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After a brief historical review of early attempts to apply category theory to place sequential 

machines and control systems in a unified frame\iork, \\e present three contributions to the 

theory of machines in a category: the dynamical interpretation functor \\hich relates the response 

of a machine to a sequence of inputs with the reachability map in the system cate_eory: an appli- 

cation of the Krull-Schmidt theorem to provide a parallel decomposition for machines ~rith poly- 

nomial state-transition; and a generalized notion of Hankel matrix which enables one to present 

finiteness conditions for linear systems even v,hen defined over noncommutati\e rings. and for 

certain classes of nonlinear systems characterized by adjoint funstors. 

0. Introduction 

Several workers observed that with a suitable definition of transition-preserving 

homomorphism, sequential machines (cf. Definition 1.5 below) could be regarded 

as the objects of a category [43, 27, 28, 221, but little use was made here of the 

theorems of category theory. Impetus toward further development of machines in a 

category came primarily from the study of tree automata, and from the search for a 

rapprochement between automata theory and linear systems theory. 

The study of tree automata was stimulated by Btichi’s observation in lectures 

around 1960 (but see [15] for a published account of his ideas) that a sequential 

machine dynamics 6 : Q@X-Q could be vievved as an X-indexed family 6, : Q-Q 

of unary operations, and that much of sequential machine theory could be genera- 

lized from the string-processing of sequential machines to tree-processing wherein 

the unary operations above generalize to arbitrary finitary operations. These ideas 

were brought to fruition by [19] and [48], and received categorical expression when 

[25] used the algebraic theories of [40] to formalize a number of basic problems in a 

way that made contact with the growing use of monads/triples/algebraic theories to 

treat universal algebra with category-theoretic methods. This approach was ex- 

ploited by [4, 291. 

Meanwhile, other authors noted similarities between aspects of sequential 

machine theory and the linear systems of control theory [49, 35, 21, and a partial 
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unification -emphasizing algebraic but not category-theoretic methods -of these 

fields was presented in [l 1, 37, 501 (and indeed, authors have referred to the 

diagonal fill-in property of an image factorization system in a category [41, 331 as 

the “Zeiger fill-in lemma”). Kalman’s algebraic theory of linear systems and Schut- 

zenberger’s concern with semigroups and formal power series in the study of auto- 

mata and languages (see [39] for a recent survey) both made seminal contribution to 

[23, 241 elegant (non-categorical) synthesis of results on automata, languages and 

machines. 

One response to the problem of unifying sequential machines and linear systems 

was the study of machines in a closed category [16, 21, 301, with the dynamics 

Q x XO -Q of a sequential machine generalizing to Q@Xo -+ Q. Our own approach 

[5] was to replace - @X0 by a functor X : .?.Xso that a dynamics has the form 

XQ-Q. This idea was suggested by algebras over a monad. We required that such 

X admit free dynamics XX@A--X@A over each .$object A (see 3.6 below). This 

framework includes tree automata and certain non-linear systems (those of 2.2 as 

explained in 3.6) which the closed category approach does not. Essentially the same 

theory as the closed category approach results when X has a right adjoint [7]. 

Results related to the generation of X@ from X have appeared in the category theory 

literature [13] [20] and have been extensively pursued by a number of workers in 

Prague (see [l] for a survey). A related approach was developed in [12]. 

In some sense 1974 saw the coming of age of the study of machines in a category, 

with the convening, at the invitation of Saunders Mac Lane, of the First Inter- 

national Symposium: Category Theory Applied to Computation and Control [ 181 in 

San Francisco in February of that year. In what follows vve have made no attempt to 

survey the developments since then. Rather, we have chosen three topics from our 

own work with the objective of demonstrating how the methodology of describing 

constructions in general categories can lead to a fresh viewpoint on an old problem. 

We turn now to a specific introduction of the three sections below. 

The theory of discrete-time systems deals with state-evolution equations such as 

q(O) = 40, 

q(t+ 1) = W(cl(r),Nt)), 

Y(f) =/%7(f)) 

with x(t), q(t), y(f) respectively the input, state and output at time f. Each class oi 

such equations (e.g. “linear”) is usually such that the data defining the equations 

consists of a configuration of morphisms in a particular category (e.g. compare 1.3, 

1.2) and most work in “machines in a category” has dealt exclusively with the latter. 

A very elementary rapprochement between machines in a category and state- 

evolution equations is presented in the first section. It would have been nice to 

develop our early papers from this perspective but, alas, we did not formulate the 

dynamical interpretation functor until very recently [8]. 

