Designing for a Pluralist and
User-Friendly Live Code
Language Ecosystem with
Sema

Francisco Bernardo
Emute Lab, School of Music, University of Sussex
f.bernardo@sussex.ac.uk

Chris Kiefer
Emute Lab, School of Music, University of Sussex
c.kiefer@sussex.ac.uk

Thor Magnusson
Emute Lab, School of Music, University of Sussex
t.magnusson@sussex.ac.uk

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland

IProject MIMIC, https://mimicproject.com, accessed: 2019-09-15

Abstract

The growing popularity of the live coding and algorave scenes has
inspired incentive and support for accessible, diverse and innovative
approaches in expressing art through code. With live coding, the real-
time composition of music and other art becomes a performance art
by centering on the language of the composition itself, the code. Sema
is a new open source system which aims to support user-friendly ap-
proaches to language design and machine learning in live coding prac-
tice. This paper reports on the latest technical advances and user
research with Sema. We provide an overview and design rationale
for the early technical implementation of Sema, including technology
stack, architecture, user interface, integration of machine learning,
and documentation and community resources. We also describe the
activities of the MIMIC Artist Summer workshop, a full-week work-
shop with a group of 12 participants, which we designed and delivered
to gather user feedback about the first design iteration of Sema. Find-
ings from our workshop corroborate that language design and machine
learning are advanced topics in computer science which may be chal-
lenging to users without such a background. Nevertheless, we found
that such topics can inform the design of systems which may be both
useful and usable to the live coding community.

Keywords: Programming Language Design, Web Live Coding,
Machine Learning, User-Centred Design, Coding Ecosystems

Introduction

This paper presents Sema, a new Web-based, open-source, live coding
language design and performance playground. Sema is aimed for real-
time signal generation and processing, machine listening and machine
learning. We are developing it as part of the AHRC-funded project
MIMICE] (“Musically Intelligent Machines Interacting Creatively”), a
three-year AHRC-funded project, run by teams at Goldsmiths Col-

mailto:f.bernardo@sussex.ac.uk
mailto:c.kiefer@sussex.ac.uk
mailto:t.magnusson@sussex.ac.uk
https://mimicproject.com

lege, Durham University and the University of Sussex. MIMIC ex-
plores how to design and communicate machine learning and machine
listening tools in simple and accessible ways for composers, instru-
ment makers and performers. It does this through the design and
adoption of new web-based computational tools that leverage on the
internet as substrate for a live software ecosystem.

We are interested in the symbiosis of creative machine learning
(Grierson et al. 2018) and live coding (Magnusson 2014) approaches
to music. Live coding can facilitate pedagogical approaches to com-
putational thinking in the context of creative and artistic practices
(Roberts et al. 2016) and STEAM (Yee-King et al. 2017). We seek
to understand how well new users from creative areas-i.e. as op-
posed to more technical backgrounds such as computer science and
engineering are able to grasp and apply computational processes of
considerable complexity, such as real-time interactive signal process-
ing, machine learning model-building (Bernardo et al. 2017), and
language design and grammar specification. We are employing user-
centered techniques to leverage the design of new software develop-
ment tools and evaluate progress through open-ended and creative
processes (Bernardo et al., 2018). The paper is structured as follows:
this section introduces the paper and presents background research
around live coding systems and practices and machine learning. Sec-
tion 2 presents an overview of the early technical implementation of
our new system Sema and elements of our design strategy and ratio-
nale. Section 3 describes the MIMIC Artist Summer workshop and
the activities for gathering user feedback about the first design itera-
tion of Sema. In Section 4, we discuss the main findings and emerging
themes of the workshop. Section 5 concludes with the main takeaways
and future work.

Background

Live coding in the arts has existed as an exciting field of activity
since the early 2000s, with seeding work and experimentation from
previous decades. Live coding practitioners typically engage simulta-

neously in programming with a domain specific language (DSL) and
other modalities, including audio and visual synthesis, instrument de-
sign, algorithmic creation, composition and performance (Magnusson,
2014). Early practitioners would typically invent their own systems
for musical and other types of performance (e.g. McLean, 2004), of-
ten developing systems that were inspirational, humorous and highly
effective in real-time performance under stress. With the growing
popularity of live coding and algoraves (Armitage 2018), the live cod-
ing community appears to be consolidating their practices around a
few systems-e.g. SuperCollider (McCartney, 2002), ixi lang (Magnus-
son, 2011), Gibber (Roberts and Kuchera-Morin, 2012), Sonic Pi and
Overtone (Aaron and Blackwell, 2013), TidalCycles (McLean, 2014),
ChucK (Wang et al., 2015) and Extempore (Sorensen, 2018). While
such systems are excellent examples of established tools for live cod-
ing which help to build the live coding community and attract new
beginners in, we have lost some of the variation and diversity which
existed before.

