

Although most of the AI techniques are not so recent (e.g.,
neural networks were already being applied in the 1980s [2]),
the recent access to large amounts of data and more computing
power has exploded the number of scenarios where AI can be
applied [3], [4]. In fact, AI is now being used to add value
in critical business scenarios. Consequently, a number of new
challenges are emerging in the lifecycle of AI systems, com-
prising all the stages from their conception to their retirement
and disposal. Like normal software applications, these projects
need to be planned, tested, debugged, deployed, maintained,
and integrated into complex systems.

Companies leading the advent of AI are reinventing their
development processes and coming up with new solutions.

Thus, there are many lessons to be learned to help other
organizations and guide research in a direction that is mean-
ingful to the industry. This is particularly relevant for highly-
regulated industries such as fintech, as new processes need
to be designed to make sure AI systems meet all required
standards.

Recent research has addressed how developing AI systems
is different from developing regular Software Engineering
systems. A case study at Microsoft identified the following
differences [5]: 1) data discovery, management, and versioning
are more complex; 2) practitioners ought to have a broader
set of skills; and 3) modular design is not trivial since AI
components can be entangled in complex ways. Unfortunately,
existing research offers little insight into the challenges of
transforming an existing IT organization into an AI-intensive
one.

Examples of existing models describing the Machine Learn-
ing lifecycle are the Cross-Industry Standard Process for Data
Mining (CRISP-DM) [6] and the Team Data Science Process
(TDSP) [7]. However, Machine Learning is being used for
different problems across many different domains. Given the
fast pace of change in AI and recent advancements in Software
Engineering, we suspect that there are deficiencies in these
lifecycle models when applied to a fintech context.

To remedy this, we set out this exploratory case study aimed
at understanding and improving how the fintech industry is
currently dealing with the challenges of developing Machine
Learning applications at scale. ING is a relevant case to
study, since it has a strong focus on financial technology
and Software Engineering and it is undergoing a bold digital
transformation to embrace AI as an important competitive
factor. By studying ING, we provide a snapshot of the rapid
evolution of the approach to Machine Learning development.

We define the following research questions for our study:
RQ1: How do existing Machine Learning lifecycle models

fit the fintech domain?
RQ2: What are the specific challenges of developing

Machine Learning applications in fintech organizations?
We interviewed 17 people at ING with different roles

and from different departments. Thereafter, we triangulated
the resulting data with other resources available inside the
organization. Furthermore, we refine the existing lifecycle
models CRISP-DM and TDSP based on our observations at
ING.



Our results unveil important challenges that ought to be
addressed when implementing Machine Learning at scale. Fea-
sibility assessments, documentation, model risk assessment,
and model monitoring are stages that have been overlooked by
existing lifecycle models. There is a lack of standards and there
is a need for automation in the documentation and governance
of Machine Learning models. Finally, we pave the way for
shaping the education of AI to address the current needs of
the industry.

The remainder of this paper is structured as follows. In
Section II we introduce existing lifecycle models and describe
related work. In Section III, we outline the study design. We
report the data collected in Section IV and we answer the
research questions in Section V. We discuss our findings and
threats to validity in Section VI. Finally, in section VII, we
pinpoint conclusions and outline future work.

II. BACKGROUND

In this section, we present the lifecycle models considered
in this study and examine existing literature outlining the
differences with our study.

A. Existing Lifecycle Models

In this study, we consider two reference models for the
lifecycle of Machine Learning applications: Cross-Industry
Standard Process for Data Mining (CRISP-DM) [6] and Team
Data Science Process (TDSP) [7]. We chose CRISP-DM, as al-
though it is twenty years old, it is still the de facto standard for
developing data mining and knowledge discovery projects [8].
We selected TDSP as modern industry methodology, which
has at a high level much in common with CRISP-DM. There
are other methodologies, but most are similar to CRISP-DM
and TDSP. Findings in our paper can be extrapolated to those
other methodologies.
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Fig. 1. Cross-Industry Standard Process for Data Mining (CRISP-DM).

CRISP-DM aims to provide anyone with “a complete
blueprint for conducting a data mining project” [6]. Although
data mining is not the common term used nowadays, it is
valid for any project applying scientific methods to extracting
value from data, including Machine Learning [8]. CRISP-
DM breaks down a project into six phases, as presented in
Figure 1. It typically starts with Business Understanding to
determine business objectives, going back and forward with
Data Understanding. It is followed by Data Preparation
to make data ready for Modeling. The produced model goes
through an Evaluation in which it is decided whether the
model can go for Deployment or it needs another round of
improvement. The arrows between stages indicate the most
relevant and recurrent dependencies, while the arrows in
the outer circle indicate the evolution of Machine Learning
systems after being deployed and their iterative nature.

Based on CRISP-DM, a number of lifecycle models have
been proposed [8], [9] to address varying objectives. Derived
models extend CRISP-DM for projects with geographically
dispersed teams [10], with large amounts of data and more
focus on automation [11], [12], or targeting the model reuse
across different contexts [13].

TDSP is “an agile, iterative data science methodology”
by Microsoft, to deliver Machine Learning solutions effi-
ciently [7]. The original methodology includes four major
stages, as can be seen in Figure 2: Business Understanding,
Data Acquisition, Modeling and Deployment. As depicted
by the arrows in the figure, TDSP proposes stronger depen-
dencies but does not enforce a particular order between stages,
emphasizing that different stages can be iteratively repeated at
almost any time in the project.

