Live Coding Procedural
Textures of Implicit Surfaces

Charles Roberts

Department of Computer Science
Worcester Polytechnic Institute
charlie@charlie-roberts.com

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland

Abstract

We describe a system for live coding procedural textures on implicit
surfaces, and how its implementation led to foundational changes in
the end-user API for the live coding environment marching.js. The
texturing additions to marching.js enable users to use predefined tex-
ture presets, to live code their own procedural textures, or to use other
systems for fragment shader authoring, such as Hydra, to generate
textures. It also affords using the browser’s 2D canvas API to define
textures, providing an entry point for performers who might be famil-
iar with web APIs but unfamiliar with lower-level GPU languages like
GLSL. We describe how demoscene culture led us to initially adopt
design decisions that were inappropriate for our particular system,
and the changes to both our underlying engine and end-user inter-
face that resulted from reconsidering these decisions in the context of
procedural texturing.

Introduction

We previously developed a library, marching.js, that exposes a ray
marching engine for live coding performance. This system enables
programmers to describe 3D scenes in JavaScript, which are then com-
piled into fullscreen GLSL fragment shaders. In our initial writings on
the library (Roberts 2019) we described how the scenes generated by
the system often felt “... ‘technical’, ‘clinical’, or perhaps even ‘cold’.”
While post-processing filters were mentioned as one possible solution
for this problem, the research presented here instead investigates a
variety of techniques to enable procedural texturing of the implicit
surfaces (Hart 1993) rendered by marching.js.

In somewhat of a surprise, the implementation of these features led
to fundamental API changes in our system and rethinking culturally
derived assumptions about how the rendering engine for our system
should function. We will describe some of the background that led
to these assumptions, and how the implementation of procedural tex-
turing for implicit surfaces led to both a terser end-user programming

mailto:charlie@charlie-roberts.com

marching.js playground X +

@ charlieroberts.github.io/marching/playground/ v NP _3 :

Material(‘'phong', Vec3(.0),Vec3(.5),Vec3(1), 32, Vec3(90,.25,1)) help julia fractal ,

Texture(‘'cellular', { strength:.15, scale:20 })

b = Bump(

j = Julia(1.5)
.material(matl)
.texture(tex),

tex,

-.05

)
)
. light(
Light(Vec3(5,5,8), Vec3(1), .0125)
)
.fog(1, Vec3(0))
.render()fl
.camera(0,0,1.75)

Figure 1: The quaternion Julia set, textured and bump-mapped with cellular noise, as rendered by marching.js

interface and low-level engine optimizations. We then outline various
levels of interface for our texturing system, and our attempts to en-
sure the idealized “low threshold, high ceiling, wide walls” (Resnick
et al. 2005) design space that help characterize successful creativity
support tools. We conclude with technical and aesthetic directions
for future research.

Background

In this section we begin by briefly describing ray marching as a ren-
dering technique. We then discuss how the demoscene (Carlson 2009)
affected many of our design decisions when initially authoring march-
ing.js, and contextualize the use of procedural texturing in marching.js
within the broader community of live coders.

Ray Marching

Ray marching is a method of rendering (primarily) three-dimensional
scenes. It is perhaps best understood in contrast to a much more
common 3D graphics pipeline, which incorporates tessellation and
rasterization. In this process, geometries are subdivided into trian-
gles (tessellation). The vertices for these triangles are then sent to the
GPU, where the triangles are reassembled and projected from their
3D location to the 2D viewing plane (rasterization).

In contrast, ray marching is a physically-informed rendering tech-
nique that enables programmers to use mathematical formulae to de-
fine and combine geometries, without having to worry about tessella-
tion or rasterization. In ray marching, a ray is projected from a virtual
camera through each pixel in the output and into a three-dimensional
scene; if this ray strikes an object in the 3D scene the pixel that
the ray travels through is assigned the color of that particular ob-
ject. This rendering technique makes a variety of operations that are
complex to perform with tessellated triangles much simpler, such as
fluidly morphing from one shape to another, or infinitely repeating a
geometry throughout a space. However, tessellation and rasterization

are extremely efficient, while ray marching typically requires a fairly
powerful graphics card to perform realtime rendering on high resolu-
tion displays. We describe ray marching in greater detail in our prior
writings about marching.js (Roberts 2019).