Wakefield and Roberts (2017) have conducted previous research in
language design for live coding on the Web. Their browser-based en-
vironment, which leverages a virtual machine, the Parsing Expression
Grammar formalism, and an interactive online tutorial and documen-
tation, aimed at enabling users to define custom DSLs syntax and
semantic actions. Wakefield and Roberts also described the results
deploying the system on an ICLC 2016 workshop, where a few par-
ticipants were able employ it to develop their own mini-languages.

This paper follows up on this research and on a previous survey
on the design of languages and environments for live coding presented
at ICLC 2019 (Kiefer and Magnusson 2019) and the “Live Coding
Machine Learning” workshop conducted at the ICLC 20191. In this
engagement with communities of practitioners, we asked which fea-
tures they envisioned for future live coding environments and lan-
guages that could integrate machine listening and machine learning.
The findings indicated a wide space of possibilities, including support
for hybrid approaches and multi-paradigm languages (i.e. OOP and
functional), flexible, expressive and extensible languages and proto-

typing environments, good quality documentation and examples, as
well as a clear and informative error report system. The empha-
sis that survey respondents placed on potential qualities for a new
live coding language, e.g. brevity, simplicity, expressivity, flexibility,
adaptability and plurality, pushed us to reconsider the idea of trying
to satisfy everyone with one general live coding language design. In-
stead, we considered designing a new system which could enable and
empower users to create and refine their own idiosyncratic languages
for musical expression. Considering the history and tradition of live
coders building their own systems (Magnusson 2014), this decision
would contribute further to a plurality of systems in a field teeming
with inventive solutions. We believe that the recent innovation in
Web technologies can afford the evolution of an ecosystem of real-
time, user-defined live coding languages which combines interactive
machine learning, machine listening and audio threads. In this pa-
per we account for the early stage of our design exploration aimed at
fulfilling this vision.

SEMA, A Live Coding Language Design Playground

Our previous findings (Bernardo et al., 2019; Kiefer and Magnusson,
2019) inspired us to build a modern Web-based system to support
rapid prototyping of live coding languages, which we titled Sema. We
are engaged in a design exploration process pursuing the following
principles:

e Integrated signal engine — no conceptual split between the lan-
guage and signal engine. Everything is a signal

e Single sample signal processing — per-sample sound processing
to support techniques that use feedback loops, such as physical
modelling, reverberation and IIR filtering

e Sample rate transduction — signal processing with one princi-
pal sample rate-i.e. the audio rate-is simpler. Different sample

rate requirements of dependent objects can be resolved by up-
sampling and down-sampling. We use the ‘transducer’ analogy
to enable and accommodate a variety of processes with varying
sample rates (video, spectral rate, sensors, ML model inference)
within a single engine.

e Minimal abstractions — no high-level abstractions such as buses,
synths, nodes, servers, or any language scaffolding in our signal
engine. Such abstractions sit within the end-user language de-
sign space.

e Striving for an adequate compromise between simplicity and
flexibility — support the different user needs in the continuum
which comprises beginner and expert live coders.

e Prioritizing usability and learnability — support a smooth and
gradual learning curve, ease of use, and straightforward appli-
cability.

e Balancing performance trade-offs with an efficient implementa-
tion — considered the constraints above and the performance
overhead they may entail, we build upon an efficient implemen-
tation to optimize the utility of our system for live coding per-
formance.

In this section, we provide a technical overview of the first design
iteration of Sema. Figure [1| below illustrates the general architecture
and main elements of our solution.

