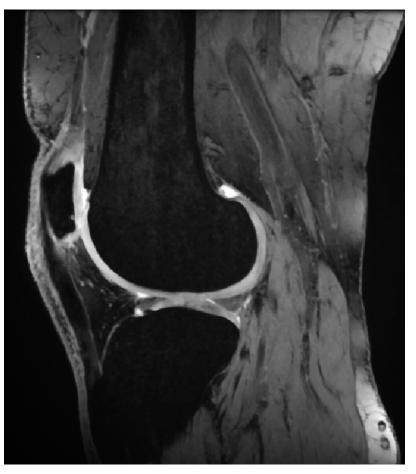
Why we should use Jupyter notebook in medical image analysis

Serena Bonaretti, PhD Transparent Musculoskeletal Research <u>https://tmskr.github.io/</u>

serena.bonaretti.research@gmail.com @serenabonaretti

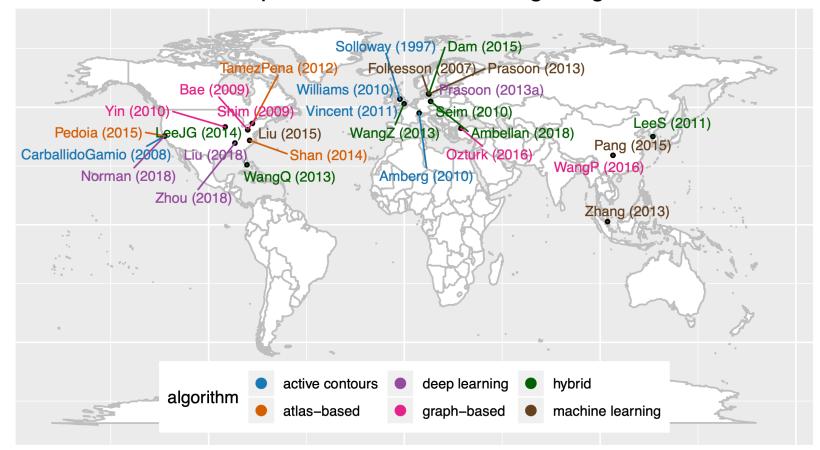

Slides at: tinyurl.com/TOR2020jupyter

Sharing my experience with Jupyter notebook in musculoskeletal imaging

I had to segment and analyze some knee images...

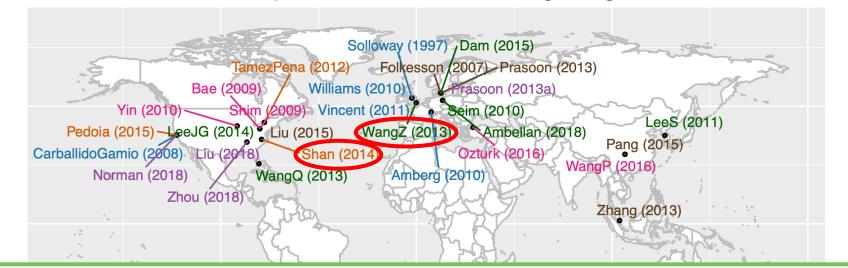
 Collaboration with scientists with limited experience in medical imaging

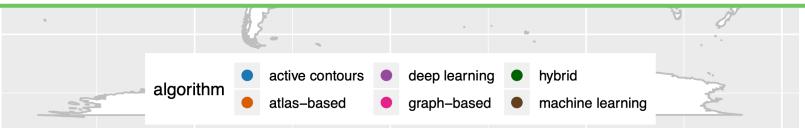
I had to segment and analyze some knee images...


- Collaboration with scientists with limited experience in medical imaging
- They **needed code** to extract measures of OA progression
 - Femoral cartilage thickness and relaxation times

First thing: Segmentation!

I looked for existing algorithms around...


Literature map of femoral knee cartilage segmentation


Bonaretti S, Gold GE, Beaupre GS (2020) pyKNEEr: An image analysis workflow for open and reproducible research on femoral knee cartilage. PLoS ONE 15(1): e0226501

I looked for existing algorithms around...

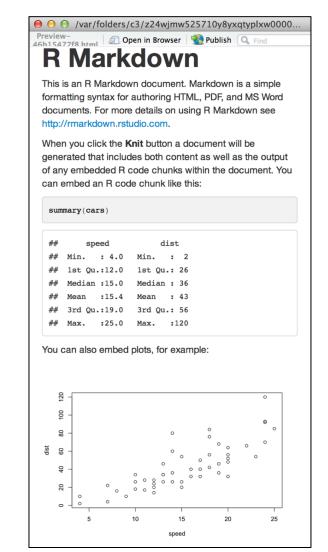
Literature map of femoral knee cartilage segmentation

Out of 29, only 2 implementations were open source!!!

Bonaretti S, Gold GE, Beaupre GS (2020) pyKNEEr: An image analysis workflow for open and reproducible research on femoral knee cartilage. PLoS ONE 15(1): e0226501

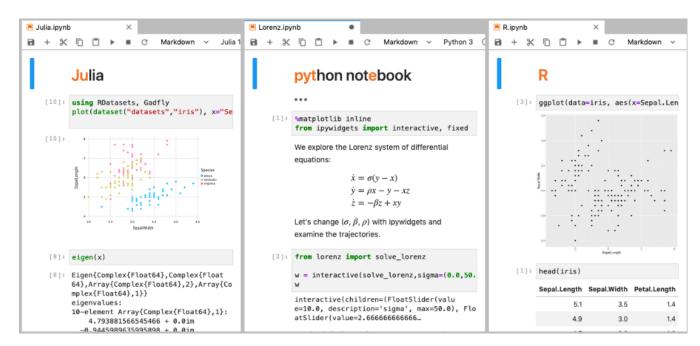
What to do?

- I was not interested to create another algorithm
 - There were already 29 around!
- I needed to create a *pipeline* to preprocess, segment, and analyze knee
 - Use of already existing algorithms
 - Focus on "putting the pieces together" and ease of use


Somehow I started...

- Initially, I wanted to use Matlab
 - It was what I knew, and I already had some code
 - But it is not open source! Not everybody has a Matlab license
 - I did not want to write new closed source code (and be the 28th!)
- So I started in C++
 - I could use open libraries: ITK and elastix
 - But I had to create executables in Windows I work in MacOS!
 - Command lines are not ideal for people with limited coding experience and coding in C++ is hard for me
 - Pipeline still fragmented (e.g. code vs. visualization)

But I was still looking for a better solution...


 A statistician showed me reproducible workflow using R markdown

But I was still looking for a better solution...

- A statistician showed me reproducible workflow using R markdown
- There was something similar for python, something new which was getting more and more popular...

Jupyter notebook!!!