Cultural Assumptions in Marching.js

Many popular introductory tutorials on ray marching are presented
in the context of the demoscene, a culture that emphasizes the pro-
duction of audiovisual sketches (termed *demos*) that explore the
boundaries of what is possible within technical constraints. These
constraints can include the adoption of a particular low-resource tech-
nology platform, artificial constraints on the number of bytes a pro-
gram can occupy in memory, or, in the case of many live demoscene
competitions, the challenges of creating complex three-dimensional
worlds in realtime in a competitive head-to-head “battle” setting. The
demoscene features a variety of online venues for promoting discussion
and dissemination of the idiomatic techniques used within it. These
include the labyrinthine pouet.net—a popular forum for discussing
techniques ranging from shader programming to analog techniques in-
volving overhead projectors and paper cutouts—and shadertoy.com,
a site for viewing, editing, and sharing demos realized in the browser
using GLSL (Graphics Language Shader Language), one of the most
widely used languages for authoring programs that are parallelized to
run on the graphics programming unit (GPU) of a computer. The first
version of marching.js was heavily influenced by the cultural focus of
the demoscene on GLSL demos and the ready availability of related
references and tutorials. This led to questionable design decisions
that we re-examined in the context of procedural texturing.

Live Coding of Texture

Our research is particularly interested in the application of texture to
three-dimensional geometries; however, we note there is also a broader
discussion of texture within the live coding community as it relates

to both musical pattern and computational craft (McLean 2013).

Additionally, there is an established practice of live coding
fullscreen fragment shaders in the live coding community; these
shaders can be thought of as textures for simple rectangles that fill
the entire projection. Popular environments for GLSL live coding of
this type include The Force (Lawson & Smith 2017), KodeLife (Fis-
cher n.d.), and Veda (Amagi n.d.), while the demoscene community
typically uses a standardized system named Bonzomatic (Szelei n.d.)
for live competitions. Other visual live coding systems, such as La
Habra (Hennigh-Palermo n.d.) and Visor (Purvis, Anslow & Noble
2019) primarily use 2D programming APITs, such as Processing (Reas
& Fry 2006) in the case of Visor or a ClojureScript environment for
programming Scalable Vector Graphics in the case of La Habra.

The live coding system Hydra (Jack n.d.) adopts a different ap-
proach, providing an end-user JavaScript API that wraps a code gen-
eration engine for writing GLSL shaders. Hydra is “..a modular
and distributed video synthesizer” (ibid.), and similar to most ana-
log video synthesis systems the output can typically be considered
two-dimensional.

Our research on using textures within marching.js builds off of
many of the ideas found in these other systems, enabling live coders
to define textures that are created using the built-in HTML jcan-
vas;, element, and to use Hydra as a texture for the implicit surfaces
marching.js provides.

Rethinking the Live Coding Interface for March-
ing.js

As we implemented procedural texturing for the first time in march-
ing.js, we faced a difficult problem.

The code in Listing [I} creates a box that is rotated on its x-axis
and scaled before rendering. When we first tried to map textures to
such geometries, the effect became that of a textured blanket layered
over the top of the geometry: the box would rotate underneath and
scale appropriately, but the “blanket” would just hang in place while

barely moving, instead of being wrapped tightly around it so that as
the geometry rotated, the texture did as well. More succinctly: our
geometry rotated but our texture did not.

march (
Rotate (
Scale(Box(), .5)
Vec3(1,0,0),
Math.PI / 3
)

) .render ()

Listing 1: A scaled and rotated box in marching.js

This problem is more complex when we look at aggregate objects
that contain transformations applied to individual members of the
aggregate as well as the aggregate itself. For example, consider code
in Listing [

march (
Rotate (
Union (
Rotate(Box(), Vec3(0,1,0), Math.PI/3),
Sphere(1.25)
),
Vec3 (1), Math.PI/5
)

) .render ()

Listing 2: A rotated box and a sphere combined via a Union
combinator which is then also rotated

In Listing [2] we apply a rotation to our box, and then apply a ro-
tation to the union of the rotated box and the sphere. If we textured
the resulting aggregate geometry, we would need to take both of these
rotations into account at different parts of the texturing process.

The code generation engine in marching.js is effectively divided
into two stages. In the first, we determine whether or not rays travel-
ing through a pixel on our screen hit an object in the scene; if so, we
need to color that pixel based on the material / texture of the object,
and on the lighting of the scene. The second lighting stage calculates
this color, however, in marching.js version 1 the lighting stage cannot
access the transforms of the geometry that is being lit. We had to
significantly refactor the code generation engine in order provide ac-
cess to these transformations, which in turn led to questioning some
of our underlying assumptions about how our engine should function.
These changes enable users to freely assign transformations at any
level of hierarchy, as shown in Figure [2]

Transform Everything

The first change we made was to assign matrix-encoded transforms
for rotation, translation, and scale to every operation in marching.js.
Explicitly wrapping individual functions in such transforms was no
longer necessary, and a transformation matrix is automatically ap-
plied to all geometries.