Machine Learning

Machine learning (ML) has been integrated into Sema as a first-class
citizen and core component. ML processes have computationally
intensive stages which can undermine the user experience of an in-
teractive application. Previously, we described the critical usability
issues of Web-based applications with interactive machine learning

(IML) workflows and audio, where end-users build custom ML mod-
els from small, lightweight, user-created data sets (Bernardo et al.
2018). In simple IML implementations, the ML model-training stage
can have a thread-hogging behaviour which results in a freeze of the
main JS thread. Furthermore, the ML-inference stage competes with
the DOM and audio rendering, which may cause audio clicks and
dropouts. These processes are therefore better suited for execution
on a dedicated thread. This motivated the design of a multi-thread
and loosely-coupled architecture for Sema, based on JS workers for
ML and AudioWorklet for audio signal processing and rendering (fur-
ther detailed in Section 2.2). Sema imports the latest version of Ten-
sorflow.js (TFJS) into a JS Web worker and where it is used in the
dynamic evaluation of the JS code for bespoke ML pipelines. This
enables the user to enact parts of a ML workflow through partial
evaluations of TFJS code related to different parts of the ML work-
flow, such as the set up the training datasets, inputs and outputs, the
creation of a model architecture, the definition and configuration the
models’ hyperparameters, and communication with the user-defined
live coding language context. The mechanism is similar to Jupiter
Notebooks, where the user can evaluate different code blocks or re-
gions in a non-linear fashion. ML processes in Sema adhere to our
transducer concept, in that the sample rates from the event streams
they receive from and generate to the live code language context, are
converted to and from the sample rate of the audio context.

Signal Engine

The critical usability issues described in the previous section moti-
vated the first step in our design strategy: to implement a signal
engine which could run client-side in the browser, in a dedicated

2WebAssembly, https://webassembly.org/, accessed: 2019-09-15

3Nearley.js, http://nearley.js.org/, accessed: 2019-09-15

thread. Bernardo et al. (2019) provide a more detailed treatment
of how we accomplished our innovative design pattern for an WAAPI
AudioWorklet-based signal engine and of the performance tests con-
ducted. In a nutshell, we refactored the C++ DSP library Maximilian
(Grierson and Kiefer, 2011) and transpiled it into a WebAssemblyﬂ
(WASM) module using Emscripten (Zakai, 2011). Our signal engine
loads the Maximilian WASM module into a custom Web Audio API
(WAAPI) AudioWorklet processor (AWP) (Choi, 2018). In the au-
dio rendering loop, the AWP (Figure 1)) evaluates dynamic DSP code
which is injected through an the AudioWorklet asynchronous mes-
saging system. One trade-off of our scalable and high-performance
signal engine is that Sema inherits the current WAAPI AudioWorklet
limitations and only runs in Chromium-based browsers (e.g. Chrome,
Brave, Microsoft Edge, Opera).

Live Code Language Parser

In Sema’s first-iteration implementation, which was used on the
MIMIC Artist Summer workshop, users were required to employ and
manually execute a Nearley.jsﬂ shell script to generate a new parser
for a their user-defined live code language. The Nearley.js toolkit
and library implements the Earley algorithm (Earley, 1970). Users
needed to define and write a grammar specification in the Backus-
Naur Form (BNF) and compile it against Nearley to generate a JS
parser. The resulting parser would then be included in Sema’s source
code and the solution rebuilt. In comparison with other parsing for-
malisms (e.g. parsing expression grammars), the Earley algorithm
supports a broader set of grammars, including ambiguous grammars
with left-side recursion. The trade-off for the versatility and flexibil-
ity of Nearleyﬂ is performance. This is shown by comparisons with

4Parsing Libraries Benchmark, https://sap.github.io/chevrotain/performance/, accessed: 2019-09-18

https://webassembly.org/
http://nearley.js.org/
https://sap.github.io/chevrotain/performance/

Nearley Parser Generator

Lexer Grammar

Intermediate Language

Abstract Syntax Tree

i AST to serialized JS

Audio Worklet Node

.port.postMessage

Ul

Live Coding || Javascript (ML)
Editor Editor

bidirectional

messaging

Signal Engine

Main
Controller

maximilian.util.js

Machine Learning
Magenta.js

Tensorflow.js

Figure 1: Sema’s first-iteration architecture

asynchronous

Audio Worklet Processor

.port.onmessage

maximilian.wasm.js

Maximilian C++
WebAssembly module

compiled ahead-of-time
with Emscripten

parsing libraries, DSL and custom-written parser implementations,
and other parsing approaches. However, the results from our previ-
ous performance tests (Bernardo et al., 2019) show that Nearley, even
if slower than other parsers, performs in sub-perceptual time, which
is, therefore, adequate for live coding performance.