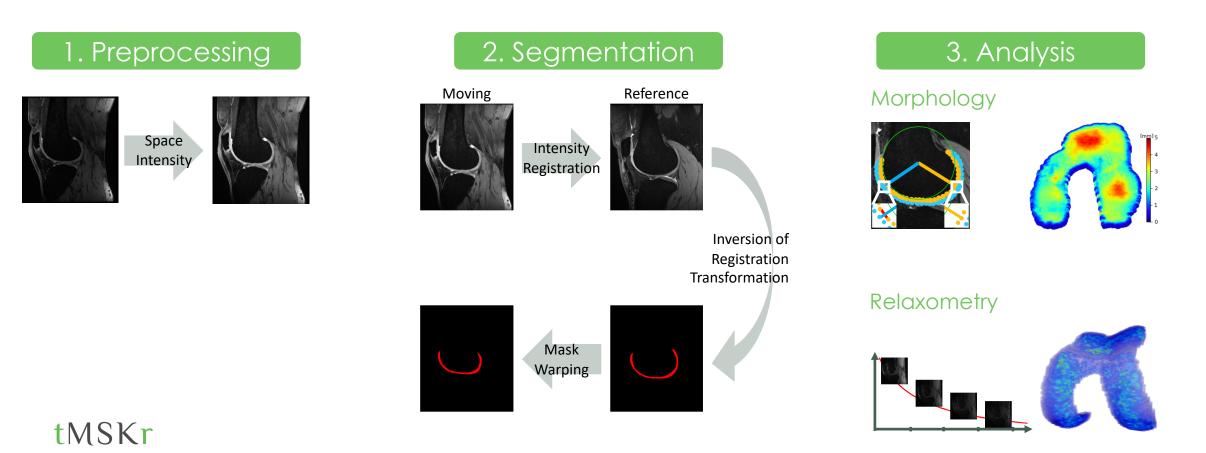
What is Jupyter notebook?

- Web-based application integrating:
 - Narrative: text, equations, figures
 - Live code
 - Several kernels: python, C++, R, ...
 - Visualizations (graphs, 3D renderings, ...)
- Favors:
 - Reproducibility of computations
 - Sharing among researchers
 - Integration in publication
- Advantages:
 - Works for all OS
 - Runs on laptops and clusters

File Edit	View Insert Cell Kernel Help	Python 3 (
* *	12 15 ↑ ♥ ■ C Code Cell Toolbar: None	
	Exploring the Lorenz System	
	In this Notebook we explore the Lorenz system of differential equations:	
	$\dot{x} = \sigma(y - x)$	
	$\dot{y} = \rho x - y - xz$	
	$\dot{z} = -\beta z + xy$	
	This is one of the classic systems in non-linear differential equations. It exhibits a rar complex behaviors as the parameters (σ , β , ρ) are varied, including what are known solutions. The system was originally developed as a simplified mathematical model to atmospheric convection in 1963.	as chaotic
In [7]:	interact(Lorenz, N=fixed(10), angle=(0.,360.), σ =(0.0,50.0), β =(0.,5), ρ =(0.0,50.0))	
×	angle 308.2	
	max_time 12	
	σ10	
	β 2.6	
	P 28	

So where did I start?

- I had to learn:
 - Jupyter and its environment
 - python
 - python packages:
 - numpy, matplotlib, SimpleITK


- I had to implement a workflow:
 - Image preprocessing
 - Cartilage segmentation
 - Analysis

- Online tutorials YouTube
- Blogs
- Live coding, e.g.
 - <u>https://www.learnpython.org/</u>
 - <u>https://www.w3schools.com/python/</u>
- I started by:
 - Translating the code I already had
 - Focus on language, not algorithm
 - Looking for solutions online
 - Blogs, stack overflow, etc.

And this is how created pyKNEEr!

• An image analysis workflow for **open** and **reproducible** research on femoral knee cartilage

Structure of PYKNEEr

- Each part has one (or two) Jupyter notebooks as a user-interface
 - From data upload to result visualization in one file
- "Behind" the notebooks there is the pyKNEEr python package
 - Divided in modules
 - Contains core functions
- User has just to load her/his own images and run the notebook

■ pykneer_example_2.ipynb × ■ + % □ □ ► ■ C Code ·

Relaxometry - Extended Phase Graph (EPG) modeling

Image information

Inputs:

- input_file_name contains the list of the images used to to calculate T_2 using EPG modeling - output_file_name contains average and standard deviation of the T_2 maps

input_file_name = "./image_list_relaxometry_EPG.txt"
output_file_name = "EPG_demo.csv"

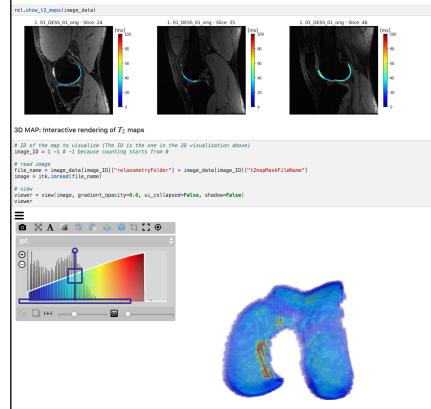
Read image data

• image_data is a dictionary (or struct), where each cell corresponds to an image. For each image, information such as paths and file names are stored

image_data = io.load_image_data_EPG(input_file_name

01_DESS_01_orig -> information loaded for 1 subjects

Calculate T_2 maps


rel.calculate_t2_maps(image_data, n_of_cores)

01_DESS_01_orig -> T2 maps calculated -> The total time was 2.54 seconds (about 0 min)

Visualize T_2 maps

2D MAP: For each image, fitting maps at medial and lateral compartments and flattened map

The flattened map is an average of neighnoring voxels projected on the bone surface side of the femoral cartilage

14

Link to GitHub repository

Relaxometry of Femoral Knee Cartilage

Exponential and linear fitting

Exponential fitting is computationally expensive but more accurate
 Linear fitting is faster as data are transformed to their log and then linearly interpolated. However, linear fitting is less accurate because the nonlinear logarithm transform provides larger weight to cutiliers

The fitting is computed:

pyKNEEr

 directly on the acquired images or after right registration of the following exho to the first exho voxew wise, for 6 each voxel first Echo Times (alcom tag; (0018,0081)) are the x-variable and the voxel intensities in each acquisition are the y-variable only in the margin volume to have short computation time

Image information

Inputs:

input_file_name contains the list of the images used to calculate the relexation maps method is 0 if fitting is linear, 1 if fitting is exponential registration_laips is for no registration. To frigit registration output_file_name contains average and standard deviation of the fitting maps

In []: input_file_name = "insoc_list_relaxometry_fitting_OAll_72.txt"
nethod_flag = 1 #0 = Linear, 1 = exponential
registration_lag = 1 #0 = on rigid registration, 1 = execute rigid registration
n_of_cores = 4
output_file_name = "exec_file_ligned_OAll_72.csv"

Read image data

 image_data is a dictionary (or struct), where each cell corresponds to an image. For each image, information such as paths and file names are stored

In []: image_data = io.load_image_data_fitting(input_file_name, method_flag, registration_flag)

Calculate fitting maps

Align acquisitions

Images are aligned rigidly to remove occational subject motion among acquisitions Note: This step is optional and can be skipped, given that:

When images are aligned, the fitting is calculated on interpolated values obtained with rigid registration
 When images are not aligned, the fitting is calculated on original intensities, but images might not be aligned

In []: if registration flag == 1:

rel.align_acquisitions(image_data, n_of_cores)

Compute the fitting

In []: rel.calculate_fitting_maps(image_data, n_of_cores)

Visualize fitting maps

2D MAP: For each image, fitting maps at medial and lateral compartments and flattened map The flattened map is an average of neighnoring voxels prejected on the hone surface side of the femoral carilian

in []; rel.show fitting maps(image data)

3D MAP: Interactive rendering of fitting maps

(The error message "Error creating widget: could not find model" can appear when the notebook is moved to a different folder)

In []: # ID of the map to visualize (The ID is the one in the 2D visualization above)
image_ID = 1 -1 # -1 because counting starts from 0

read image file_name = image_data[image_ID]["relaxcmetryFolder"] + image_data[image_ID]["mapFileName"] image = itk.imread(file_name)

view
viewer = view(image, gradient_opacity=0.0, ui_collapsed=False, shadow=False)
viewer

GRAPH: Dots represent the average value of fitting maps per image; bars represents the standard deviation

In []: rel.show_fitting_graph(image_data)

TABLE: Average and standard deviation of fitting maps per image The table is saved as a .csv file for subsequent analyisis

In []: rel.show fitting table(image data, output file name)

References

Dependencies

[1] Bottwar, A., Wheaton A.J., Gougoutas A.J., Akellis S.V., Regatte R.R., Changurdis S.R., Roddy R., Invito, *Timssurrented of TJ disensition in the name brain at 15 Stable.* J Magn Reson Imaging, Apr;19(4):043–0204.
[2] U.X., Benjamin Ma, C., Link T.M., Castlio D.D., Blurnerikuntz G., Lozaro J., Carbalitó-Samo J., Ries M., Migurdar S. Intuor, et al. T and a discussion of a discussion at the second stable and the second stabl

tMSKr

n [: || Wload_ext watermark || watermark -v -m -p SimpleITK,matplotlib,numpy,pandas,scipy,itkwidgets,multiprocessing

https://github.com/sbonaretti/pyKNEEr

📮 sbonare	tti / pyKNEEr				
<> Code	Issues 0	1 Pull requests 0	Projects 0	💷 Wiki	Insights
An image an Manage topics	-	for open and reprod	ucible research or	n femoral k	nee cartilage
টি 13	2 commits	្រៃ 1 branch	ି ୦	releases	4
Branch: mas	ter • New pull	request			Create new
T sbonare	etti Update README	.md			
code					
docs					
docs	ion				
publicat	re				

Link to GitHub repository

2 Link to documentation

pyKNEEr

Relaxometry of Femoral Knee Cartilage

Exponential and linear fitting

 Exponential fitting is computationally expensive but more accurate · Linear fitting is faster as data are transformed to their log and then linearly interpolated. However, linear fitting is less accurate because the nonlinear logaritmic transform provides larger weight to outliers

The fitting is computed:

· directly on the acquired images or after rigid registration of the following echo to the first echo · voxel-wise, i.e. for each voxel the Echo Times (dicom tag: (0018,0081)) are the x-variable and the voxel intensities in each acquisition are the v-variable only in the mask volume to have short computation time

Image information

Inputs:

· input file name contains the list of the images used to calculate the relaxation maps method is 0 if fitting is linear, 1 if fitting is exponential registration_flag is 0 for no registration, 1 for rigid registration output_file_name contains average and standard deviation of the fitting maps

in []: input_file_neme = "image_list_relaxometry_fitting_0All_72.txt"
nethod_flag = 1 #0 = Linesr,] = exponential
registration [lag = 1 # 0 = no rigid registration]
n_of_cores = 4
output_file_neme = "exo_file_aligned_0All_72.csv"

Read image data

· image data is a dictionary (or struct), where each cell corresponds to an image. For each image, information such as paths and file names are stored

n []: image data = io.load_image_data_fitting(input_file_name, method_flag, registration_flag)

Calculate fitting maps

Align acquisition

Images are aligned rigidly to remove occational subject motion among acquisitions

Note: This step is optional and can be skipped, given that:

· When images are aligned, the fitting is calculated on interpolated values obtained with rigid registration · When images are not aligned, the fitting is calculated on original intensities, but images might not be aligned

In []: if registration flag == 1 rel.align acquisitions(image data, n of cores)

Compute the fitting

In []: rel.calculate_fitting_maps(image_data, n_of_cores)

Visualize fitting maps

n []: rel.show fitting maps(image data)

2D MAP: For each image, fitting maps at medial and lateral compartments and flattened map

```
The flattened man is an average of neighnoring voxels projected on the bone surface side of the femoral cartilage
```

3D MAP: Interactive rendering of fitting maps (The error message "Error creating widget; could not find model" can appear when the notebook is moved to a different folder

```
In [ ]: # ID of the map to visualize (The ID is the one in the 2D visualization above)
image_ID = 1 -1 # -1 because counting starts from 0
```

read image file_name = image_data[image_ID]["relaxometryFolder"] + image_data[image_ID]["mapFileName"] image = itk.imread(file_name)

view
viewer = view(image, gradient_opacity=0.0, ui_collapsed=False, shadow=False)

GRAPH: Dots represent the average value of fitting maps per image; bars represents the standard deviation

In []: rel.show fitting graph(image data)

TABLE: Average and standard deviation of fitting maps per image

The table is saved as a .csv file for subsequent analysis

In []: rel.show fitting table(image data, output file name)

References

Dependencies

[1] Borthakur A., Wheaton A.J., Gougoutas A.J., Akella S.V., Regatte R.R., Charagundia S.R., Reddy R. In vivo measurement of 7 Charles A, Masson RG, Coogous AC, Poeta V F, Heger KH, Consequence CH, Hody H, <u>In Hyperheader H, Coogous A, Coogues A,</u> and T2 mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI, Osteoarthritis Cartilage. Jul;15(7):789-97. 2007

tMSKr

n [:]: Nload_ext watermark %watermark -v -m -p SimpleITK,matplotlib,numpy,pandas,scipy,itkwidgets,multiprocessing

https://sbonaretti.aithub.io/pyKNEEr/

pyKNEEr	pyKNEEr
Installation	
Preprocessing	
Segmentation	
Morphology	
Relaxometry	
FAQ	MR acquisition Segmentation Cartilage thickness T ₂ map
	pyKNEEr is an image analysis workflow for open and reproducible research on femoral knee cartilage
	It is implemented in python with Jupyter notebooks

17

pyKNEEr

Relaxometry of Femoral Knee Cartilage

Exponential and linear fitting

Exponential fitting is computationally expensive but more accurate
 Linear fitting is faster as data are transformed to their log and then linearly interpolated. However, linear fitting is less accurate because the nonlinear logarithmic transform provides larger weight to outliers