The “system algebras” of Section 2 are natural state-space models for a large 

class of nonlinear systems. While the Krull-Schmidt theorem of universal algebra 
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[17] has restrictive hypotheses, it applies nicely to system algebras to prove, in 

effect, that finite nonlinear systems as in 2.3 admit unique decoupling into non- 

interacting indecomposable subsystems. This application is a pleasant contradiction 

to the often-made assumption that universal algebra is at best a convenient way to 

organize superficial aspects of already-understood structures. 

While not pursued in Section 2, we should like to mention here that system n- 

algebras (by which we mean, in the notation of 2.2, that Fk = 0 for k> n) provide a 

new extension of the concept of module over a ring. To be specific we will assume 

n = 2. The idea is based on the observation that a symmetric n-linear map is deter- 

mined by its unary specialization. Thus a sysrem 2-ring is a real vectorspace S 

together with a multiplicative monoid structure and two distinguished constants L, 

B (for “linear” and “bilinear”) satisfying the following six axioms with r, 5, x, y, ; 

in S, a, p in fR: 

(r+S)X=fX+SX, 

(ar)x = (T(fX), 

L(x+y)=Lx+Ly, 

L(ax) = CILx, 

B(x+y+i)-B(x+y)-B(x+z)-BCV+Z)+BX+B_P+BZ=O, 

B(m + py) = c@B(x + y) + (~(a - /?)Bx + b(/l- a)By. 

An S-module is a real vectorspace X on which S acts subject to the same sis axioms 

except now x,y,z are in X. Then S-module = system 2-algebra. Kalman’s [37] 

module-theoretic approach to linear systems is concerned with the special case 

S= R[z], L = z, B=O. In general, S is only a near-ring. The importance of L and B 

and the commutativity of addition would seem to say that further development will 

be largely disjoint from the study of [42]. 

Turning to Section 3, a well-known result for systems over a commutative ring is 

that a Hankel matrix has a finitely-generated realization if and only if it satisfies a 

polynomial recurrence relation. The result does not extend to noncommutative rings 

owing to its dependence on the Cayley-Hamilton theorem, but some authors have 

studied the class of rings for which the theorem holds. The contribution of the 

categorical approach is to point out that “recurrence polynomial” may be modified 

to ‘recurrence morphism’ to obtain a general theorem characterizing finite realizea- 

bility which then specializes to characterize finitely-generated realizeability for 

arbitrary rings. Section 3 also considers the question of how to formulate the 

Hankel matrix of certain nonlinear systems. Some workers have taken the condition 

H$+, =H;,+’ for the linear Hankel matrix as characteristic. We consider this mis- 

guided, arguing that Hz,, and Hy,’ ’ should correspond under adjointness, a fact 

obscured in the linear setting where the adjoint functors involved are the identity 

functors. 
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1. The dynamical interpretation functor 

1.1. References. Background, linear systems theory: [36, 37, SO]. 

Background, linear systems as automata: [2, 11, 23; Ch. XVI, 37, 321. 

Background, linear systems over commutative rings: [23; Ch. XVI, 441. 

Background, group machines: [3, 141. 

Background, systems in a category: [18]. 

Our work: [5-91. 

Related work: [l, 12, 16, 21, 301. 

1.2. Definition. A discrete-time linear system is (X, G, Q, Y, p) where 

Q is a finitely-generated IR[:]-module, the sfate module, 
G : X-Q is R-linear, the input map; X is finite dimensional, 

/3 : Q- Y is R-linear, the oufpuf map; Y is finite dimensional. 

1.3. Definition. The dynamical interpretation of the system of 1.2 is as follows. Let 

m,n,p be the respective R-dimensions of X, Q, Y. We think of Q as the internal state 

space of a system with m input lines and p output lines. The endomorphism 

F : Q-Q defined as the action of the polynomial z is the state-transition map of the 

“unforced” system. To “control” the system, an input x(t) in X is to be injected 

into the system for each time t = 0, 1,2, . . . . The system then evolves according to the 

equations 

q(0) = 0, 
q(t + 1) = Fq(t) + Gs(t), C.4) 

r(t) =&7(r) 

where q(f) E Q is the state at time t and y(t) E Y is the output at time f. 

The equations model, for example, digitally monitored controlled physical 

systems governed by linear differential equations with constant coefficients. 