Graphical User Interface and Code Editors

We experimented with different code editors while considering cri-
teria such as component architecture, community adoption, main-
tenance and support, and ease of integration with Webpackﬂ We
opted for CodeMirrorﬁ to power the two user-facing editor instances
in our web-based live coding environment. One CodeMirror instance
runs a respousive live coding editor (Figure |2} top, dark background)
which provides users with general code editing capacities and manual
code evaluation using keyboard shortcuts (CMD-Enter). The other
instance runs a second editor (Figure [2| white background) where
the user can inspect, customize, or program TFJS-based ML-model
pipelines from scratch, as well as define the communication bind-
ings between the user-defined language and the ML worker threads.
Sema’s first GUI iteration is minimalist and provides a few command
buttons, (Figure bottom) for pausing and resuming audio rendering
and downloading code from the editors to the local file system. Sema
also provides a combo box button with a selection of pre-defined TFJS
code for populating the second editor with JS code. This selection
consists of a selection of pipelines for building specific ML models built
into our system—e.g. simple linear regression (hello-world), two-layer
non-linear regression, binary classification, Long-Short-Term-Memory
(LSTM) for text generation, echo state networks, and transfer learn-
ing with a pre-trained Music Recursive Neural Network (RNN) from

5Webpack, https://webpack.js.org/, accessed: 2019-09-18
6CodeMirror, https://codemirror.net/, accessed: 2019-09-18

7 Google Magenta, https://magenta.tensorflow.org/, accessed: 2019-09-18

Google Magentaﬂ

Workflows
e{’%
const moo = require("moo");
const lexer = moo.compile ({
click: /click/,
ws: {match: /\s+/, lineBreaks: truel},
B
hx

Statement -> Y%click
{% d => [{"esiglut": {
>@spawn’: {
’@sigp’: {
>@params ’: [{ ’@num’: { value: 1 }},
{ ’@string’: ’click’ }],
>@func’: { value: ’loop’}

}

}H
h}

Listing 1: Code Example 1

Section 2.3 introduced how the parser for the custom user-defined
live code languages is created by the user. Listing|l|shows code of the
first Sema tutorial to illustrate a minimal live coding language gram-
mar, written in extended BNF and Sema’s intermediate language. A

https://webpack.js.org/
https://codemirror.net/
https://magenta.tensorflow.org/

-

1
2
3
4
5
6
7
8
9
0
1

@ Ssema

@ localhost:9001

:x:{{{2,0.33}imp, {1,0.66}imp}sum}\909b;

:0:{{0.2,0.5}imp}\90%0pen;

:5:{{0.5,0.5}imp}\909;

tc:{{{0.5,0.25}imp,{1,0.33}imp,{1,0.66}imp, {1,0.99}imp}sum}\909closed;

tnoi:{{0.2,0.9}imp}\noinoi;

{:x:,:8:,:0:,:C:,:noi:}mix

//js

//create the model

var model = tf.sequential();

model.add(tf.layers.dense({ units: 1, inputShape: [1] }));

model.compile({ loss: 'meanSquaredError', optimizer: 'sgd' });
Open model example:

//set up the training data se”g 7ot .

var xs = tf.tensor2d([0, 1, 2 biary-ciassification [6, 11);

_ Istm-txt-generator o
var ys = tf.tensor2d([0, 50, . coerewox 00, 2501, [6, 11);
music-rnn
Play: Cmd Enter = Stop: Cmd. Download JS Code = Download Live Code | hello-world Y

Figure 2: Snapshot of the GUI (pre-workshop version) with default language and machine learning model code

user compiles a file containing this grammar with Nearley to generate
a parser for the 1-token language containing the expression “click”.
The parser is included in Sema source code and used when users eval-
uate an expression in the live coding editor — i.e. by pressing Cmd-
Enter after selecting an expression or placing the cursor on a given
line in the editor — and trigger the main workflow in Sema (Figure
dashed connectors). The user-evaluated expression is parsed by
the Nearley-generated parser. If the expression is valid according to
the language formally defined by the BNF grammar specification, the
parser outputs an Abstract Syntax Tree (AST). The AST, a tree-like
data structure which breaks down the user expression, is serialized to
JS expressions that specify which Maximilian DSP objects are used
and how they are assembled into DSP functions that will run in the
AudioWorklet processor (AWP). These JS expressions are packed into
a JS object which is posted through the AudioWorkletNode messag-
ing port (Figure[l) and evaluated dynamically in the AWP audio loop

Community and Learning Resources

Sema is hosted in a code repository on github.conﬁ MIMIC-Sussex
organisation, where it is published along other MIT-licensed satellite
projects (e.g. osc2sema, sema.github.io). We are developing Sema
using a modern web development stack based on mode.jdﬂ7 webpack,
and package managers such as yarrﬂ or npnﬂ We are using this
stack to leverage on automatic bundling workflows for code, assets,
and integrating third-party code from the OSS ecosystem. The doc-
umentation for Sema comprises resources that assist the user in the
described workflow. Currently, that includes:

e reference and code examples for the default demo language

e intermediate language representation for the signal engine

reference for the DSP objects and methods of the Maximilan.js
API

e data storage and loading functions

Other learning resources are tutorials (Listing embedded in
Sema’s solution which aim to support a progressive learning curve
to grammar editing and language design.