The fitting is computed:

 directly on the acquired images or after right registration of the following serbs to the first sebs voxew wise, for seah voxel the ECho Times (alcom tag; (0018,0081)) are the x-variable and the voxel intensities in each acquisition are the y-variable only in the mark volume to have short computation time

Image information

Inputs:

input_file_name contains the list of the images used to calculate the relaxation maps
 method is 0 if fitting is linear, 1 if fitting is exponential
 registration_flag is 0 for no registration, 1 for rigid registration
 output_file_name contains average and standard deviation of the fitting maps

In []: input_file_name = "inage_list_relaxometry_fitting_OAll_72.tt"
 method_flag = 1 #0 = Linear, 1 = exponential
 registration[lag = 1 # 0 = no rigid registration] = execute rigid registration
 n_of_cores = 4
 orput_file_name = "exo_file_aligned_OAll_72.cs"

Read image data

image_data is a dictionary (or struct), where each cell corresponds to an image. For each image, information such as
paths and file names are stored

in []: image_data = io.load_image_data_fitting(input_file_name, method_flag, registration_flag)

Calculate fitting maps

Align acquisitions

Images are aligned rigidly to remove occational subject motion among acquisitions Note: This step is optional and can be skipped, given that:

When images are aligned, the fitting is calculated on interpolated values obtained with rigid registration
 When images are not aligned, the fitting is calculated on original intensities, but images might not be aligned

if registration_flag == 1: rel.align acquisitions(image data, n of cores)

Compute the fitting

In []: rel.calculate_fitting_maps(image_data, n_of_cores)

Visualize fitting maps

2D MAP: For each image, fitting maps at medial and lateral compartments and flattened map The flattened map is an average of neighboring voxels projected on the bone surface side of the femoral cardian

The matterned map is an average of neighnoring voxels projected on the bone surface side of the reinv

3D MAP: Interactive rendering of fitting maps

(The error message "Error creating widget: could not find model" can appear when the notebook is moved to a different folder)

In []: # ID of the map to visualize (The ID is the one in the 2D visualization above)
image_ID = 1 -1 # -1 because counting starts from 0

/ read image file name = image_data[image_ID]["relaxometryFolder"] + image_data[image_ID]["mapFileName"] image = itk.imread(file_name)

view
viewer = view(image, gradient_opacity=0.0, ui_collapsed=False, shadow=False)
viewer

GRAPH: Dots represent the average value of fitting maps per image; bars represents the standard deviation

In []: rel.show_fitting_graph(image_data)

TABLE: Average and standard deviation of fitting maps per image The table is saved as a .csv file for subsequent analysis

In []: rel.show fitting table(image data, output file name)

References

Dependencies

[1] Borthaizr A., Whatton A.J., Gougoutas A.J., Akolis S.V., Regatti R.R., Chanagundis S.R., Rodsy H. Is vice measurement of *TI* observation. In Ite Amazon Martin at 15 Januari, Mangi Reson Imaging, Arc119(4):043–030.
[2] U.X., Rejenrin Ma C., Link T.M., Gastilo D.D., Blumenkvintz G., Lozaro J., Carbalito-Carmo J., Reis M. (1997).

tMSKr

n [:]: \$load_ext watermark %watermark -v -m -p SimpleITK,matplotlib,numpy,pandas,scipy,itkwidgets,multiprocessing

- 1. Link to GitHub repository
 2. Link to documentation
 - 3. Introduction

			- 1 Link to CitHub repository	
		<u>pyKNEEr</u>	 1. Link to GitHub repository 2. Link to documentation 	
		Relaxometry of Femoral Knee Cartilage	¹ 2. Link to documentation	
		Exponential and linear fitting		
		 Exponential fitting is computationally exponsive but more accurate Linear fitting is faster as data are transformed to their log and then linearly interpolated. However, linear fitting is less accurate because the nonlinear logaritimic transform provides larger weight to cutilers 		input_file_name
		The fitting is computed:	3. Introduction	
		 directly on the acquired images or after rigid registration of the following echo to the first echo voxel-wise, i.e. for each voxel the Echo Times (dicorn tag: (0018,0061)) are the x-variable and the voxel intensities in each 		./original/
		acquisition are the y-variable only in the mask volume to have short computation time		001/BL
		Image information]	left
		Inputs: • input_file_name contains the list of the images used to calculate the relaxation maps		002/BL left
		 method is 0 if fitting is linear, 1 if fitting is exponential registration_flag is 0 for no registration, 1 for rigid registration 	4. User inputs	003/BL
I	. Ciel	output_file_name contains average and standard deviation of the fitting maps input_file_name = "inage_list_relaxonetry_fitting_0All_T2.txt"		right
		<pre>input_file.mme = "image_list_relaxoutry_fiting_ONLTAIN" method_flag = 1 ## = lines, 1 = exponential registration_flag = 1 ## = no rigid registration, 1 = execute rigid registration n_of_cores = 4</pre>		004/BL
		output_file_new = "exp_fit_aligned_OATL_T2.csv" Read Image data		left
		 image_data is a dictionary (or struct), where each cell corresponds to an image. For each image, information such as 		005/BL
	. []:	paths and file names are stored image_data = io.load_image_data_fitting(input_file_name, method_flag, registration_flag)		right
		Calculate fitting maps		006/BL
		Align acquisitions		left
		Images are aligned rigidly to remove occational subject motion among acquisitions		007/BL
		Note: This step is optional and can be skipped, given that:		left
		When images are aligned, the fitting is calculated on interpolated values obtained with rigid registration When images are not aligned, the fitting is calculated on original intensities, but images might not be aligned		008/BL
Ir	11	<pre>if registration_flag == 1: rel.align_acquisitions(image_data, n_of_cores)</pre>		left
		Compute the fitting		009/BL right
Ir		rel.calculate_fitting_maps(image_data, n_of_cores)		010/BL
		Visualize fitting maps		left
		2D MAP: For each image, fitting maps at medial and lateral compartments and flattened map The flattened map is an average of neighnoring voxels projected on the bone surface side of the femoral cartilage		011/BL
Ir		rel.show_fitting_maps(image_data)		left
		3D MAP: Interactive rendering of fitting maps		012/BL
		(The error message "Error creating widget: could not find model" can appear when the notebook is moved to a different folder)		right
Ir		# ID of the map to visualize (The ID is the one in the 2D visualization above) image $ID = 1 -1 \# -1$ because counting starts from 0		-
		<pre># road imago file_name = image_data[image_ID]["relaxometryFolder"] + image_data[image_ID]["mapFileName"] image = itk.imread(file_name)</pre>		
		# view		
		viewer = view(image, gradient_opacity=0.0, ui_collapsed= False , shadow= False) viewer		
		GRAPH: Dots represent the average value of fitting maps per image; bars represents the standard deviation		n of cores
Ir		rel.show_fitting_graph(image_data)		
		TABLE: Average and standard deviation of fitting maps per Image The table is saved as a .csv file for subsequent analyisis		
Ir	с. 11	rel.show_fitting_table(image_data, output_file_name)		output_file_name
		References		
		[1] Borthakur A., Wheaton A.J., Gougoutas A.J., Akaila S.V., Regatte R.R., Changundia S.R., Reddy R. In vivo mesumment of Trime discretion in the human Darie at 15. Stells. J Magn Reson Imaging. Apr;194(4):049-2004. [2] U.X., Beglimin M.G., C.I.M.Y.M., Castlo D.D., Burnerkertart E., Castrol. J., Castralio-Gamio J., Ries M., Majumdar S. In vito TJri, and T2 mapping of atlouir cartilage in ostocarthritis of the inner using 3.7 MHz. Ostocarthritis Cartilage. Jul. 157():788-97. 2007.		
		Dependencies		
In	0 D	<pre>%load_ext watermark %watermark -v -m -p SimpleITK,matplotlib,numpy,pandas,scipy,itkwidgets,multiprocessing</pre>		