Despite the number of advancements proposed in previous
work, they do not tackle AI systems that target challenges
faced by the fintech industry. Our work pinpoints the changes
that needed to be accommodated for AI systems operating
under heavy-regulated scenarios and bringing value over pre-
existing non-data-driven approaches.
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B. Related Work

The Machine Learning development lifecycle has been
studied in practice in previous research. Amershi et al. [5] have
conducted a case study at Microsoft to study the differences
between Software Engineering and Machine Learning. The
most important challenges found are model scaling, evolution,
evaluation, deployment, and data management. We comple-
ment this study by comparing our observations with existing
Machine Learning lifecycle models.

Another case study from industry has been performed at
Booking.com by Bernardi et al. [4]. In contrast with academic
research in which Machine Learning models are validated
by means of an error measurement, models at Booking.com
are validated through business metrics such as conversion
or cancellations. The paper describes process stages such as
model designing, deployment, monitoring, and evaluation, but
no formal lifecycle model is defined.

Hill et al. [14] studied how people develop intelligent
systems in practice. The study leverages a high-level model of
the process and identifies the main challenges. Results show
that developers struggle with establishing repeatable processes
and that there is a basic mismatch between the tools available
versus the practical needs. In this study, we extend the work
by Hill et al. by looking more closely at what happens after
the Machine Learning model has been evaluated, for example
regarding its deployment and monitoring.

The paper by Lin and Ryaboy [15] describes the big
data mining cycle at Twitter, based on the experience of the
two authors. The main points made are that for data-driven
projects, most time goes to preparatory work before, and
engineering work after the actual model training and that a
significant amount of tooling and infrastructure is required.
In our study, we validate the recommendations of these two
experts with a case study with seventeen participants.

Concrete challenges data scientists face are elaborated upon
in the study by Kim et al. [16]. They have surveyed 793
professional data scientists at Microsoft. An example of a
challenge found is that the proliferation of data science tools
makes it harder to reuse work across teams. This challenge is
also reinforced in the study by Ahmed et al. [17]. As models
are mostly implemented without standard API, input format, or
hyperparameter notation, data scientists spend considerable ef-
fort on implementing glue code and wrappers around different
algorithms and data formats to employ them in their pipelines.
Ahmed et al. [17] show evidence that most models need to be
rewritten by a different engineering team for deployment. The
root of this challenge lies on runtime constraints, such as a
different hardware or software platform, and constraints on
the pipeline size or prediction latency.

More studies looked at Machine Learning from a Soft-
ware Engineering viewpoint. Sculley et al. [18] identified a
number of Machine Learning-specific factors that increase
technical debt, such as boundary erosion and hidden feed-
back loops. Breck. et al [19] have proposed 28 specific
tests for assessing production readiness for Machine Learning

applications. These tests include tests for features and data,
model development, infrastructure, and monitoring. Arpteg et
al. [20] have identified Software Engineering challenges of
building intelligent systems with deep learning components
based on seven projects from companies of different types and
sizes. These challenges include development, production, and
organizational challenges, such as experiment management,
dependency management, and effort estimation. In this current
study, we will extend this line of research and identify where
Software Engineering can help mitigate inefficiencies in the
development and evolution of Machine Learning systems.

III. RESEARCH DESIGN

To identify the gaps in the existing Machine Learning
lifecycle models and explore key challenges in the field,
we perform a single-case exploratory case study. This is a
recurrent methodology to define new research by looking at
concrete situations and to shed empirical light on existing con-
cepts and principles [21]. We follow the guidelines proposed
by Brereton et al. [22] and Yin’s [21] case study methodology.

It is not our objective to build an entirely new theory from
the ground up. For that reason, we do not adopt a Grounded
Theory (GT) approach, although we do use a number of tech-
niques based on GT [23]: e.g., theoretical sampling, memoing,
memo sorting, and saturation.

The design of the study is further described in this section.

A. The Case

The case under study is ING, a global bank with a strong
European base. ING offers retail and wholesale banking
services to 38 million customers in over 40 countries, with
over 53,000 employees [24]. ING has a strong focus on
fintech, the digital transformation of the financial sector, and
professionalization of AI development.

A bank of this size has many use cases where Machine
Learning can help. Examples include traditional banking ac-
tivities such as assessing credit risk, the execution of customer
due diligence and transaction monitoring requirements related
to fighting financial economic crime. Other examples of use
cases are improving customer service and IT infrastructure
monitoring.

ING is currently leveraging a major shift in the organization
to adopt AI to improve its services and increase business value.
The challenges that ING is facing at the moment make it an
interesting case for our study and allow us to identify gaps
between current challenges by the industry and academia.

B. Research Methodology

Semi-structured interviews are the main source of data
in this case study. The data is later triangulated with other
resources available inside the organization. Documentation in
the intranet of ING is used to gain a deeper understanding of
the platforms and processes mentioned in the interviews.