The Mimic Artist Summer Workshop

In this section we describe the elements, activities and results of the
MIMIC Artist Summer workshop, which we designed and delivered
to gather user feedback about the first design iteration of Sema.

Data Collection

We used an array of data collection methods before, during and after
the workshop. We ran a pre-workshop survey to help us understand
the background knowledge and skills, motivation, and project pro-
posals of workshop candidates. Data collection during the workshop
included participant interactions in the workshop in Slack channel,
photos, video and sound recordings of participants’ live coding per-
formances with their customized environments, observational notes
from the workshop, and notes from the final group discussion. Par-
ticipants’ forks and pull requests during the workshop are also part
of the primary data set and publicly available from Sema’s github

8MIMIC-Sussex/sema, https://github.com/mimic-sussex/sema) accessed: 2019-09-18

9Node.js, https://nodejs.org/, accessed: 2019-09-18
Ohttps://yarnpkg.com/, accessed: 2019-09-18

1 https://www.npmjs.com/ accessed: 2019-09-18

https://github.com/mimic-sussex/sema
https://nodejs.org/
https://yarnpkg.com/
https://www.npmjs.com/

repository. We also ran a post-workshop survey with questions on
four main categories: live coding language design, the Sema system,
machine learning and community.

Participants and Pre-Workshop Survey

The call for participation for the MIMIC Artist Summer Workshoﬂ
was released on May 24, 2019. The call addressed artists interested in
participating in the workshop and using Sema to build their own live
coding languages for live performances and composition using ma-
chine learning. The call presented a workshop week-long programme
and introduced. We received 16 responses to our pre-workshop survey
from which we selected 12 workshop participants (9 males, 3 females).
Participants came from the UK (6 participants), Netherlands (2),
Norway (1), Germany (1), Sweden (1) and Spain (1). With only one
exception, a participant who reported having beginner coding skills,
most participants reported being very experienced coders in multiple
languages (e.g. JavaScript, Python, C++), including CS graduates,
PhD students and teachers of programming. Most participants re-
ported being experienced live coders (e.g. SuperCollider, TidalCycles,
ixi lang) also with skills in data-flow languages (e.g. Pure data and
Max/MSP). One participant mentioned never having live coded, two
participants mentioned not having performed live coding in public. In
relation to machine learning skills, the group was more diverse. Half of
the group reported having little to no experience in machine learning.
Other participants reported having tinkered with a ML toolkit—e.g.
Wekinator, GRT, Keras, ml.lib for Max/MSP, and SuperCollider ML
tools. Three participants reported having advanced knowledge in ML,
two with publications or artworks in the area.

Some of the reasons and motivation that users expressed for at-
tending the workshop included:

e developing their practice in live coding and performing

e understanding the possibilities of machine learning in music

e enhancing their knowledge about machine listening and machine
learning

e building new musical instruments and tools

e developing new methods of performance and interacting with
audience

e expanding their social network in the machine learning for mu-
sic and live coding community and meeting like-minded people,
learn how to communicate with people in the field

e finding new teaching material

e creative JS coding and exploration

Participants’ proposals for projects at pre-workshop stage in-
cluded:

e clive coding environment with live acoustic audio inputs and
algorithmic processing

e building a new instrument with relevant musical parameters for
both the performer and the audience

e building tools for song writing

e expanding a personal live coding environment with generative
algorithms and recommendations for composing melodic/rhyth-
mic structures

e exploring the possibilities of real-time synthesis using machine
learning to create new sounds

e controlling feedback systems

e a live coding system for 3D printing, a rule-based learning sys-
tem for live coding

I2MIMIC Artist Summer Workshop, http://www.emutelab.org/blog/summerworkshop, accessed: 2019-09-15

http://www.emutelab.org/blog/summerworkshop

Overview of the Workshop Week and Sessions

Workshop sessions took place at the Sussex Humanities Lab (SHL)
with the exception for the performance night. The first day of the
workshop started with a contextualisation of the workshop within
MIMIC research goals and outline of the workshop week activities
(Table). Participants were invited to participate at EMUTE
LAB live coding performance night “Musically Intelligent Machines”
by the end of the week at the local venue Rose Hill.

