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Abstract

Live coding languages operate by constructing and reconstructing
a program designed to create sound. These languages often have
domain-specific affordances for sequencing changes over time, com-
monly described as patterns or sequences. Rarely are these affor-
dances completely generic. Instead, live coders work within the con-
straints of their chosen language, sequencing parameters the language
allows with timing that the language allows.

This paper presents a novel live coding environment for the ex-
isting language lissajous that allows sequences of text input to be
recorded, replayed, and manipulated just like any other musical pa-
rameter. Although initially written for the lissajous language, the
presented environment is able to interface with other browser-based
live coding languages such as Gibber. This paper outlines our moti-
vations behind the development of the presented environment before
discussing its creative affordances and technical implementation, con-
cluding with a discussion on a number of evaluation metrics for such
an environment and how the work can be extended in the future.

Introduction

Live coding practice, as well as existing as a novel vehicle for the
performance of algorithmic music, also acts an extension of musical
score as a way of traversing the musical domains proposed by (Babbit
1965) - from the *graphemic* to the *acoustic* and *auditory*. Fur-
thermore, the cognitive innards of a live coder are often encouraged
to be exposed in live coding practice (Collins 2011) through the pro-
jection of patterns they encode displayed for an audience. To further
ideas of notation and exposing cognitive processes, the possibilities of
revealing performer’s notation *changes* is presented as a novel way
of live coding.

To this end, we present a new browser-based live coding envi-
ronment for the live coding language *lissajous*. This environment
allows for the sequencing of *the text buffer itself*, a feature not often
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available in live coding languages themselves. Before describing the
environment’s creative affordances, we provide a brief overview of the
lissajous language; describing its basic features and limitations.

Lissajous describes itself as ”a tool for real time audio performance
using JavaScript” (Stetz 2015). In practice, lissajous is a domain spe-
cific language embedded in JavaScript. It exposes a number of meth-
ods for creating and manipulating musical sequences and these can
be conveniently chained together using method chaining (colloquially
known as dot chaining).

The single most important of element the lissajous language is the
‘track‘. Tracks are able to synthesise notes or play samples such as:

a = new track()

a.tri().beat (4).notes (69 ,67 ,60)

This creates a new track, sets the waveform to a triangle wave, sets
the internal sequencer to tick every four 1/16th notes, and creates a
pattern of three MIDI notes that will cycle indefinitely. Similarly, we
can do:

b = new track()

b.sample(drums)

b.beat (2).sseq(0,2,1,2)

Here, ”drums” refers to an array of drum samples. We set the
sequencer to tick every two 1/16th notes and then create a pattern to
choose samples based on their index in the array.

Most parameters of a track can be given a pattern of values in-
stead of just one as is the case for notes and sseq above. These are
controlled by a track’s internal sequencer, the timing of which is set

by the ‘beat‘ parameter (which can also accept a pattern of timing
values). For a comprehensive reference of the language API, we direct
readers to the lissajous language documentation.

Lissajous was chosen as the target language for the environment
for two reasons: (1) the language is relatively straightforward and so
it is easy to explain and modify, and (2) the sequencing capabilities of
the language are restricted to a predetermined collection of parame-
ters, making it an ideal candidate to show how a ”meta” environment
can be leveraged for more creative control.

Motivation

Many live coding languages can be described as embedded domain-
specific languages; that is, they are libraries and functions imple-
mented directly on top of some existing programming language rather
than an entirely new language in itself. This can be observed in many
popular live coding languages such as TidalCycles (McLean and Wig-
gins 2010a), FoxDot (Kirkbride 2016), and Gibber (Roberts 2012)
which are embedded in Haskell, Python, and JavaScript respectively.
This benefits both live coding language developers and live coding per-
formers. Developers can piggy-back on an existing language’s seman-
tics and tooling, allowing them to focus exclusively on the domain-
specific nature of the embedded language. Similarly, performers can
exploit existing knowledge of the host language and perhaps even use
third-party libraries for that host language.

As noted in a more general review of music programming lan-
guages, music programming greatly benefits from the power afforded
by a general-purpose programming language (Dannenberg 2018). In
the case of live coding specifically, this creates a disconnect between
what the live coder is able to do when exploiting the general-purpose
host language and what is possible with the embedded domain-specific
language. Consider lissajous, a language embedded in JavaScript. We
saw how to sequence a pattern of notes to cycle through at quarter
note intervals:
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a.tri().beat (4).notes (69 ,67 ,60)

Because lissajous is embedded in JavaScript we have access to ev-
erything a normal JavaScript program would; such as changing the
window background colour:

document.body.style.backgroundColor = "red"

Now suppose we wish to cycle through the colours red, green, and
blue in time with the note sequence. There is suddenly a disconnect.
The musical timing available to our lissajous track is not available for
any arbitrary code. To attempt to remedy this situation, some lan-
guages allow callback functions to be inserted into sequences instead
of primitive values.

a.tri.beat (4).notes(function () {

document.body.style ...

return ...