The approach used to collect information from interviews
and report data is based on the guidelines proposed by
Halcomb et al. [25]. It is a reflexive, iterative process:



TABLE I
OVERVIEW OF INTERVIEWEES

ID Role Department
P01 IT Engineer Application Platforms
P02 IT Engineer IT Infrastructure Monitoring
P03 Productmanager Financial Crime
P04 IT Architect Enterprise Architects
P05 IT Engineer IT4IT
P06a* Advice Professional Model Risk Management
P06b* Advice Professional Model Risk Management
P07 Manager IT Global Engineering Platform
P08 Feature Engineer Data & Analytics
P09 Data Scientist Wholesale Banking Analytics
P10 Data Scientist Chapter Data Scientists
P11 IT Engineer Application Platform
P12 Data Scientist AIOps
P13 Data Scientist Wholesale Banking Analytics
P14 Data Scientist Financial Crime
P15 Data Scientist Analytics
P16 Data Scientist Chapter Data Scientists

*The sixth interview involved two participants, labeled P06a and P06b.

1) Audio taping of the interview and concurrent note-
taking.

2) Reflective journaling immediately post-interview.
3) Listening to the audiotape and revising memos.
4) Data analysis.

1) Participants: We selected interviewees based on their
role and their involvement in the process of developing Ma-
chine Learning applications. We strove to include people of
many different roles and from many different departments.
The starting position for finding interviewees was the lead
of a Software Analytics research team within ING. More
interviewees were found by the recommendations of other
interviewees. The interviewees were also able to suggest other
sources of evidence that might be relevant. We increased the
number of participants until we reached a level of saturation
in the remarks mentioned by interviewees for each stage of
the lifecycle.

An overview of the selected participants, with their role and
department, can be seen in Table I. In total, we interviewed
seventeen participants. The sixth interview involved two par-
ticipants. Therefore, they are labeled as P06a and P06b.

2) Interview Design: The first two authors conducted the
interviews, which took approximately one hour. We took notes
during the interviews and we recorded the interviews with the
permission of the participants. This section outlines the main
steps of our interview design. The full details can be found in
our corresponding case study protocol [26].

As interviewers, we started by introducing ourselves and
provided a brief description of the purpose of the interview
and how it relates to the research being undertaken. We asked
the interviewees to introduce themselves and describe their
main role within the organization. After the introductions,
we asked the interviewee to think about a specific Machine
Learning project he or she was working on recently. Based
on that project, we asked the interviewee to describe all the
different stages of the project. In particular, we asked questions

to understand the main challenges they faced and the solutions
they had to design.

3) Post-interview Strategy: Right after each interview, the
two interviewers got together for a collaborative memoing
process (also called reflective journaling [25]). Memoing is the
review and formalization of field-notes and expansion of initial
impressions of the interaction with more considered comments
and perceptions. Memoing is chosen over creating verbatim
transcriptions, because the costs associated with interview
transcription, in terms of time, physical, and human resources,
are significant. Also, the process of memoing assisted the
researchers to capture their thoughts and interpretations of the
interview data [27]. The audio recordings could still be used
to facilitate a review of the interviewers’ performance, and
assist interviewers to fill in blank spaces in their field notes
and check the relationship between the notes and the actual
responses [28].

The interviewers took between 30–45 minutes to refine their
notes. In this process, the notes are assigned under different
lifecycle stages. We used the nomenclature from existing
frameworks (e.g. CRISP-DM and TDSP) as a rule of thumb, or
we defined new stages in case it helps understand a particular
part of the process.

After some time, the interviewers amended the memos by
reviewing the audiotapes. The purpose of this stage was to
ensure that the memos provided an accurate reflection of the
interviews [25]. Once the researchers were confident that their
memos accurately represented each interview, the process of
content analysis is used to elicit common themes [25].

Each interview resulted in three artifacts: the recording of
the interview, the field notes taken during the interview, and
the memos as a result of the above mentioned memoing.

IV. DATA ANALYSIS

The input of the interviewees does not answer the research
questions directly. Therefore, we report the resulting data of
the interviews in this section and we use this data to answer
the research questions later in Section V.

We organize the data among eight core Machine Learning
lifecycle stages: problem design, requirements, data engi-
neering, modeling, documentation, model evaluation, model
deployment, and model monitoring. Overarching data that does
not fit these stages is categorized under testing, iterative devel-
opment, and education. These stages and categories are based
on stages defined by CRISP-DM and TDSP (cf. Section II-B)
or mentioned by practitioners themselves.

For all the remarks, we identify the practitioner who
mentioned them by referencing the corresponding ID from
Table I. Given that this is a qualitative analysis, the number of
individuals supporting a particular result has no quantitative
meaning on its relevance.

A. Problem Design

Machine Learning projects at ING start with the definition
of the problem that needs to be solved. Two main approaches
are observed in this study:



1) Innovation push: a stakeholder comes up with a question
or problem that needs to be solved. A team is set up
to design a solution using a suitable Machine Learning
technique.

2) Technology push: a team identifies new data or a set
of Machine Learning techniques that may add business
value and are potentially useful or solving problems
within the organization. This approach aims to optimize
processes, reduce manual work, increase model perfor-
mance, and create new business opportunities.

The problem is defined together with stakeholders and it
is assessed whether using Machine Learning is appropriate
to solve the problem (P01, P14, P15). In the teams of P15
and P14, this is done by collaboratively filling in a project
document with the stakeholders which contains information
like the problem statement, goals, and the corresponding
business case. Also, domain experts outside the teams are part
of this.