tMSKr

18

pyKNEEr

Relaxometry of Femoral Knee Cartilage

Exponential and linear fitting

Exponential fitting is computationally expensive but more accurate
 Linear fitting is faster as data are transformed to their log and then linearly interpolated. However, linear fitting is less accurate because the nonlinear logarithm transform provides larger weight to outliers

The fitting is computed:

 directly on the acquired images or after rigit registration of the following scho to the first exho vosci-vise, i.e. for each voscie the Echo Times (sloom tag; (0018,0081)) are the x-variable and the voxel intensities in each acquired to the y-variable only in the mask volume to have short computation time

Image information

Inputs:

input_file_name contains the list of the images used to calculate the relaxation maps
 method is 0 if fitting is linear, 1 if fitting is exponential
 registration_flag is 0 for no registration, 1 for rigid registration
 output_file_name contains average and standard deviation of the fitting maps

n []: input_file_name = "insoc_list_relaxonetry_fitting_OAll_72.txt" nethod_flag = 1 #0 = Linear,] = exponential registration_[lag = 1 #0 = no rigid registration, 1 = execute rigid registration n_of_cores = 4 output_file_name = "exo_fil_aligned_OAll_72.csv"

Read image data

 image_data is a dictionary (or struct), where each cell corresponds to an image. For each image, information such as paths and file names are stored

n []: image_data = io.load_image_data_fitting(input_file_name, method_flag, registration_flag)

Calculate fitting maps

Align acquisitions

Images are aligned rigidly to remove occational subject motion among acquisitions Note: This step is optional and can be skipped, given that:

When images are aligned, the fitting is calculated on interpolated values obtained with rigid registration When images are not aligned, the fitting is calculated on original intensities, but images might not be aligned

in []: if registration flag == 1:

rel.align_acquisitions(image_data, n_of_cores)

Compute the fitting

n []: rel.calculate_fitting_maps(image_data, n_of_cores)

Visualize fitting maps

2D MAP: For each image, fitting maps at medial and lateral compartments and flattened map The flattened map is an average of neichboring works projected on the bone surface side of the femoral cardilare

n []; rel.show fitting maps(image data)

3D MAP: Interactive rendering of fitting maps

(The error message "Error creating widget: could not find model" can appear when the notebook is moved to a different folder)

In [] # JD of the map to visualize (The JD is the cose is the JD visualization above) image ID = 1 # -1 # -1 because counting starts from 0 # f read image file_name = image_data[image_ID]("relaxometryFolder") + image_data[image_ID]("mapFileName") image = tki.instead(file_name)

view
viewer = view(image, gradient_opacity=0.0, ui_collapsed=False, shadow=False)
viewer

GRAPH: Dots represent the average value of fitting maps per image; bars represents the standard deviation

in []: rel.show_fitting_graph(image_data)

TABLE: Average and standard deviation of fitting maps per image The table is saved as a .csv file for subsequent analyisis

n []: rel.show fitting table(image data, output file name

References

[1] Bothakur A, Whatton AJ, Gougoutas AJ, Akella SV, Regatte R.R., Charagundta S.R., Reichy R. (*in yivic measurement of T i disensitivin in the runna honit at 15 and J. Mang Resonantian and Annual Science (Science)* (2014)

Dependencies

tMSKr

a [:]: {
 stand ext watermark
 watermark -v -m -p SimpleITK, matplotlib, numpy, pandas, scipy, itkwidgets, multiprocessing

1. Link to GitHub repository
 2. Link to documentation

3. Introduction

4. User inputs

5. Commands with narrative

Cartilage Thickness

Separating subcondral surface and articular surface of cartilage

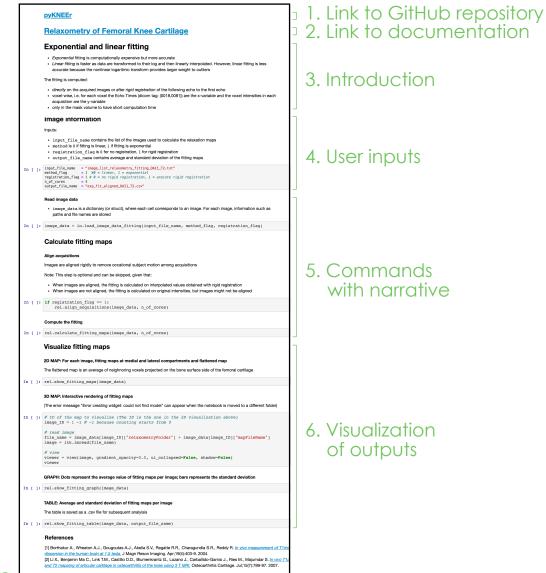
To calculate cartilage thickness, first the cartilage surface is extracted from the binary mask. Then subcondral surface and articular surface are divided in two separate point clouds

morph.separate_cartilage_surfaces(image_data, n_of_cores)

Visual check

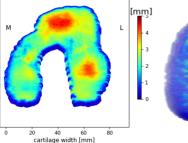
Subcondral bone surface (yellow) and articular surface (blue) are visualized as flattened point clouds. The flattening is with respect to a cylinder interpolated into the cartilage surface [2]

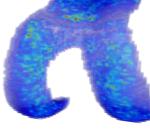
morph.show_cartilage_surfaces(image_data)

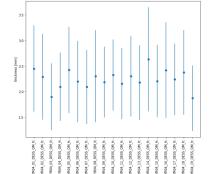

Calculating cartilage thickness

Assign the chosen algorithm

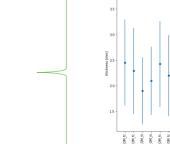
morph.algorithm(image_data, thickness_algo)