})

This can quickly becomes a mess. Live coding languages often fo-
cus on brevity and shorthand to allow complex ideas to be described
concisely (McLean and Wiggins 2010b). This effort is largely wasted
in situations like the one presented above. The live coder must now
manage state that was originally managed by the embedded language
itself such as which note to return from the function and which colour
to set the background.

At present live coders have a handful of choices to overcome this
issue: (1) simply don’t attempt things that are not easily afforded
by the embedded language, (2) seek a new language that potentially
does offer the feature needed as part of the embedded language, or
(3) modify the embedded language in some way to include the feature
you need. We present a meta environment as a fourth solution that
allows the text input itself to be sequenced, allowing for completely
arbitrary code actions to be performed in time.

Meta Livecoding

In lissajous, and indeed many other live coding languages, parameters
of a track are sequenced with patterns. Multiple parameters can be
sequenced by the same pattern, and multiple tracks can be synchro-
nised in time. The question arises of what to do when we wish to
sequence actions *not* supported by the host language’s sequencing
capabilities. Such a result can be achieved in Gibber, for example, by
encapsulating arbitrary code in an anonymous function and supplying
that function as a callback to a Sequencer constructor. In lissajous,
a track’s prototype can be modified to add extra parameters control-
lable through patterns.

Attempting to modify the prototype of an object is both expensive
to compute and awkward to do live, making this a far from optimal
solution when performing. Gibber’s sequencer is more flexible in this
regard, but the limited nature of only being able to supply *one* call-
back function encourages using this feature for minor modifications
rather than grand macro changes to a performance.

A fundamental problem is that while live coders are able to ex-
press things in an arbitrary manner, our code must follow the rules of
the system it lives in. In other words the live-coder can assume the
role of the sequencer, changing and adding various pieces of code at
fixed time intervals, but the sequencer is bound by the rules of the
host language and cannot assume the role of a live-coder.

The idea of metaprogramming is not entirely novel. Lisp, for ex-
ample, has a famously powerful macro system and a number of live
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coding Lisp dialects take advantage of this fact, including Extempore
(Sorensen and Gardner 2010) and Overtone (Aaron and Blackwell
2013). What makes Lisp’s macro system so powerful is twofold. First,
macros are capable of returning arbitrary Lisp expressions to be com-
piled and evaluated at *run time*. Second is the fact that Lisp macros
are written in Lisp itself, in contrast to macro features available in
other languages such as C. Importantly, Lisp macros can themselves
be manipulated and created at run time by other Lisp functions.

The Siren environment for TidalCycles provides a graphical en-
vironment for so-called hierarchical composition (Toka et al. 2018).
Snippets of Tidal code are laid out in a grid interface representing
a scene, with columns representing individual tracks. Scenes can be
switched and tracks modified in real time, allowing for larger struc-
tural changes to be made to a performance that are otherwise awk-
ward to achieve in Tidal.

With this in mind, we have developed a metaprogramming live
coding environment that allows for sequences of code expressions to be
manipulated in the same manner that note sequences can. While Lisp
macros are capable of producing Lisp expressions, the environment,
known as Flow-Lissajous, is built around manipulating the source
code directly. In this way, it functions similarly to Siren. Where
Flow-Lissajous diverges, however, is in its use of program structures
that already exist in the lissajous language rather than a graphical
interface.

A global ‘meta‘ object is exposed in the environment that allows
for the contents of a particular text buffer to be recorded and played
back. While recording, every time the source code is evaluated that
source code is saved into an array for playback. During playback, this
sequence of source code is fed into lissajous for evaluation. Unlike
Lisp macros, however, this process is not opaque. As the source code
itself is being modified, these modifications are reflected in real time
for both the performer and audience to see. Importantly, the ‘meta‘
object is a slightly modified lissajous track. This means it is pos-
sible to take advantage of lissajous’ existing pattern sequencing and
manipulation abilities

This opens the possibility of a number of creative performance
techniques not easily achieved in other environments, or indeed the
host language’s themselves. Allowing the live coder control over both
the implicit parameters of each variable and overall structure of en-
coded music provides an interesting use-case for live coding research.
Long-term structure is not often addressed in the literature, due to
the demands of immediacy and real-time musical feedback. Introduc-
tion of ideas of the “meta” provides a context with which the coder
can explore both musical parameters and structural changes through
symbolic expression.