Listing 3: Comparing old and new syntaxes for rotating a box in
marching.js captionpos

Listing 4: Comparing syntaxes for applying a variety of transforma-
tions to a box in marching.js captionpos

//old syntax to rotate,translate,and apply material
march (
Rotate (
Box(null, Vec3(1,0,0), Material(’glue’)),
Vec3(1,0,0),
.5
)

) .render ()

//new syntax to rotate,translate,and apply material
march (
Box ()
.rotate(Math.PI / 3, 1,0,0)
.translate(1,0,0)
.material(’glue’)
) .render ()

// old syntax
march(Rotate(Box(), Vec3(1,0,0), Math.PI/2))
.render ()

// new syntax
march(Box () .rotate(45, 1,0,0)).render ()

One effect of our changes is that the API for applying transforma-
tions immediately became much terser; in our opinion its clarity is also
improved. Listing [4] shows a more complex example for comparison:

The new syntax is more explicit about what is occurring, making
it easier to read, while only being two characters greater in length
in Listing [It also helps to avoid deep nesting which can difficult
to parse and awkward to augment with additional code. Given that
scaling, movement, and rotation are typically important parts of per-
forming with 3D geometries, we feel that improving the application
of such transformations is significant.

A tradeoff to these benefits is consistency. In first release of
marching.js, nested functions were used to create geometries, trans-
form them, and apply domain operations that could radically alter a
scene; in the newest version, transforms, texturing, and application
of material are instead achieved by method calls. We experimented
with also applying domain operations using method calls, however,
we found the resulting syntax to be ambiguous and difficult to apply
consistently. In its new form, the programming interface is currently
non-homogenous in how various operations are applied, but we still

P, :
march (:
rpt = Repeat(N
5 union = Union2(“ <
cyl = Cylinder(Vec2(1, 3

. texture('dots', {scale:2}),

cyl2 = Cylinder(Vec2 N
.rotate(90,0;0,1) A ¢
.texture('stripes',{scale:1})y; ‘{

cyl3 = Cylinder(Vec2(.95,1.5))ig
.rotate(90,1,0,0) _x Afds 9a.?)

- .texture('checkers', {scate: });,‘_' _

| AT R e T
.rotate(45,1,) B e
.scale(

. o ;
\ -
N
-

)i & > K B\ ,;
.background(Vec3()) Y

. fog(, Vec3(: y
.rendgr()'

' 4

Figure 2: Three cylinders with different rotations, scaled and repeated, with coherent procedural textures.

believe it is clearer than our prior solution.

Improving Efficiency and Code (Generation

As discussed previously, the implementation for marching.js was cre-
ated using online references and code examples. The majority of these
references were authored by demoscene participants, who commonly
perform all graphics processing on the GPU. This is an aesthetic
choice that places all graphics code in a (typically) single file using
a single language (GLSL), making it easier for viewers and program-
mers to understand. However, some operations, such as the transfor-
mations described in this section, are in fact more efficient to perform
on the CPU.

The reason for this is the parallel nature of GPUs, which makes it
difficult to share information across various invocations of the main
fragment shader function. Since this main function is invoked once
per pixel being rendered, GPU based transformations are thus calcu-
lated thousands of times per frame, and then must be repeated on
every additional frame. For some transformations, like translation,
this is not a significant cost, however, for others such as rotation it is
an expense best avoided.

Now that every operation in marching.js has a transformation ma-
trix associated with it, we can calculate this matrix a single time on
the CPU, transfer the matrix to the GPU, and then use the same
data for rendering every pixel in the operation. The transform doesn’t
need to be recalculated unless the it is changed in some fashion (for
example, increasing rotation), meaning in some cases we only need to
calculate the transformation a single time. This is clearly a win over
having to recalculate it for every pixel on every frame, regardless of
whether any changes to the transformation have occurred. Such op-
timizations are perhaps obvious in hindsight, but were only achieved
by reconsidering the context of the demoscene tutorials, references,
and libraries that influenced marching.js.

Changing Code Generation

In the generated shaders, each operation references a matrix that
represents the operation’s cumulative transformation. This includes
transformations applied directly to the operation, transformations ap-
plied to any domain operations that wrap the operation, and transfor-
mations that might be applied to any higher-level geometry that the
operation is a part of. As these various transformations are applied
(usually via matrix multiplication, with the code generation engine
ensuring correct application order by explicitly writing it into the
generated shader), the code generation engine stores each step of the
transformation as needed so that it can be referenced during textur-
ing.