Day Topic

1 Induction session on Language Design with Sema &
Induction session on Machine Learning and Sema

2 Counterpoint studio presentation and workshop
session

3 Induction session on Machine Listening

4 (Aesth)et(h)ics and creative-Al & Live coding per-
formances with participants’ systems at music
venue

5 Artist Residence Project showcases + Participant
demos & Discussion about Sema (experience, re-
quests, future path)

Table 1.1

The core sessions with Sema were delivered on the first day, one
in the morning and the other in the afternoon. The remaining days
had blocks of project work interweaved with inspirational and debate
sessions, garden lunches, and social activities in Brighton.

The first day workshop sessions with Sema consisted of a practical
crash-course and hands-on exploration on language design (Figure
a) and an introduction to machine learning and Tensorflow.js. These

13Counterpoint creative studio, https://ctpt.co/, accessed: 2019-09-19

sessions were preceded by a demonstration of supporting tools, in-
stallation and forking of the Sema repository. We introduced Sema’s
tutorials for language design and grammar specification using ex-
tended BNF, Nearley and Sema’s intermediate language. We went
through simple examples (e.g. Listing [1)) to gradually more complex
while attempting to get everyone up to speed for them to proceed
in autonomous exploration. The machine learning session provided
an overview covering ML concepts and terminology, artistic exam-
ples and applications, and a walkthrough the Tensorflow.js examples
provided with Sema.

Samuel Diggins and Tero Parviainen from Counterpoinﬁ studio
gave a presentation (Figure 4| a) about their projects with computa-
tional design with ML and music participated in the first two days of
the workshop. Shelly Knotts from MIMIC-Durham presented some
examples of the MMLL library for machine listening (Figure 4| b).

In the EMUTE LAB 4 performance evening, six participants per-
formed along other artists in line-up (Figure [5{a). Three participants
performed individually using Sema (Figure a, b, ¢). Marije Baalman
and Henrike Hurtado Mendieta, two artists who were invited to do
a 2-week long MIMIC residency, participated in the workshop, per-
formed at the EMUTE lab evening and also presented their work in a
session (Figure@ a and b). In the same morning workshop participant
also presented their work in the workshop (e.g. Figure |§| c).

3.4 RESULTS There were two new languages created with Sema
during the MIMIC Artist Summer Workshop. One workshop partic-
ipant created a language titled MAIAE and performed with it. The
artist-in-residence Marije Baalman created another new language.
Two other participants customised Sema and performed with the de-
fault language. One of them augmented Sema with 3D graphics and
animations, and sonified the machine learning training stage. The
other performer developed a probabilistic system that communicated

MMATA - Live coding mini-language build upon SEMA, https://github.com/tmhglnd/maial accessed: 2019-09-26

https://ctpt.co/
https://github.com/tmhglnd/maia

MIMIC Workshop

in
fsema
Live Cosfing

Figure 3: a) The MIMIC Artist Summer workshop opening session and b) the language design induction session with Sema at the Sussex

Humanities Lab.

with the live code language to stochastically change tones of the musi-
cal sections. Interestingly, one other participant designed a grammar
with Nearley playground and used it for generating new text in perfor-
mance. Other contributions to Sema included extensions to the inter-
mediate language —‘amsynth’, ‘fmsynth’, ‘oscbank’, i.e. three inter-
mediate language constructs corresponding to an AM synthesizer, an
FM synthesizer and a bank of oscillators. One contribution consisted

of an integration of melody—rndfl7 a pre-trained model from Magenta.
There were very meaningful contributions to the documentation. One
participant refactored the tutorials with more complete and adequate
comments for beginners. Another participant documented the inter-
mediate language. We obtained 12 respondents to our post-workshop
survey. We employed NVivo in a qualitative content analysis of par-
ticipants responses. Participants’ names were anonymized and en-

15Magenta Models, https://github.com/tensorflow/magenta/tree/master/magenta/models, accessed: 2019-09-26

https://github.com/tensorflow/magenta/tree/master/magenta/models

Figure 4: a) Counterpoint presentation on designing with Music and AI, and the b) machine listening session at SHL

coded with labels from the range [MP01-MP12]. The codes employed
to classify textual content included: sema, audio engine, machine
learning, machine listening, grammars, regexp, documentation, tu-
torials, workshop, language design, knowledge, experience, program-
ming language paradigms, community, contributing, goals, challenges,
suggestions, functionality, understandability, learnability, utility, per-
formance, limitations, negative feedback, positive feedback.