B. Requirements

Besides project-specific requirements, many of the require-
ments come from the organization and are applicable to
every Machine Learning application (P15). These requirements
include traceability, interpretability, and explainability (P01,
P04, P07, P15). Together with all other regulatory require-
ments, they pose a big challenge while developing Machine
Learning applications (P04). A natural consequence of regula-
tory requirements is that black-box AI models cannot be used
in most situations (P01, P04, P14). For risk management safe-
ness, only interpretable/explainable AI models are accepted.

Project-specific requirements are often defined by the prod-
uct owner together with the stakeholders (P10). Data require-
ments are said to become more clear while working with
the model (P04). As the users of the system are often no
Machine Learning experts, defining the model performance
requirements is sometimes a challenge (P09, P13).

C. Data Engineering

Interviewees describe that data engineering requires the
major part of the lifetime of a Machine Learning project (P03,
P10, P15) and is also the most important for the success of
the project (P10).

1) Data Collection: Data collection is considered a very
challenging and time-consuming task (P03, P04, P12, P14).
Typical use cases require access to sensitive data, which needs
to be formally requested. ING has an extensive data gover-
nance framework that, among others, assigns data management
roles (e.g. data owner) and rules for obtaining, sharing, and
using data. Each dataset is assigned a criticality rating, to
define the degree of data governance and control required.

There might be people with different access privileges to
data in the same project. This means that, in the exploratory
stages of some projects using critical data, only a restricted
number of team members (e.g., data scientists) are able to
perform an exploratory analysis of data. The remaining prac-
titioners will only have access to the model specification (P04).

A challenge of data collection is making sure that the
(training and test) data collected is representative of the
problem (P13). As an example, if a Machine Learning model
is trained on systems logs, it should be made sure that logs of
all systems are available. Another challenge is merging data
from multiple sources (P10, P12). Going back to the logging
example, different systems may have different logging formats,
but the configurations of these formats can not be altered by
the developers creating the model.

2) Data Understanding: In the data understanding stage,
an assessment is done on the quality of available data and
how much processing will be required to use that data. It
comprises exploratory data analysis, often including graphical
visualizations and summarization of data. According to P09,
the temptation of applying groundbreaking Machine Learning
techniques tends to overlook the importance of understanding
the data.

Data understanding is also an important step to assess the
feasibility of the project. Thus, it entails not only performing
an exploratory analysis, but also a considerable effort in com-
municating the main findings to all the different stakeholders.

3) Data Preparation: After the data is collected and it is
assessed that the data is representative of the problem being
solved, the data is prepared to be used for modeling.

A challenge regarding data preparation is that the same pre-
processing has to be ensured in the development environment
and in the production environment (P08, P09). Data streams
in production are different than in the development environ-
ment and it is easier to clean training and testing data than
production data (P09).

D. Modeling

Model training is mostly done in on-premises environments
such as Hadoop1 and Spark2 clusters (P09) or in generic
systems using, for example, the scikit-learn3 library (P01).
These private platforms are connected with the data lakes
where data is stored, so training can be done on (a copy of)
real production data (P01, P03). The on-premises environment
has no outgoing connection to the internet, so a connection
to other cloud services such as Microsoft Azure4 or Google
Cloud5 is not possible (P08). This means that data scientists
are limited to the tools and platforms available within the
organization when dealing with sensitive data. Also, all project
dependencies need to be previously approved, after which
they are made available in a private package repository (P12),
which contains whitelisted packages that have been internally
audited. Fewer restrictions are in place if Machine Learning

1Hadoop enables distributed processing of large data sets across clusters of
computers Website: https://hadoop.apache.org.

2Spark is a unified analytics engine for large-scale data processing. Website:
https://spark.apache.org.

3Scikit-learn is a Machine Learning library for Python. Website: https://sc
ikit-learn.org.

4Microsoft Azure is a cloud computing service. Website: https://azure.micr
osoft.com/en-us.

5Google Cloud is a cloud computing service. Website: https://cloud.google
.com.

https://hadoop.apache.org
https://spark.apache.org
https://scikit-learn.org
https://scikit-learn.org
https://azure.microsoft.com/en-us
https://azure.microsoft.com/en-us
https://cloud.google.com
https://cloud.google.com


is applied to public data, for example on stock prices. In that
case, external cloud services and packages may be used (P09).

Model training is an iterative process. Usually, multiple
models are created for the same problem. First, a simple
model is created (e.g., a linear regression model) to set as
a baseline (P09). In the following iterations, more advanced
models are compared to this baseline model. If an approach
other than Machine Learning already exists (e.g., rule-based
software), the models are also compared with this.

To keep track of different versions of models, different
teams use different strategies. For example, the team of P08
keeps track of an experiment log using a spreadsheet, in which
the training set, validation set, model, and pre-processing steps
are specified for each version. This approach for versioning
is preferred over solutions like MLFlow6 for the sake of
simplicity (P08, P15).

1) Model Scoring: An implicit sub stage of modeling
is assessing model performance to measure how well the
predictions of the model represent ground truth data.

We define Model Scoring as assessing the performance of
the model based on scoring metrics (e.g., f1-score for super-
vised learning). It is also known as Validation by the Machine
Learning community, which should not be confused with the
definition by the Software Engineering community7 [29], [30].