Textures

marching.js enables users to approach texturing in a variety of differ-
ent ways, providing texturing options for beginning programmers as
well as more advanced programmers who are fluent in GLSL. In order
of increasing complexity, these techniques include:

1. Predefined 2D GLSL textures that can be wrapped around ob-
jects

2. Predefined 3D GLSL textures
3. Using a standard image file (.png, .gif, .jpg etc.)
4. Using the 2D <canvas> API provided by the browser

5. Using Hydra and other systems that output to <canvas> ele-
ments

6. Writing custom GLSL textures

Predefined Textures

The predefined textures included with marching.js (shown in Fig
are accessible via presets that can referenced by name, as shown in

Listing

march (
Box () .texture(’dots’)
) .render ()

Listing 5: Using a texture preset in marching.js

Texture objects can also be defined and used in multiple geome-
tries. Additionally when a call to .texture() is used on a geometric
combinator (Union, Intersection, Difference etc.) the texture is ap-
plied to all surfaces belonging to the combinator; this also applies to
domain operations like Repetition. Listing [6] provides code examples
of both methods.

// define a texture used by multiple objects
tex = Texture(’truchet’)
march (
Box () .texture(tex),
Sphere(1.35).texture(tex)
) .render ()

// or use a combinator to apply texture
march (
Difference (
Box (),
Sphere(1.25)
) .texture(’truchet’)
) .render ()

Listing 6: Applying one texture across multiple geometries via reusing
a texture and applying a texture to a combinator

Using the HTML <canvas> Element as a Texture

Many beginning web and graphics programmers experiment with the
HTML 2D <canvas> API. By offering <canvas> as one of the options
for texturing in marching.js, we enable these programmers to eas-
ily experiment with texturing without having to learn GLSL. These
textures can be animated and updated in the onframe method that
marching.js uses for animation.

Integrating with Hydra

Hydra is a popular live coding system that operates on a similar
principle to marching.js: users provide a high-level description in
JavaScript of a representation which is then compiled to a GLSL
shader for display. In Hydra, the operations are typically derived from
analog video synthesis techniques, while in marching.js the operations
relate to volumetric rendering and constructive solid geometry.

Performers use Hydra to create 2D patterns that change over time,
making it a perfect candidate to use as texture generator for march-
ing.js. Fig[]shows Hydra being used to texture a Mandelbox fractal.
The Hydra graph can be edited and redefined at any time to update
the applied shader texture. We imagine future collaborative perfor-
mances where one user could program textures in Hydra while another
programmed 3D scenes that used the generated textures.

GLSL Textures

Fragment shaders for texturing can also be authored directly inside
of marching.js, via the same API that is used internally to define the
various texture presets included in marching.js. This API enables
end-users to define points for interacting with their texture as well as
the raw GLSL code that is needed to calculate an output color value.

tex

tex.
tex.
tex.
tex.

= Texture(*canvas') help L ¢

.fillStyle = 'red’
.fillRect(0,0,150,150)
.fillStyle = 'white'
.fillRect(150,0,150,150)

ctx
ctx
ctx
ctx

march (

Box ()
.texture(tex)
.rotate(45, 1,0,1)
). render()

Figure 3: Using a HTML <canvas> element to texture a surface.

hydra = new Hydra({ canvas })

hydra.shape(8, .5, @.5)
.color(1,2,1) ./
hue(()=> (time / 4))
out() (~ '

a= Texture('Eénvas', { canvas })
o iw ~
march(A e S IRT 4
b = Mandelbox().texture(a)
) :

-

.fog(.85, Vec3(@))
.render(5, true)
.camera(0,0,3)
onframe = t => { ¥
b.fold = 1 + sin(t) * .
b.rotate(t x5, 0,1,1) #&
a.update() [7 o

¥ =7 s

.

camera.pos.z = 10/

Figure 4: Hydra in use to texture a Mandelbox fractal.

%

introduction

def = { LMl defining procedural textures v *

name: "dots2',

parameters: [
{ name:'scale', type:'float', default:5 },
{ name:'color', type:'vec3', default:[1,1,1
1,

glsl:® y
vec3 dots2(vec3 pos, vec3 nor, float count, vec3 color) {
vec3 tex = vec3(

color — smoothstep('
0.85,
0.22,
length(fract(pos*(round(count/2.)+.5)) -.5)
)-
}

H
return tex;

Texture.create(def)

march(s = Sphere(2).texture('dots2'))
.fog(.15, Vec3(0))
.render(5, true)

Figure 5: Defining and using a texture written in GLSL.