Discussion

In this section, we discuss themes synthesized from the analysis of the
main results and primary data.

Signal Engine: Good Audio Quality and Reliability, but
more Flexibility and Transparency Required

The audio quality of Sema’s signal engine was considered good in
general, and in one case, surprisingly solid and reliable for an earlier
implementation. Participants who used Sema in their performances
also had technically good sounding performances. This confirms the
quality and reliability of our signal engine prototype (Bernardo et al.,
2019) in particular for use in a live performance setting. These re-
sults also show that our strategy for implementing a browser-based
signal engine running on its own thread was sound. In one case,
our signal engine implementation enabled the sonification of the ma-

sat(17001
et Sreass(19, OV
F!

= e e :
#owes 18 noisel
o memaiaits map(
o mapierianglel

in

an(#aw(110)
Lok(fopm, =P
by

00, 200.307

I

;
1)
7
'

5 e s mull e, ol

12 1n sampla(MEe 0.5))s 2)

\Rdek, =y
sampla (IR D
14ck(Fops, 1
! pea 10 mul(sampla(\nnsres e
- aeeeptngml (¢ V[FDPE, 2,

rt{sum(ic o8, on, b,

July 25t Tpm, £6
@emutelab, htf

), 10)40:5¢ 1)+
spine(3)s ¥

(wine(0-2)
eap(sine(0-1)s 44

12), 120,

e, e,

Figure 5: a) Poster for the EMUTE LAB 4 night, where b) ¢) d) three participants performed with Sema L

chine learning model training stage. This shows important improve-
ments over previous technical challenges in integrating machine learn-
ing with audio in web-based applications (Grierson et al., 2018), such
as the thread-competing behavior of machine learning, as well as au-
dio clicks and drop-outs. There were a few concerns the recurred
among participants. One other concern was about the limitations of
a browser-based signal engine in terms of processing capacity. This
remains an open question for further research with load tests and
experimentation in live performance scenarios. One possibility is to
explore the trade-offs of an Electron-based build of Sema. There were
also concerns was about the investment required to learn yet another
audio engine implementation when participants took previous effort
with another language—e.g. SuperCollider (McCartney, 2002). In
two cases, there were remarks about how the functional ‘flavour’ and
signal-flow-oriented architecture of the audio engine could limit the
musical outcomes and artistic expression with Sema. Some sugges-
tions included developing support in Sema for procedural and object-

oriented approaches to the intermediate representation. On the other
hand, some remarks pinned these limitations to the language design
workflow. Such aspects are tied to both the musical affordances of
future languages, to the usability of the different components of Sema
and to the language-designer experience, all of which require further
research and are discussed in the next section.

General Usability, Learning Resources and Documentation
Require Improvement

The potential of a language design system for the live coding commu-
nity was considered useful and appealing. However, several aspects
of Sema were considered obscure and very challenging. There were
general difficulties with understanding how to use the intermediate
language in the grammar specification and how to build the AST; or,
understanding how the mechanism of converting the AST with the
intermediate language to audio DSP worked. On one hand, these dif-
ficulties were related to the specifics of the implementation of Sema,

AECESSERTSONTENE
SENTERCE | _ ACCESSORVIEMTINCL |
BESTION | (= bur | - el |
VE [oce | _ cctsssanee | 71t s
7 SN el
Tagng care: | ot | B e
=g hamsor” | ”"‘m’..m.f

Figure 6: Final day presentations with a) b) artists-in-residence showcase and ¢) participants demos

which lacked transparency and abstraction in certain areas and also
failed to provide users with adequate documentation. On the other
hand, these difficulties are intrinsic to language design, which is con-
sidered an advanced topic of computer science. Nevertheless, despite
the cumbersomeness of the language design and grammar specification
workflow, and of manual and external parser compilation, we observed
that people were able to design valid grammars and languages. We got
very positive feedback about the Nearley playground for rapid pro-
totyping and exploration of throw-away grammars. The approach of
using minimal tutorials to support the gradual exploration of custom-
designed languages through adjustments, trial and error, was consid-
ered useful and helpful. However, tutorials were considered mostly
incomplete and beginner un-friendly, with suggestions for supporting
different entry points and skill levels. It is fundamental to improve
the usability of Sema and the complex processes that it leverages with

better learning resources on conceptual knowledge, system documen-
tation, examples and code comments, as suggested. We found that
there is little research on systematic approaches to language design
workflows, documentation and learning resources, particularly for live
coding languages. There is research sharing a common base of HCI
and usability, and focusing on improving API usability (Myers and
Stylos, 2016), on design guidelines (Karsai et al., 2009) and usability
(Barisié et al., 2013) of DSLs, which we are looking forward to explore
with Sema.