The main remarks for this stage are related to defining
the right set of metrics (P03, P06, P12, P14, P15, P16).
The problem is two-fold: 1) identify the right metrics and 2)
communicate why the selected metrics are right. Practitioners
report that this is very problem-specific. Thus, it requires a
good understanding of the business, data, and learning algo-
rithms being used. From an organization’s point of view, these
different perspectives are a big barrier to defining validation
standards.

E. Documentation

Each model has to be documented (P02). This serves
multiple goals. It makes assessing the model from a regulatory
perspective possible (P09, P13), it enables reproducibility, and
also can make the model better because it is looked at from
a broad perspective – i.e., a “helicopter view” (P09). It also
provides an audit trail of actions, decisions, versions, etc. that
supports evidencing. Documentation also supports the transfer
of knowledge, for example, new team members or the end-
users which are mostly not Machine Learning experts (P12).
Just like code, documentation is also peer-reviewed (P13).

The content of the documentation differs slightly per de-
partment, but all documentation should at least follow the
minimum standards defined by the model risk management
framework (P06). Some teams extend on this by creating
templates for documentation themselves (P13). In general,
the following is documented when developing a Machine

6MLFlow is a platform to manage the Machine Learning lifecycle. Website:
https://mlflow.org.

7Validation in Software Engineering “is the set of activities ensuring and
gaining confidence that a system is able to accomplish its intended use, goals
and objectives” [29].

Learning application: the purpose, methodology, assumptions,
limitations, and the use of the model. More concretely, a
Technical Model Document is created which includes the
model methodology, input, output, performance metrics and
measurements, and testing strategy (P14). It furthermore states
all faced difficulties and their solutions, plus the main (techni-
cal) decisions (P09). It has to explain why a certain model
is chosen and what its inner workings are, to be able to
demonstrate the application does what the creators claim it
is doing.

F. Model Evaluation

An essential step in the evaluation of the model is com-
municating how well the model performs according to the
defined metrics. It is about demonstrating that the model
meets business and regulatory needs and assessing the design
of the model. One key difference between the metrics used
in this step and the metrics used for Model Scoring is that
these metrics are communicated to different stakeholders that
do not necessarily have a Machine Learning or data science
background. Thus, the set of metrics needs to be extended
to a general audience. One complementary strategy used by
practitioners is having live demos of the model with business
stakeholders (P03, P15, P16). These demos allow stakeholders
to try out different inputs and try corner cases.

1) Model Risk Assessment: An important aspect of eval-
uating a model at ING is making sure it complies with
regulations, ethics, and organizational values (P15, P06). This
is a common task for any type of model built within the
organization – i.e., not only Machine Learning models but also
economic models, statistical forecasting models, and so on.
In the interviews, Model Risk Assessment was mentioned as
mandatory within the model governance strategy, undertaken
in collaboration with an independent specialized team (P06,
P14). Depending on the criticality level of the model, the inten-
sity of the review may vary. Each model owner is responsible
for the risk management of their model, but colleagues from
the risk department help and challenge the model owner in
this process.

During the periodic risk assessment process, assessors in-
spect the documentation provided by the Machine Learning
team to assess whether all regulations and minimum standards
are followed. Although the process is still under development
within ING, the following key points are being covered: 1)
model identification (identify if the candidate is a model
which needs risk management), 2) model boundaries (define
which components are part of the model), 3) model catego-
rization (categorize the model into the group of models with
a comparable nature, e.g. anti-money-laundering), 4) model
classification (classify the model into in the class of models
which require a comparable level of model risk management),
and 5) assess the model by a number of sources of risk.

G. Model Deployment

We observed three deployment patterns at ING:

https://mlflow.org


1) A specialized team creates a prototype with a validated
methodology, and an engineering team takes care of
reimplementing it in a scalable, ready-to-deploy fashion.
In some cases, this is a necessity due to the technical
requirements of the model, e.g., when models are devel-
oped in Python, but should be deployed in Java (P08,
P09, P13).

2) A specialized team creates a model and exports its
configuration (e.g., a pickle8 and required dependencies)
to a system that will semi-automatically bundle it and
deploy it without changing the model (P01, P09).

3) The same team takes care of creating the model and tak-
ing it into production. This mostly means that software
engineers are part of the team and a structured and strict
software architecture is ensured.

Similar to the training environments, Machine Learning
systems are deployed to on-premises environments. A reported
challenge regarding the deployment environment is that differ-
ent hardware and platform parameters (e.g., Spark parameters)
can result in different model behavior or errors (P16). For
example, the deployment environment may have less memory
than the training environment. Furthermore, the resources for a
Machine Learning system are dynamically allocated whenever
needed. However, it is not trivial understanding when a system
is no longer needed and should be scaled down to zero (P01).

H. Model Monitoring

After having a model in production, it is necessary to keep
track of its behavior to make sure it operates as expected. It
implies testing the model while the model is deployed online.
The main advantage is that it uses real data. Previous work
refers to this stage as online testing [?].

The inputs and outputs of the model are monitored while
it is executing. Each model requires a different approach and
different metrics, as standards are not yet defined. In this stage,
practitioners also look into whether the statistical properties of
the target variable do not change in unforeseen ways (P11).
The model behavior is mostly monitored by data science teams
and is still lacking automation (P03, P05, P06, P14). Also
the impact on user experience is monitored when the model
has a direct impact on users. This is mostly done using A/B
testing techniques and can have business stakeholders directly
involved (P03, P10).