Manipulating Textures

After applying a texture the properties of the generated texture are
added as members of the texture function itself, exposing them for re-
altime control. In Listing [7] the time property of a 4D simplex noise
texture is changed in each frame of generated video.

march (
plane = Plane().texture(’noise’)
) .render ()

onframe = function(time) {
plane.texture.time = time

}

Listing 7: Changing texture properties over time

While most texture properties vary according to the preset used,
every texture has a scale property that is used as a scalar to modify
the texturing coordinates internally to the shader. Most also have a
‘strength’ property that determines the effect of the texture in deter-
mining the final color of each pixel.

Conclusions and Future Work

We extended a system/library, marching.js, to include a variety of
methods for texturing implicit surfaces. This required rethinking
fundamental aspects of how its code generation and ray marching
engines functioned, but resulted in a terser, more readable end-user
API that should lead to more fluid live coding performances. The
texturing methods we implemented help to ensure that program-
mers of varying experience will be able to experiment with textur-
ing, while providing integration with the live coding system Hydra
ensures that its users can transfer prior knowledge while experi-
menting or performing with volumetric rendering techniques. The

updates to this system are open source and available online at
https://charlieroberts.github.io/marching/playground/.

There are improvements to be made in the sampling algorithms
for 2D textures and anti-aliasing more generally in marching.js. Addi-
tionally, integration with p5.js, a JavaScript port of Processing (Mc-
Carthy, Reas & Fry 2015), could open texturing in marching.js to the
many artists and students who actively use that platform. Conversely,
we are also considering porting the library to run in p5.js, so that the
Processing community will have a relatively easy platform to explore
volumetric rendering.

References

Amgai, T. (n.d.) VEDA-VJ app for Atom. [Online] Available at:
https://veda.gl/. Accessed on Wed, September 25, 2019.

Carlsson, A. (2009), The forgotten pioneers of creative hacking
and social networking-introducing the demoscene, Re: Live: Media
Art Histories 2009 Conference Proceedings. pp. 16—20.

Hennigh-Palermo, S. (n.d.) La Habra: The Shape of Things
to DOM. [Online] Available at: https://github.com/sarahgp/la-
habra . Accessed on Mon, December 16, 2019.

Hart, J. C. (1993), Ray tracing implicit surfaces. In: Siggraph
93 Course Notes: Design, Visualization and Animation of Implicit
Surfaces pp. 1-16.

Fischer, R. (n.d.) KodeLife. [Online] Available at: https:
//hexler.net/products/kodelife . Accessed on Wed, September
25, 2019

Jack, O. (n.d.) hydra. [Online] Available at: https://hydra-
editor.glitch.me. Accessed on Mon, December 16, 2019.

https://veda.gl/
https://github.com/sarahgp/la-habra
https://github.com/sarahgp/la-habra
https://hexler.net/products/kodelife
https://hexler.net/products/kodelife
https://hydra-editor.glitch.me
https://hydra-editor.glitch.me

Lawson, S. & Smith, R. R. (2017), The Dark Side. In: Centro
Mexicano para la Musica y las Arts Sonoras (Mexico): Proceedings
of the Third International Conference on Live Coding.

McCarthy, L., Reas, C. & Fry, B. (2015) Getting Started with P5.
js: Making Interactive Graphics in JavaScript and Processing. Maker
Media, Inc.

McLean, A. (2013) The textural x. In: Proceedings of xCoAx2013:
Computation Communication Aesthetics and X. pp.81-88.

Purvis, J., Anslow, C. & Noble, J. (2019) CJing Practice: Combin-
ing Live Coding and Vjing. In: Proceedings of the 2019 International
Conference on Live Coding.

Reas, C. & Fry, B. (2006) Processing: programming for the media
arts. Al & SOCIETY, 20(4), 526 538.

Resnick, M., Myers, B., K., N., Shneiderman, B., Pausch, R.,
Selker, T. & Eisenberg, M. (2005) Design Principles for Tools to Sup-
port Creative Thinking. Technical report.

Roberts, C. (2019) Live Coding Ray Marchers with Marching.js.
In: Proceedings of the 2019 International Conference on Live Coding.

Szelei, G. (n.d.) Bonzomatic: Tool for the Live Coding Compo de-
buted at Revision 2014. [online] Available at: https://github.com/
Gargaj/Bonzomatic, Accessed on Monday, December 16, 2019.

https://github.com/Gargaj/Bonzomatic
https://github.com/Gargaj/Bonzomatic

	Live Coding Procedural Textures of Implicit Surfaces