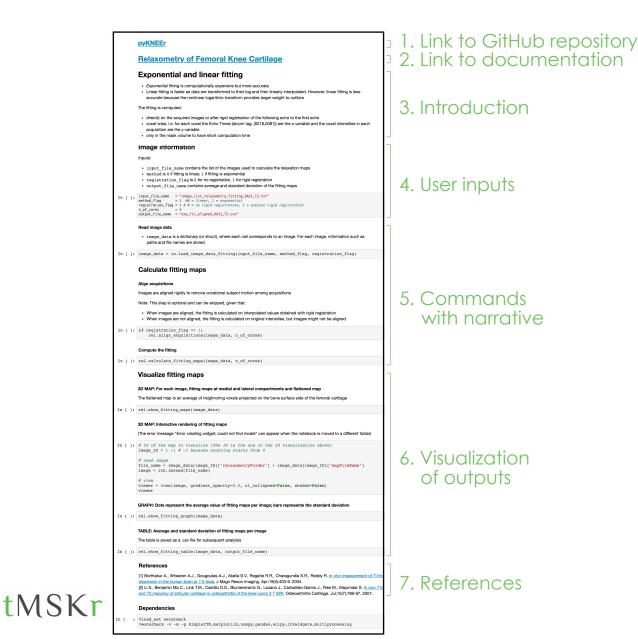

Calculate thickness

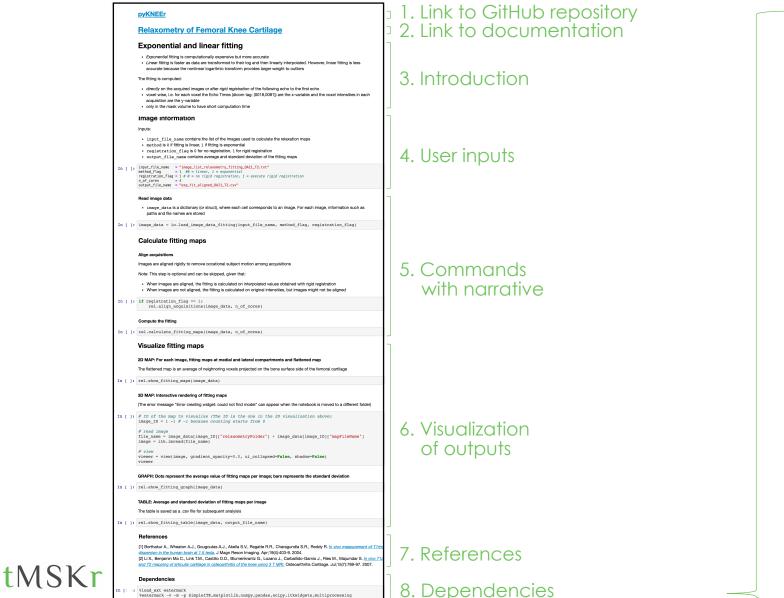

morph.calculate_thickness(image_data, n_of_cores)



Qualitative visualizations






	Subjects	averageThickness	std.dev
1	YR04_01_DESS_QM_fc_thickness_1	2.45	0.84
2	YR04_02_DESS_QM_fc_thickness_1	2.29	0.84
3	YR04_03_DESS_QM_fc_thickness_1	1.90	0.65
4	YR04_04_DESS_QM_fc_thickness_1	2.09	0.67
5	YR04_05_DESS_QM_fc_thickness_1	2.42	0.84
6	YR04_06_DESS_QM_fc_thickness_1	2.20	0.79
7	YR04_07_DESS_QM_fc_thickness_1	2.09	0.72
8	YR04_08_DESS_QM_fc_thickness_1	2.30	0.90
9	YR04_09_DESS_QM_fc_thickness_1	2.19	0.69
10	YR04_10_DESS_QM_fc_thickness_1	2.32	0.70
11	YR04_11_DESS_QM_fc_thickness_1	2.16	0.69
12	YR04_12_DESS_QM_fc_thickness_1	2.30	0.79
13	YR04_13_DESS_QM_fc_thickness_1	2.18	0.73
14	YR04_14_DESS_QM_fc_thickness_1	2.63	1.02
15	YR04_16_DESS_QM_fc_thickness_1	2.21	0.71
16	YR04_16_DESS_QM_fc_thickness_1	2.42	0.93
17	YR04_17_DESS_QM_fc_thickness_1	2.24	0.70
18	YR04_18_DESS_QM_fc_thickness_1	2.38	0.82
19	YR04_19_DESS_QM_fc_thickness_1	1.87	0.64

Quantitative visualizations

: Nload_ext watermark %watermark -v -m -p SimpleITK,matplotlib,numpy,pandas,scipy,itkwidgets,multiprocessing

Dependencies

%load_ext watermark %watermark -v -m -p matplotlib,numpy,pandas,scipy

CPython 3.7.1 IPython 7.2.0

matplotlib 2.2.3 numpy 1.16.1 pandas 0.24.1 scipy 1.2.1

: Clang 4.0.1 (tags/RELEASE_401/final) compiler system : Darwin : 17.7.0 release machine : x86 64 processor : i386 CPU cores : 4 interpreter: 64bit

→ Reproducibility of computational environment

Jupyter Community | MSK

- We got a Jupyter Community Workshop grant!
 - To start building the Jupyter community in MSK imaging
 - Workshop, June 7-9, 2020 \rightarrow Online meeting June 7, 2020
- We span across the globe
 - UCSF, CU Denver, U. Calgary, UNC, ITK, U. Leuven, U. Lund, I.O. Rizzoli, U. Melbourne
- We aim to create open and reproducible workflows by
 - Combining existing code to overcome fragmentation
 - Creating new code with structured guidelines

Practical tips to create workflows with Jupyter notebook

Learn from free online material

Video tutorials

Jupyter notebook and python for scientists

Hands-on tutorials

SimpleITK notebooks

SPIE 2019 workshop

OpenMR Benelux 2020

Imperial College Course

Notebook Examples

Nipype

Deep Learning Toolkit

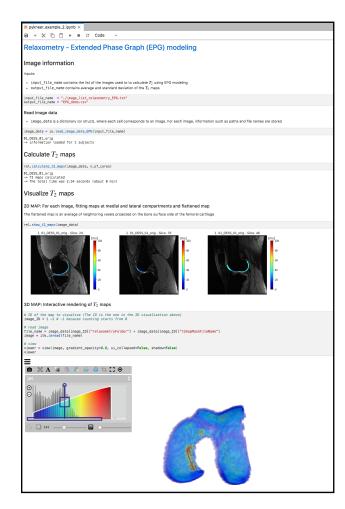
pyKNEEr

Open a new notebook...

- Write the narrative
- Write code
- Run cells in sequence

	Read the knee stack (dicom)
	Variable:
[4]:	<pre>image_folder = "./data/knee"</pre>
	-> Read the dicom series:
[5]:	<pre>reader = sitk.ImageSeriesReader() dicom_names = reader.GetGDCMSeriesFileNames(image_folder) # -> Task 1: Add folder name betw reader.SetFileNames(dicom_names) img = reader.Execute()</pre>
	-> Print image characteristics:
[6]:	<pre>print("Origin : " + str(img.GetOrigin())) print("Spacing: " + str(img.GetSpacing())) print("Size : " + str(img.GetSize())) # -> Task 1: Get image origin using GetSize()</pre>
	Origin : (-4.937600135803223, -57.961299896240234, 86.4000015258789) Spacing: (0.3125, 0.3125, 1.5) Size : (512, 512, 68)
	Visualize one image slice:
[7]:	<pre>slice_id = 30 slice = img[:,:,slice_id] show_image_slice (slice) # Task 1: Have a look at the function show_image_slice</pre>

Start optimizing the code...