Teams resort to self-developed or highly-customized dash-
board platforms to monitor the models (P15, P16). Within the
organization, different teams may have different platforms.
While standardization is in development, for now, we have
not observed solutions that are used across the organization.
A big challenge in making these platforms available is the
fact that each problem has different monitoring requirements
and considerable engineering efforts need to be undertaken
to effectively monitor a given model and implement access
privileges (P15).

8A pickle is a serialized Python object. Website: https://docs.python.org/3/
library/pickle.html.

I. Testing

Testing is a task that is transversal to the whole development
process. It is done at the model level and at the software level.

Testing at the model level addresses requirements such as
correctness, security, fairness, and interpretability. With the
exception of correctness, we have not observed automated
approaches to verify these requirements. A challenge for the
correctness tests is defining the number of errors that are
acceptable – i.e., the right threshold (P14).

For testing at the software level, unit and integration testing
is the general approach. It scopes any software used in the
lifecycle of the model (P07). It enables the verification of
whether the techniques adopted in the design of the Machine
Learning system are working as expected. However, although
unit and integration testing is part of the checklist used for
Model Evaluation, a number of projects are yet not doing it
systematically (P12, P15). As reported by P14, tests are not
always part of the skill set of a data scientist. Nevertheless,
there is a generalized interest in learning code testing best
practices (P12).

J. Iterative Development

At ING, teams adopt agile methodologies. Three practition-
ers (P03, P09, P14) mentioned that using agile methodologies
is not straightforward in the early phases of Machine Learning
projects. They argued that performing a feasibility study does
not fit in small iterations. The first sprint requires spending a
considerable amount of time understanding and preparing data
before being able to deliver any model. On the other hand,
interviewees acknowledge the benefits of using agile (P03,
P14). It helps keep the team focused on practical achievements
and goals. Another advantage is that stakeholders are kept in
the loop (P14).

Typically 2–3 data scientists are working together on the
same model. For this reason, issues with having many de-
velopers working on the same model and merging different
versions of a model have not been disruptive yet.

1) Feasibility Study: The end of the first iteration is also
a decisive step in the project. Based on the outcome of
this iteration there is a go/no-go assessment with all the
stakeholders, in which the project is evaluated in terms of
viability (i.e., does it solve a business issue), desirability (i.e.,
is it complying with ethics or governance rules), and feasibility
(i.e., cost-effectiveness) (P04, P09, P15, P16). This process is
well-defined within the organization for all innovation projects.
According to P04 and P09, feasibility assessments are essential
at any point of the project – it is important to adopt a fail-fast
approach.

K. Education

Interviewees indicated multiple ways in which education
can be improved to make graduates better Machine Learning
practitioners in the industry. Firstly, data scientists should have
more knowledge of Software Engineering and vice-versa (P01,
P11, P14, P16). P11 indicates that data scientists with little
software engineering knowledge will produce code that is

https://docs.python.org/3/library/pickle.html
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harder to maintain and likely increases technical debt. On the
other hand, a software engineer without data science exper-
tise may write clean code, which nevertheless may not add
much business value, because of ineffective data exploration
strategies (P09).

Another remark by practitioners is that education should put
more focus on the process instead of techniques (P08). While
graduates are appreciated for their broad sense of the state-of-
the-art, they must learn how to tackle Machine Learning issues
in large organizations (P08, P10). Academia knows well how
to work with new projects, but in reality, the history of the
company affects how to perform Machine Learning – e.g.,
integration with legacy systems (P08). Graduates seem to un-
derestimate the efforts needed for data engineering, especially
data collection (P03, P09, P12). Also, too much attention lies
solely on the performance of models. In reality, over-complex
models cannot be applied in organizations, because they tend
to be too slow or too hard to explain (P16). These models –
squeezing every bit of performance – are great for data science
competitions as facilitated on Kaggle, but not for the industry,
where more efficient solutions are necessary (P09, P16).

V. DATA SYNTHESIS

In this section, we answer each research question.
RQ1: How do existing Machine Learning lifecycle models fit

the fintech domain?
To answer this research question, we analyze lifecycle

models existing in the literature and adapt them according to
the findings observed in our study. We select two reference
models, as described in Section II-A: CRISP-DM [6] and
TDSP [7]. The changes we propose can be constrained to this
specific case of ING, the fintech domain, or be extendable
to general Machine Learning projects. We justify and define
these constrains for each change.

Most stages we observed at ING naturally fit CRISP-DM
and TDSP. Similarities between CRISP-DM and the lifecycle
of Machine Learning models at ING are Business Under-
standing, Data Understanding, Data Preparation, Modeling,
Evaluation, Deployment. Similarities between TDSP and the
lifecycle at ING are Business Understanding, Data Acquisition
& Understanding, Modeling, and Deployment. Nevertheless,
based on the observations collected in our study, changes to
these models are called for.

We propose the changes of CRISP-DM in Figure 3. We
add three new essential stages: Data Collection (as part of
Data Engineering), Documentation, and Model Monitoring.
Furthermore, we emphasize the feasibility assessment with the
“Go/No-go” checkpoint and a sub-stage Model Risk Assess-
ment, part of Evaluation.