1.4. The input/output map. A major reason why linear systems are better under- 

stood than many other classes is that there exists a simple closed formula expressing 

the relationship betueen the output y(t) and the input sequence (*y(r) : 0~ r<t), 

namely 
I-I 

y(f)= 1 F”Gx(t-k- 1) (B) 
i -ii 

1.5. Automata. Given sets A,X define the evolution category Ev(A,,Y) lvhose 

morphisms are aclion homomorphisms as in (C). 

(Cl 
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If X’ denotes the free monoid generated by X with unit /1, define 

for &,~(a, w,x) =(a, wx), T~,,~(cI) =(a,/l). This is the initial object of Ev(A,X). 

Indeed the two commutativities of(C) defining the unique r : i?~.x-+(Q,d, r) are 

r(a, A) = r(a), r(u, wx) = 6(r(W),.Y) (D) 

so that r(u, w) is the state reached in response to input string w with initial state r(a) 

and r is called the reuchubilify map of (Q, S, r). We may also involve an output map 

p : Q- Y, resulting in the inpuf/oufput response map fir : A xX*- Y. 

1.6. Are linear systems automata? Many authors view linear systems as automata 

for which Q,X, Y,A are vector spaces, A =O, and all maps are linear. Indeed, since 

coproducts are products in the category of vector spaces, a linear map 6 : Q Xx-0 

is tantamount to an R[;]-action F : Q-Q together with a linear map G : X-Q. 

Given such F, G we have 6(q,a) = Fq+ Gu so that (with A = 0) the automaton 

input/output response pr : X l -+ Y is practically the same as (B). To be more 

precise, let i : X[z]-(Q, F) be the unique R[i]-linear extension of G, giving rise to 

the R-linear input/output map /3i : X[z] - Y. Then, at least at the level of functions, 

diagram (E) commutes. Here, x is the function 

(El 

defined by #o, . ..., vr_ I) = x (x~z’-~- I: 0~ 7< 0. The function x is not an isomor- 

phism (vvhile it is surjective, x(O”w) =x(w)). hloreover, the ‘String-reversing’ 

character of x is essential. 

1.7. Group systems. While the need for diagram (E) provides sufficient motivation 

for defining x as we have in the linear system context, even a mild generalization of 

linear systems creates a challenge. Brockett and Willsky [ 141 considered systems (A) 

in which F, G,P are group homomorphisms. Mimicking the linear case, such a group 

system induces a (1,X)-automaton with initial state the group unit and with state- 

transition formula d(q,x) = (Fq)(Gx) in which group multiplication replaces vector 

addition. In the linear case, the image of r (the “reachability subset”) is the same as 

that of the linear map i because x is surjective, so is a subspace. For group systems, 

the reachability subset need not be a subgroup. Brockett and Willsky regarded this 

as pathological because they formulated r : X *-Q without seeing a need for i or x. 

This “pathology” challenges us to define diagram (E) in more general terms. 
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1.8. The dynamical interpretation functor. .A srare-space description [8] is (.-/, A. X, D) 
where 

.:iis a category (the systems cafegory) with an initial object R, 
A, X are sets, 
D : :+Ev(A, X) is a functor, the dynamical interpretation functor. 

The encoding map is the unique action homomorphism x : l?,_t.x-Dfl. For Z in -,. 

the unique -+-morphism i : Q-Z is called the absrracf reachabiliry map of ,Z 
whereas the unique action homomorphism r : R,I,,v-DZ provides the reachability 
map of Z. The abstract version of diagram (E) is 

which commutes because R.4.x is initial. 

1.9. Example: the linear and group cases. For X an object in any category J’ with 
countable copowers X5, let .Y be the category of (G, Q,F) with Q an object of .r; 
G : X-Q, F : Q-Q and with morphisms as shown in (G). Then (ino, X9,;) is the 
initial object of .?/ where ; in, = in,- I defines 

(C) 

z. It requires more structure to define a dynamical interpretation functor however. 
If .J’ is vector spaces, define D : .Y-Ev(l,X) by D(G,Q,F)=(Q,d,O), d&x) 

=Fq+Gx. Similarly for group systems (so that .~=groups) with D(G,Q,F) 

= (Q, 6, e) and 6(q,x) = (Fq)(Gx). Functoriality is easily verified. 
The linear encoding map is that of(E). In the group case, X5 is the free product of 

denumerably-many copies of X and x : X l ,X5 is described by ~(xo, . ..xr- 1) 
= (XO, t - l)...(x,_ I, 0). (We regard Xs as the set of irreducible strings with symbols in 
{x~X: xfe} x IN in the usual way.) 