It also adds a new dimension to live coding improvisation akin
to using looping pedals or recording audio clips into a DAW. Typi-
cally, an improvised live code performance involves the constant re-
evaluation and tweaking of code snippets with the end result being
some musical idea that represents the *sum* of the code snippets eval-
uated before it. Often the journey is as important as the destination,
however, and after tweaking 50 parameters it is difficult to remember
how we started or how we got here. To that end, the environment em-
braces the live code mantra of ”repetition” by allowing performers to
capture and repeat sequences of a performance without the necessary
premeditation of setting up the appropriate tracks and sequencers.

As mentioned, this lends itself to a kind of improvisation seen in
live looping performances seen, for example, within guitar music prac-
tices. Although both live looping guitar performances and live coding
performances are typically built up by layering loops of musical ideas,
there’s a degree of permanence found in the guitar performance that is
*not* found in live coding performance. If we are unhappy with how
a sequence sounds we can tweak any number of parameters; we can
change the notes, add effects, alter the timing. While this is undoubt-
edly powerful, it is perhaps somewhat antithetical to the TOPLAP
manifesto’s preference of ”no backups”:

No backup (minidisc, DVD, safety net computer)

Instead, much like the guitarist, live coders must now commit to
any particular sequence of events or start over entirely.
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Figure 1: The Flow-Lissajous environment. (Left) The code editor. Here, as with many other live coding environments, lines of code are entered
and evaluated. (Right) The last snippet of code that was evaluated. This section of the environment cannot be edited, instead always showing the
most recent piece of code that was evaluated. This provides a visualisation of what the program is doing that is especially useful when sequences
of source code are being played back and manipulated.
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Additionally, this enables a new method of performance distribu-
tion beyond distributing an audio recording or a complete source code
file. It is not uncommon for live code musicians to distribute code files
alongside music releases for other musicians to experiment with. This
is largely unfeasible in traditional music distribution as distributing
multi-track recordings known as stems comes at the expensive of both
file size and production time. The distribution of source code removes
a certain amount of authorial intent however, presenting a collection
of ideas curated by the musician and giving the consumer free reign
over their ultimate arrangement and use.

The environment presented here allows for a different means of
source code distribution. Instead of a complete source code file, per-
haps annotated with comments suggesting which snippets to evaluate
in what order, musicians can distribute a sequence of code expressions
to be evaluated by the environment. Given that the environment is
designed to operate in real time, listeners are free to interact with the
code at any time to make alterations or add new elements while still
affording the original musician macro control over the performance.
Transitions to new sections, or new compositions entirely can be or-
chestrated while still allowing the listener some amount of creative
freedom; encouraging a stronger dialog between the two parties that
is not afforded by full source code distribution.

Implementation

In the previous section we described a global ‘meta‘ object as a slightly
modified lissajous track. Here we will describe in more detail the tech-
nical implementation of the environment and how it operates. Lis-
sajous was initially designed to be used exclusively in the browser’s
console; heavily relying on global variables and objects. Most obvi-
ously, Flow-Lissajous provides a more graphical interface for inputting
and displaying code.

The Flow JavaScript framework was chosen to construct this inter-
face because of it’s implementation of the Model-View-Update (MVU)
application architecture. Central to the MVU architecture is the no-

tion of actions; messages passed to an update function that are used
to construct a new model of application state. This creates a deter-
ministic, stepped sequence of application states for any fixed sequence
of actions (Thompson and Fazekas 2019). Such modelling of applica-
tion state maps cleanly to the core concept of sequencing source code
changes in live coding performance.

Actions are objects with a unique string tagging the action, and
an optional payload. For Flow-Lissajous, there are three important
actions: EVAL, REC START, and REC STOP. The EVAL action
contains a string payload of the snippet of code to pass to lissajous
for evaluation. These actions are not unlike the actions found in the
collaborative live coding environment CodeBank (Kirkbride 2019).
Figure 2 diagrams how the Flow framework and lissajous communi-
cate with one another.