As depicted in Figure 4, we adapt the TDSP model to in-
clude Documentation, Model Evaluation, and Model Monitor-
ing as major stages. We also emphasize Model Risk Assessment
(as part of Evaluation) and a Feasibility Study.

The adaptations of the models will be further elaborated
upon in the following paragraphs.

a) Data Collection: Although CRISP-DM encompasses
Data Collection within Data Understanding and Data Prepa-
ration, our observations reveal important tasks and challenges
that need to be highlighted. As reported in Section IV-C1,
Data Collection requires getting privileges to access data
with different criticality-levels and making sure the data is
representative of the problem being tackled. Our proposition
is that the characteristics observed at ING regarding this phase
generalize to any large organization dealing with sensitive
data.

b) Go/No-go or Feasibility Study: The aforementioned
Feasibility study (cf. Section IV-J) is an essential part of a
Machine Learning project to ensure projects have everything in
place to deliver the long-term expectations. It was a recurrent
step observed in our study, which is aligned with the agile
approach, Fail Fast, promoted at ING and many organizations
alike. It may generalize to other cases, depending on the agile
culture of the organization.

c) Documentation: In our case, documentation revealed
to be a quintessential artifact for a Machine Learning project.
Documentation is the key source of knowledge on how the
model is designed, evaluated, tested, deployed, and so on.
The documentation is used to evaluate, maintain, debug, and
keep track of any other decision regarding the model. It is
hard to replace documentation with other strategies because
stakeholders with a non-technical background also need to
understand the model and have confidence in how the Machine
Learning model is designed. Although documentation is also
important in traditional Software Engineering applications,
the codebase is usually the main target of analysis from au-
dits. In Machine Learning, documentation contains important
problem-specific decisions that cannot be understood in the
code itself. We have no evidence on how this stage generalizes
to other organizations, but believe this to be crucial in any
highly regulated environment.

Business
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Deployment Data

Model
Monitoring

Go
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Evaluation
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Documentation

Data
Understanding

Fig. 3. Refined CRISP-DM model. Additions in red, with bold text.



d) Model Evaluation: Although the original version of
TDSP also included Model Evaluation, it was proposed as an
activity under the Modeling stage. We observed that, when
we refer to assessing the performance of a model (i.e., Model
Scoring), it is indeed part of the Modeling activities. However,
there is an important part of the evaluation that requires more
stable versions of the models. Moreover, it is undertaken with
stakeholders that are not part of the Modeling loop – e.g., live
demos with business managers (cf. Section IV-F). Thus, we
highlight this part of the evaluation as its own stage. This is
also relevant for projects in different domains.

e) Model Risk Assessment: Model Risk Assessment is
crucial to any banking or finance organization. Although
these companies already have a big history of traditional risk
management, it does not cover Machine Learning models. At
ING, this is mandatory for any model.

f) Model Monitoring: Most Machine Learning models
operate continuously and produce outputs online. Our study
shows that the natural step after deployment is Monitoring
– for example, using dashboards – to ensure the model is
behaving as expected. Model Monitoring is not explicit in
neither CRISP-DM nor TDSP, but it is relevant to any domain.

Finally, although not depicted in the proposed lifecycles,
Education is a stage implicit throughout the whole lifecycle.
We observe that universities and courses on Machine Learning
need to provide a more holistic approach to focus on all the
different stages of the lifecycle of a Machine Learning system.

A lifecycle stage that we did not yet observe is the end of
life of a Machine Learning system – i.e., the Disposal stage.
We presume that a disposal stage is not relevant yet due to
the recency of Machine Learning in fintech.
RQ2: What are the specific challenges of developing Machine

Learning applications in fintech organizations?
We highlighted many challenges of developing Machine
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Fig. 4. Refined TDSP model. Additions in red, with bold text.

Learning applications in Section IV. Most challenges fit in
the CRISP-DM and TDSP models. However, two challenges
specifically related to fintech and to our extensions of CRISP-
DM and TDSP stand out: 1) Model Governance and 2)
Technology Access.

Model Governance is on top of the agenda of the case
in this study. A well-defined process is in place to validate
regulations, ethics, and social responsibility in every Machine
Learning model. The relevance of this problem to fintech
organizations goes beyond Machine Learning applications:
math-based financial models have long been deployed under
well-defined risk management processes. Nevertheless, AI
brings the need to revise and recreate model governance that
suits the particularities of models that are now automatically
trained. Model risk experts are now required to have a strong
background in two disjoints fields: 1) Governance, Risk Man-
agement, and Compliance and 2) AI.

Technology Access is the second big challenge in developing
AI in fintech organizations. All AI technologies, tools, and
libraries need to be audited to make sure they are safe to
be used in fintech applications. However, the field of AI is
changing very fast with new tools. Industries that want to
shift towards AI-based systems need to be able to quickly,
yet safely, adopt new technologies.

VI. DISCUSSION

A. Implications

We see the following implications of our results for the
fintech industry and for research.

1) Implications for Machine Learning Practitioners:
Machine Learning practitioners have to be aware of extra
steps and challenges in their process of developing Machine
Learning applications. Although not mentioned in existing
lifecycle models, the undertaking of feasibility assessments,
documentation, and model monitoring, are crucial while de-
veloping Machine Learning applications.