2. An application of the Krull-Schmidt theorem 

2.1. References. [9, 17, 23; Ch. XVI, 37, 461. 

2.2. System algebras. A system algebra is a pair (Q, F) with Q a vector space and 
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F=(Fk. : k= 1,2,3...) a sequence with Fk : @--+Q symmetric and k-linear. We 

regard system algebras as constituting an equationally-definable class. The 

operations are those for vector spaces (nullary 0, unary scalar actions, binary +) 

and the Fk together with the equations defining vector spaces and those forcing the 

Fk to be symmetric and k-linear. 

For each vector space X and integer n define a state-space description ( -4 1, X, D,) 

as follows. Let ‘ii have objects all (G, Q, F) with G : X-Q linear and (Q, F) a system 

algebra. -/is itself an equationally-definable class (add the elements of X as nullary 

operations and then add the equations that express the linearity of G.) Each such -1 

is then a category with an initial object R (the free algebra generated by the empty 

set.) Define D,(G, Q,F) so that the initial state is the zero element 0 : 1 -Q and with 

state-transition &(q,~) =pnq+ Gx where p,, : Q-Q is the polynomial 

pnq=Ftq+Fz(q,q) + ... +Fn(q, . . ..q) 

Functoriality is easily checked. 

(A) 

2.3. System algebras from differential equations. A broad class of ordinary differ- 

ential control systems are governed by equations of the form 

4(t) = P(q(t)) + G&(O), 

Y(f) =/%4(f)) (B) 

with state q(f) in IR”, input x(t) in P”, output y(f) in IF?, G,/3 linear and P a poly- 

nomial satisfying P(0) = 0. A discrete-time approximation results by fixing a time 

“quantum” d : q(f +A) - q(f) +dg(f). The discretized system then evolves 

according to the equations 

q(r+d) =P(q(f)) +dG(x(t)), 

Y(f) = B(q(t)) (0 

where p(q) = q + A P(q) is again a polynomial satisfying p(0) = 0. If p has degree n 

there exist unique symmetric k-linear maps Fk such that 

p(q)=Fi(q)+Fdq,q)+...+Fn(q,...,q). 

Set F,=O for v>n. 

2.4. The parallel decomposition theorem 191. Let (Q, F) be a system algebra with Q 

finite-dimensional and Fk = 0 for all but finitely-many k. Then a decomposition of 

(Q, F) into a product of system algebras each of which cannot be further so decom- 

posed is unique up to reordering. 

This result, well known for linear systems as a corollary of the theorem of Remak- 

Krull-Schmidt for modules over a principal ideal domain, is basic to any theory of 

“parallel decoupling”. The proof follows quickly from the Krull-Schmidt theorem 

for universal algebras. 
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3. Finiteness for state-modules and nonlinear generalizations 

3.1. References. Background, systems over a ring: [23; Ch. 10, 38, 44, 453. 

Background, Hankel matrix: [14, 26, 34, 37. 471. 

Background, free dynamics: [I, 301. 

Our work: [7, 81. 

3.2. The Hankel matrix. Systems over a ring are linear systems as in 1.2 but 

replacing R with an arbitrary ring R. It is standard to analyze such systems in terms 
. . 

of the infinite matrix Hz, : A’-+ Y of R-linear maps given by Hii, =/3F’” “‘G, called 
the Hankel matrix of (X, G. Q, Y,p). Two standard results are: 

3.3. Hankel realization theorem. Forfi.ued X, Y, an arbitrar.v matrix Hz, : X- Y is 
the Hankel matrix of some system if and only if Hi:, _ , = HE,- ’ for nil tn, n. 

3.4. Finiteness theorem. Assume R is commutative. Then CI Hankel marrix 
Hz, : X- Y is realized by a system with finirel.v-generated state module if and only if 
there exist 1.0, . .., &- I E R yielding the “recurrence formula” 

Hz= C &Hz for all n. 
h =O 

(.4) 

This theorem does not generalize to arbitrary rings because of the failure of the 

Cayley-Hamilton theorem. In 3.9 below u-e shall reformulate the notion of recur- 

rence so that the finiteness theorem holds for arbitrary rings. But first we consider 

an important example which motivates a more general formulation of the Hankel 

matrix itself. 

3.5. Internally-bilinear systems. An inrernali2v-bilinear system is (A, r, Q, X, 6, Y, p) 
with A, Q, X, Y vector spaces, T : A -Q, p : Q- Y linear and 6 : Q x X-Q bilinear. 