Move reusable functions to a python module

- In the notebook:
 - Import the module
 - Call the function

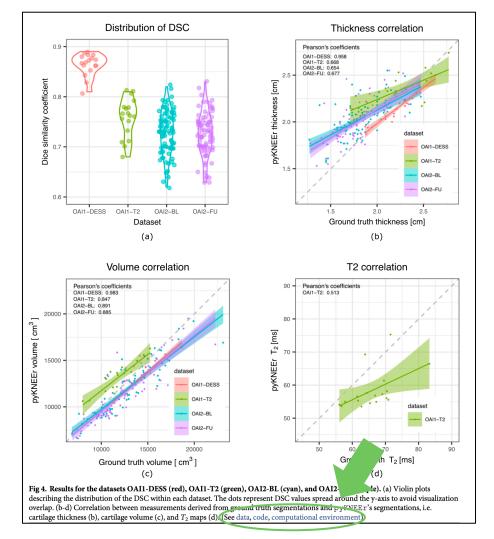
	<pre>calculate_volume(mask):</pre>
	Function to calculate cartilage volume It calculates the number of mask voxels and then multiply them by image spacing Input: - mask: binary mask in SimpleITK Output: - volume_mm: float
	<pre># write function here mask_gt_py = sitk.GetArrayFromImage(mask)</pre>
	<pre># get number of white voxels n_of_voxels = np.count_nonzero(mask_gt_py)</pre>
	<pre># calculate volume in voxels volume_vx = n_of_voxels</pre>
	<pre># calculate volume in mm volume_mm = volume_vx * mask.GetSpacing()[0] * mask.GetSpacing()[1] * mask.GetSpacing()</pre>
	<pre># print out volume print ("The volume is: " + "{:.2f}".format(volume_mm) + " [mm]")</pre>
	return volume_mm
	<pre>image_measurements.py</pre>
	<pre>mport image_measurement</pre>
ir	

Keep the notebook human readable

- Organize the narrative:
 - Title of the notebook
 - Divide in paragraphs with subtitles
 - Introduce code
 - Comment the results you obtain
- Organize the code:
 - Package imports
 - Functions
 - Variables
 - Workflow body
 - Dependencies

Make the notebook reproducible

- Automatically download data from a repository
- Automate data manipulation
- Define seeds to generate random numbers
- Print dependences


Sandve et al., (2013) Ten Simple Rules for Reproducible Computational Research, PLoS Comput Biol. 9(10): e1003285. tMSKr Rule et al. (2019) Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks. Comput Biol. 15(7): e1007007. 29 See practical tutorial: <u>How to create a reproducible Jupyter notebook?</u>