2) Implications for Process Architects: Existing lifecycle
models provide a canonical overview of the multiple stages
in the lifecycle of a Machine Learning application. However,
when being applied to a particular context, such as fintech,
these models need to be adapted. From our findings, we
suspect that this is also the case for other fields where AI is
getting increasing importance. Process architects for intelligent
systems for healthcare, autonomous driving, among many
others, need to look at their lifecycle models from a critical
perspective and update the models accordingly.

3) Implications for Researchers: Researchers could focus
on solving the reported challenges in the Machine Learning
lifecycle with additional tool support and reveal challenges of
the ML lifecycle in other domains by extending the case study
to more organizations and different types of industries.

More automation is required for exploratory data analysis
and data integration techniques. Automation tools are also
needed to help trace documentation back to the codebase and
vice versa. Tools that assist model governance will reduce



bottlenecks in the development process and will help to ensure
Machine Learning models comply with regulations.

Furthermore, solutions to challenges in the ML lifecycle
should be researched. Software testing needs to be extended
and adapted for Machine Learning software to help effectively
test the Machine Learning pipeline at software-, data-, and
model-level. It is also necessary to create holistic monitoring
solutions that can scale to different models in an organization.
There is a need for strategies to help practitioners select
the right set of model scoring metrics. Agile development
practices need to be adjusted for AI projects. Tools featuring
experiment logs (e.g., MLFlow) ought to propose a holistic
solution for version control to keep track of changes in
data, changes in scoring metrics, and executions of different
experiments.

4) Implications for Educators: Education of Machine
Learning should focus on the whole lifecycle of Machine
Learning development, including exploratory analysis with
a focus on statistics, data analysis and data visualization.
Moreover, practitioners with background on both data science
and software engineering are a valuable resource for organi-
zations. This emphasizes the importance of a transdisciplinary
approach to AI education [31], [32] and it is congruent with
previous work that reports that a Software Engineering mindset
brings more awareness on the maintainability and stability of
an AI project [20].

B. Threats to Validity

This subsection describes the threats and limitations of the
study design and how these are mitigated. These limitations are
categorized into researcher bias, respondent bias, interpretive
validity, and generalizability, as reported by Maxwell [33] and
Lincoln et al. [34].

1) Researcher Bias: Researcher bias is the threat that the
results of the study are influenced by the knowledge and
assumptions of the researchers, including the influence of the
assumptions of the design, analysis, and sampling strategy.

A threat is introduced by the fact that participants are
self-selected. This means that there might be employees in
the company which should be included in the study but
are not selected. During the planning phase, participants are
selected with different roles and from different departments
to have an as diverse starting point as possible. Thereafter,
more participants are found by the recommendation of other
interviewees and employees until we reach saturation on the
information we get from the interviews, i.e. until no new
information or viewpoint is gained from new subjects [35].

2) Respondent Bias: Respondent bias refers to the situation
where respondents do not provide honest responses.

The results of the interviews rely on self-reported data.
All people tend to judge the past disproportionately positive.
This psychological phenomenon is known as rosy retrospec-
tion [36]. Furthermore, interviewees who know golden stan-
dards from for example literature may tell how things are
supposed to be, in contrast with how they are in reality. These
biases are mitigated by reassuring interviewees their answers

will not be evaluated or judged and by asking them to think
about a particular project they have been working on.

A methodological choice which can form a threat to validity
is the fact that interviews are recorded. While the participants
themselves permit the recording, they might be extra careful in
giving risky statements on the record and therefore introduce
bias in their answers. This threat is minimized by assuring the
recordings themselves will not be published and all results
which will be published are first approved by the corporate
communication department.

3) Interpretive Validity: Interpretive validity concerns er-
rors caused by wrongly interpreting participants’ statements.

The interviews are processed by field-note taking and mem-
oing. The primary threat to valid interpretation is imposing
one’s own meaning, instead of understanding the viewpoint of
the participants and the meanings they attach to their words. To
avoid these interpretation errors, the interviewers used open-
ended follow-up questions which allowed the participant to
elaborate on answers.

4) Generalizability: Generelizability refers to the extent to
which one can extend the results to other settings than those
directly studied.

This research is conducted in a large financial institution.
Results may not seem generalizable to companies of much
smaller size or different nature. A bank may be prone to more
regulations than most companies and is dealing with more
sensitive data. Still, every company has to comply with privacy
regulations like the European GDPR. This suggests that results
influenced by more strict regulations and compliance are
just as relatable to other industries. Multiple case studies at
organizations of different scale and nature are required for
establishing more general results.

VII. CONCLUSIONS

The goal of this study is to understand the evolution
of Machine Learning development and how state-of-the-art
lifecycle models fit the current needs of the fintech industry. To
that end, we conducted a case study with seventeen Machine
Learning practitioners at the fintech company ING. Our key
findings are: 1) CRISP-DM and TDSP are largely accurate; but
2) there are crucial steps missing from the fintech perspective,
including feasibility study, documentation, model evaluation,
and model monitoring; in particular, 3) the key challenges
comprehend model governance and technology access.

Our research helps practitioners fine-tune their approach
to Machine Learning development to fit fintech use cases.
Additionally, it guides educators in defining learning objectives
that meet the current needs in the industry. Finally, it paves
the way for next research steps in reducing bottlenecks in the
Machine Learning lifecycle, in particular study tool support
for exploratory data analysis and data integration techniques,
documentation, model governance, monitoring, and version
control.
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