For fixed A, X the system category .F/ has objects (f, Q, S) with morphisms as in 

(1 .C) with f linear and the dynamical interpretation functor D : .:I-Ev(A, X) is the 

obvious forgetful functor. (The initial object of .:/is described more generally in 

3.6.) These systems are the subject of much current research. The problem of 

formulating the Hankel matrix for internally-bilinear systems is far from settled [26, 

34, 471 and our solution (E) below differs from others. 

3.6. A general class of system categories. Let X : .I ‘--t j’be a functor. An X-dynamics 
is (Q,& with 6 : XQ-+Q in .W. The morphisms f : (Q,&-(Q’,s? of the resulting 

category Dyn(X), called X-dynamorphisms, satisfy (cf. the right hand squares in 

(l.C, G): 

XQ 
2 

* Q 

(B) 



The important functors X are those with the property that Dyn(X) has a left 

adjoint. LVe called these inpuf processes in our papers [5, 61 later changing the name 

to recursion processes in [lo] for the reasons explained there. These are called 

varierors by Adamek and Trnkova [l] who (together with some of their colleagues in 

Prague) proved the remarkable result that X : Set-Set is a varietor if and only if 

card(XS)<card(S) for arbitrarily large sets S. U’e shall use the term ‘&recursion 

process” in this section, and will use the notations 

‘,JA,y@A, ,,yX@“‘A 2 XSA 

for the free dynamics over A. Notice that for each fixed A in 8 the comma category 

of (r, Q, 6) with (Q, 6) in Dyn(X), 7 : A-Q in 3’ has (q.4, X”A, u.4) as initial object 

and, so, is a candidate to be the system category of a state-space description. Indeed 

this occurs in the examples above. In 1.5, take D = id : Ev(A, X0)-Ev(A. XO) (since 

X is now a functor, the earlier set X must be denoted X0) and take X,4 =.4 xX0. In 

1.9, take X to be the identity functor on vector spaces (and similarly for group 

systems). For the nth system algebra category of 2.2 take .x to be vector spaces, 

change the notation of the X of 2.2 to something else, and define the functor X by 

where @ denotes symmetrized tensor product. For the internally-bilinear systems of 

3.5, take .%‘=vector spaces, XV= V@Xo. 

3.7. The Hankel matrix of an adjoint system. A very similar theory to the closed- 

category approach of [16, 21,301 results if the functor X of 3.6 has a right adjoint 

(although this restriction would exclude the systems algebras example above as well 

as tree automata [5]). Indeed, assume that I’ has countable products and coproducts 

and provide .r’ with an image factorization system. Then if X : .J’+.J has a right 

adjoint Z : .ir’-+ .I’, X is necessarily a recursion process with X@‘A = lL(X”,-l : n I 0). 

This subsumes the examples - xX0, - 8x0 mentioned in 3.6 and provides a 

general prescription for the initial object of the system category induced by A in I 

and the functor X. 

An adjoint system, then, for X, Z : .Y--.;Yas above, is z= (A, r, Q, S, Y;p) with 

‘4--I, Q, xQLQv QL Y. (C) 

Given such C define T,,, : X”‘A -Q, on : Q-Z” Y by 

f0 = 5, 00=p, 

r,,,fI=XX’n-X -Q, “‘, Q ’ a,-,=QAZQaZZnY (D) 

where A corresponds to 6 under adjointness. The Hankel matrix of ,E is then defined 

by 

H;=XpnALQ--%+ZflY (E) 
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3.8. Hankel realization theorem for adjoint systems. A bisequence of x’-morphisms 
ofform Hk : XmA -Z” Y is the Hankel matrix of some adjoint system if and only if 

Hi_ , and Hy’ correspond under adjointness. 

3.9. Row recurrence. The Hankel matrix HG of an adjoint system is row-recurrent 
(of degree d) if there exists a Smorphism g as shown in diagram (F) below. In the 

R-linear case (so that X= id = Z), (F) is 

fi(XmA : ()sm<d) H:,:oBm<dl ,z”y 

F) 

equivalent to the existence of R-linear em : A -A (0 I m -cd) satisfying 

d-l 

%(a) = C H:&(a) for all n. 
m =o 

By specializing a general result for adjoint systems we were able to prove [8]: 

3.10. Theorem. Let R be any ring and assume A is a finitely-generated {projecrive} 
dfree} R-module. Then the Hankel matrix H$ : A- Y has a realization with 
(finitely-generated) (free finitely-generated) state module if and only if H; is row 
recurrent. 
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