Attach the notebook to the paper

Number of subjects191919888844I. Acquisition protocol Acquisition plane Number of images in series In-plane spacing [mm]DESS sagittal 2 (1 available)° 0.3646×0.3646 0.3125×0.3125 0.3646×0.3646 0.3125×0.3125 0.3646×0.3646 0.3125×0.3125 0.3646×0.3646 0.3125×0.3125 0.3125×0.3125 0	Dataset	OAI1-DESS	OA	I1-T ₂	OAI2-BL	OAI2-FU	inHous	e-DESS	inHou	ıse-CQ
Acquisition protocol Acquisition plane Number of inages in series In-plane spacing [mm]DESS sagittal s	Number of subjects	19		19	88	88	4	4		4
Acquisition protocol Acquisition plane Number of inages in series In-plane spacing [mm]DESS sagittal s										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			_							_
Number of images in series $2 (1 available)^{\circ}$ 7 $2 (1 available)^{\circ}$ 2 4 In-plane spacing [mm] 0.3646×0.3646 0.3125×0.3125 $0.$			-	-						
In-plane spacing [mm] 0.3646×0.3646 0.3125×0.3125 0.312×0.3125	Acquisition plane									
Sile thickness [mm] $(0.4270 \times 0.4270)^*$ $(0.4296 \times 0.4296)^*$ 0.7 1.5 3 Echo time (TE) [ms] 4.7 $10, 20, 30, 40, 4.7$ 42.52 $-$ Spin-lock time (TSL) [ms] $ -$ Repetition time (TR) [ms] 16.32 $2700 (2900)^*$ 16.32 25 300 90 IL Ground truth segmentation atlas-based active models $ -$										-
Slice thickness $[mm]$ 0.7 (0.75)* 3 (3.5)* 0.7 1.5 3 Echo time (TE) $[ms]$ 4.7 10, 20, 30, 40, 50, 60, 70 4.7 42.52 - Spin-lock time (TR) $[ms]$ 16.32 2700 (2900)* 16.32 25 1302 Flip angle [°] 16.32 2700 (2900)* 16.32 25 30 90 IL Ground truth segmentation Method atlas-based femur, femoral cartilage mask active models femoral cartilage contour - <td< td=""><td>In-plane spacing [mm]</td><td></td><td></td><td></td><td>0.3646</td><td>x 0.3646</td><td>0.3125 :</td><td>x 0.3125</td><td>0.3125</td><td>x 0.3125</td></td<>	In-plane spacing [mm]				0.3646	x 0.3646	0.3125 :	x 0.3125	0.3125	x 0.3125
Echo time (TE) $[ms]$ 4.710, 20, 30, 40, 50, 60, 704.742.52-Spin-lock time (TSL) $[ms]$ Repetition time (TR) $[ms]$ 1, 10, 30, 60Repetition time (TR) $[ms]$ 16.322700 (2900)* 2516.32251302Flip angle $[\circ]$ 25180253090I. Ground truth segmentation Method Anatomy Typeatlas-based femur, femoral cartilage maskactive models femoral cartilage contourII. Experimental results Image number in series Preprocessing Spatial standardization Intensity standardization Find reference Intersubject Longitudinal Multimodal4, 8, 10, 13, 16I. deference Intersubject Dice coefficient Analysis Morphology00Norphology00I. decomplete Morphology00I. decomplete Morphology00	Slice thickness [mm]		•	,	c c).7	1	.5		3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										-
Repetition time (TR) [ms] Flip angle [°] 16.32 25 $2700 (2900)^*$ 180 16.32 25 25 1302 30 I. Ground truth segmentation Method Anatomy Typeatlas-based femur, femoral cartilage maskactive models femoral cartilage contour $-$ $ -$ $ -$ $-$ II. Experimental results Image number in series Preprocessing Spatial standardization Intensity standardization Find reference Intersubject Longitudinal Multimodal 1 1 1 2 27 1 1 1 1 1 2 1 2 2 2 2 30 90 90III. Experimental results Image number in series Preprocessing Spatial standardization Intensity standardization Segmentation Find reference Intersubject Longitudinal Multimodal 1 2 2.7 1 1 1 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 2 <br< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></br<>										
Repetition time (TR) [ms] Flip angle [°] 16.32 25 $2700 (2900)^*$ 180 16.32 25 25 1302 30 I. Ground truth segmentation Method Anatomy Typeatlas-based femur, femoral cartilage maskactive models femoral cartilage contour $-$ $ -$ $ -$ $-$ II. Experimental results Image number in series Preprocessing Spatial standardization Intensity standardization Find reference Intersubject Longitudinal Multimodal 1 1 1 2 27 1 1 1 1 1 2 1 2 2 2 2 30 90 90III. Experimental results Image number in series Preprocessing Spatial standardization Intensity standardization Segmentation Find reference Intersubject Longitudinal Multimodal 1 2 2.7 1 1 1 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 2 <br< td=""><td>Spin-lock time (TSL) [ms]</td><td>-</td><td>,</td><td>-</td><td></td><td>-</td><td></td><td>-</td><td>1, 10,</td><td>30, 60</td></br<>	Spin-lock time (TSL) [ms]	-	,	-		-		-	1, 10,	30, 60
Flip angle [°]25180253090II. Ground truth segmentation Method Anatomy Typeatlas-based femur, femoral cartilage maskactive models femoral cartilage contourIII. Experimental results Image number in series Preprocessing Spatial standardization Intersubject Longitudinal Multimodal112-7111212-4Find reference Intersubject Longitudinal Multimodal4, 8, 10, 13, 16 </td <td></td> <td>16.32</td> <td>2700</td> <td>(2900)*</td> <td>16</td> <td>5.32</td> <td>2</td> <td>5</td> <td>13</td> <td>302</td>		16.32	2700	(2900)*	16	5.32	2	5	13	302
Method Anatomy Typeatlas-based femur, femoral cartilage maskactive models femoral cartilage contourIII. Experimental results Image number in series Preprocessing Spatial standardization Intensity standardization Find reference Intersubject Longitudinal Multimodal112-7111212-4Segmentation Segmentation Dice coefficient Analysis Morphology•••		25	1	.80	2	25	3	80	ç	90
Method Anatomy Typeatlas-based femur, femoral cartilage maskactive models femoral cartilage contourIII. Experimental results Image number in series Preprocessing Spatial standardization Intensity standardization Find reference Intersubject Longitudinal Multimodal112-7111212-4Segmentation Segmentation Dice coefficient Analysis Morphology•••										
Anatomy Typefemur, femoral cartilage maskfemoral cartilage contourIII. Experimental results Image number in series Preprocessing Spatial standardization Intensity standardization Find reference Intersubject Longitudinal Multimodal112-7111212-4Femoral cartilage contourIII. Experimental results Image number in series Spatial standardization Intensity standardization Find reference Intersubject Longitudinal Multimodal Segmentation quality Dice coefficient11212-4Morphology••Morphology•••Morphology•••-••Morphology••••-••Morphology•••••••Morphology•••••••• <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
TypemaskcontourIII. Experimental results Image number in series112-7111212-4Preprocessing Spatial standardization Intensity standardization112-7111212-4Segmentation Find reference Intersubject Longitudinal Segmentation quality Dice coefficient Morphology4, 8, 10, 13, 16<							-	-	-	-
III. Experimental results Image number in series112-7111212-4Preprocessing Spatial standardization Intensity standardization•••	5			ge		0	-	-	-	-
Image number in series112-7111212-4Preprocessing Spatial standardization•••	Туре	m	ask		con	tour	-	-	-	-
Image number in series112-7111212-4Preprocessing Spatial standardization•••	III. Experimental results									
Spatial standardizationImage: Spatial standardizationImage: Spatial standardizationIntensity standardizationImage: Spatial standardizationImage: Spatial standardizationSegmentationImage: Spatial standardizationImage: Spatial standardizationFind reference4, 8, 10, 13, 16Image: Spatial standardizationIntersubjectImage: Spatial standardizationImage: Spatial standardizationImage: Spatial standardization qualityImage: Spatial standardizationImage: Spatial standardization		1	1	2-7	1	1	1	2	1	2-4
Intensity standardization••-•-•-•-SegmentationFind referenceIntersubject••••Longitudinal••Multimodal-••• <td< td=""><td>Preprocessing</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Preprocessing									
Segmentation4,8,10,13,16 <t< td=""><td></td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td></t<>		•	•	•	•	•	•	•	•	•
Find reference4, 8, 10, 13, 16<		•	•	-	•	-	•	-	•	-
Intersubject•• <th< td=""><td>Segmentation</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Segmentation									
Longitudinal <th< td=""><td>Find reference</td><td>4, 8, 10, 13, 16</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>	Find reference	4, 8, 10, 13, 16	-	-	-	-	-	-	-	-
Multimodal	Intersubject	•	-	-	•	-	•	-	-	-
Segmentation quality Dice coefficient Analysis Morphology		-	-	-	-	•	-	-	-	-
Dice coefficient••• <td></td> <td>-</td> <td>•</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>•</td> <td>-</td>		-	•	-	-	-	-	-	•	-
Analysis Morphology •• •• - •• •										
Morphology •• •• - •• -		•	•	-	•	•	-	-	-	-
Relaxation - • • • •		• 0	• 0	-	• 0	• 0	•	-	•	-
	Relaxation	-	•	0	-	-		•		•]

Bonaretti S, Gold GE, Beaupre GS (2020) pyKNEEr: An image analysis workflow for open and reproducible research on femoral knee cartilage. PLoS ONE 15(1): e0226501

Attach the notebook to the paper

Bonaretti S, Gold GE, Beaupre GS (2020) pyKNEEr: An image analysis workflow for open and reproducible research on femoral knee cartilage. PLoS ONE 15(1): e0226501

Share in an executable environment

	binder		
Turn a Git re	epo into a collection notebooks	ofintera	active
environment, mak	upyter notebooks? With Binder, open thosi king your code immediately reproducible b		
Build and launch a reposite			
Build and launch a reposito	ry		
GitHub repository name or URL	ry		Citluch
GitHub repository name or URL			GitHub 🗸
GitHub repository name or URL	Path to a notebook file (optional)		
GitHub repository name or URL		File -	GitHub 🗸
GitHub repository name or URL GitHub repository name or URL Git branch, tag, or commit	Path to a notebook file (optional) Path to a notebook file (optional)	File -	
GitHub repository name or URL GitHub repository name or URL Git branch, tag, or commit Git branch, tag, or commit	Path to a notebook file (optional) Path to a notebook file (optional) Binder with others:	File -	

tMSKr

See practical tutorial: How to share a Jupyter notebook with Binder?

So, why should we use Jupyter notebook in medical image analysis?

Because Jupyter notebooks allow us to:

- Do open and reproducible medical image analysis
- Create image analysis workflows that are complete
- Easily integrate our workflows into our papers