The Flow Lissajous plugin provides a thin wrapper around lis-
sajous, initialising the ‘meta‘ object when the Flow program is ini-
tialised and provides Flow a means to call ‘eval‘ without polluting
the Flow program with side effects. While recording, the Flow pro-
gram keeps track of every payload evaluated by the EVAL action.
Once recording stops, the array is passed to the FlowLissajous plugin
where each snippet is transformed into it’s own EVAL action. When
a sequencing method such as ‘beat‘ or ‘beat32‘ is called, lissajous then
dispatches an EVAL action with the current code snippet in the se-
quence. This is necessary so the Flow program can update it’s view
with the most recently evaluated code snippet.

A minor addition to the lissajous source code was made to make
it possible to interface with Flow in the way that we required. This
took the form of the creation of an additional property on the lissajous
track prototype:

self._flowSequencer = new Sequencer(function () {});

self._attachSequencers(self._flowSequencer);

182



Figure 2: The overall architecture of the FlowLissajous environment. The grey shaded area represents the side-effect free portion of a Flow
program. This is important to guarantee the same sequence of actions produces the same sequence of rendered views. Upon receiving an action,
Flow calls the user-defined update function to create a new model of application state and optionally a side effect for the runtime to perform.
These side effects take the form of code snippets that are passed to lissajous to evaluate. Lissajous then sends actions back to the Flow runtime
when stepping through a sequence of code snippets.
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and an additional function that enables a sequence of code snip-
pets to be stored on the track:

track.prototype.flow = function () {

var self = this;

var arguments_ = _parseArguments(arguments);

return function ($dispatch) {

self._flowSequencer.set(arguments_.map(snippet =>

() => $dispatch(snippet)));

self._setState(’snippets ’, arguments)

}

};

It is important to note there is a clear boundary between Flow
and lissajous. These modifications do not require lissajous to have
knowledge of Flow specifically, and so alternative frameworks such
as React or Vue are equally as applicable for the view layer of the
application. As we have described, the host language - in this case
lissajous - required minimal modification to work inside the environ-
ment. This boundary between editor and language is not unlike the
boundary between language and synthesis engine found in SuperCol-
lider (McCartney 2002). In SuperCollider, this is powerful because
any arbitrary language can communicate with SCServer as long as
it knows the necessary OSC messages to send. Likewise, conceivably
any arbitrary language can exist inside the meta environment as long
as it implements the necessary Flow plugin to receive the text buffer
and dispatch actions.

Future Work

The Flow-Lissajous environment presents a novel practice of live cod-
ing by manipulating the code itself. In doing so, it affords a two new
interactions otherwise not available in existing live coding environ-
ments: (1) the ability to act as a “code conductor” for a more macro

level of control over a performance, and (2) the possibility to dis-
tribute a performance as text sequences rather than audio or a single
text file.

The environment is very much presented as a work-in-progress
however, and there are a number of research and development av-
enues to pursue in the future. Most pressing is the addition of the
ability to have multiple ‘meta‘ objects and editors for each lissajous
track created during the performance. This would bring the envi-
ronment closer in line to the Siren environment and allow for much
more interesting performance opportunities. Thanks to the largely
compartmentalised design of the environment, such a feature can be
easily implemented in the future.

The creative implications of such a system have been described
here but could be assessed using formal evaluation metrics. Within
the NIME community particularly, development of new interfaces and
instruments is becoming increasingly coupled with their evaluation
through existing HCI research. Systematic and rigorous evaluation
allows critical reflection on both the musical outputs that can be pro-
duced by an interface and the ways and means by which the tool is
used. (Wanderley and Orio 2002) posit a useful framework for exper-
imental HCI techniques applied to musical tasks, whereas (Stowell et
al. 2008) advocates for structured qualitative methods like discourse
analysis for evaluation of live human-computer music-making.

Beyond the added dimension to live performance, the presented
environment opens up interesting opportunities for the research com-
munity and the study of live code performance as a whole. Smith et
al. present an analysis of multiple live coding performances by two
separate artists through a processing of coding the screen capture of
each performance (Swift et al.2014). In this context coding refers to
labelling specific events along the performance’s timeline, noting par-
ticular actions such as code insertion or changing instrument pitch.
The authors note “future work could extend our study through the
instrumentation of the programming interface to enable automatic
data collection” and the presented environment enables precisely this
sort of automatic data collection.The presented environment enables
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this kind of automatic data collection, and could easily be expanded
to include useful additional information such as a times-tamp for the
event. While it will still be required for researchers to choose when
to code a musical event,coding of textual events now becomes triv-
ial; simple analysis between events can determine whether the current
event is an insertion, deletion, or “quick edit” for example.
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