Finding the Adequate Approaches, Models, Uses and Data
for Machine Learning in Live Coding Practice

There are compelling opportunities for empowering the live coding
community with new artistic processes which may arise from the inte-

gration of real-time interactive signal processing and machine learning
technologies. Particularly, if such processes are provided in a scalable
and accessible environment such as the Web. This was reflected, for
instance, by the general appreciation for the knowledge improvement
that Sema and our workshop facilitated around different aspects and
layers of ML—e.g. from ML concepts and terminology through to spe-
cific implementations with Tensorflow.js; also, for how Sema and the
workshop attempted to bridge domain-specific concepts of live-coding
music performance and interactive audio, in a playful and accessible
way.

In our surveys and during discussions, we noticed an overall un-
certainty and ambivalence about the utility and use cases of machine
learning in live coding. Further research with Sema will prioritize
reaching an understanding of which ML-algorithms fulfil a specific
live coding use case better. There were interesting workshop out-
comes which can help to lead future research with this question. For
instance, there were remarks acknowledging that the real-time nature
of live coding performance and lack of extensive data sets should be
considered. This hints to the future design of Sema to adhere to the
live coding constraints pf real-time and small data sets, including cu-
ration of machine learning algorithms and probabilistic models (e.g.
kNN, Markov Models, RNN), understanding which ML approaches
are more suitable for these constraints, for instance, interactive ma-
chine learning (Bernardo et al., 2017), and other which may be simul-
taneously valuable for generation, such as transfer learning (Oore et
al., 2018) or reinforcement learning (Jaques et al., 2016).

Design Decisions

The findings and user feedback which we obtained in the workshop
helped us to consider, define and prioritize the main development
goals for the subsequent iterations of our user-centered design explo-
ration. They are as follows:

e Integrate grammar design and parser compilation in Sema’s

workflow

e Define and clarify entry points into Sema to improve learning
resources and documentation

e Explore the links and adequate abstractions for designing work-
flows, GUI, AST, intermediate language, machine learning and
machine listening

e Explore the adequate ML approaches, models and use cases for
live coding

e Design the OSS community strategy and prepare for contribu-
tions

Conclusions

In this paper, we presented Sema, a new Web-based OSS system for
live coding language design and performance with real-time signal
generation and processing, machine listening and machine learning.
We contextualised Sema within the research activities of MIMIC, pre-
sented the underlying motivation for its development, and presented
an overview of the latest technical advances and user research with
Sema. We also discussed the main findings and themes which emerged
from this work. One group of main findings relate to the quality of the
current signal engine implementation and how it enabled to overcome
previous challenges in the integration of ML and audio in Web-based
applications. Another group findings concerned the challenges and
difficulties which users found with the workflows in Sema and general
usability issues. A third group of findings concerns the usefulness of
Sema as a resource for leveraging pedagogical approaches and learning
experiences with ML learning, and which requires further exploration
around the provision of the adequate approaches, models and use cases
for live coding practice. Sema promises utility and value for the live
coding community by filling the gap of systems that support new lan-
guage design. Whilst the potential to enable users to create their own

languages in a simple web-based playground is strong, Sema needs
extensive work to become more usable and welcoming to novices. Fu-
ture work includes writing better learning resources, making the signal
engine more flexible and transparent, and identifying and implement-
ing adequate ML approaches, modes and use cases. We also noticed
how people were not be able to grasp the full potential of ML in live
coding practice, and this is one of MIMIC’s key project objectives.
Finally, in this paper, we used workshop findings to motivate and
present design and development goals for the next design iteration of
Sema. Acknowledgments We would like to thank the participants of
the workshop for their participation in workshop and contributions to
Sema. We would like to thank Marije Baalman and Enrike Hurtado
Mendieta for their inspiring work at the MIMIC residency, participa-
tion in the workshop sessions and contributions to Sema. We would
like thank Samuel Diggins and Tero Parviainen for their inspiring
workshop sessions and contributions to Sema. Finally, we would like
to thank Paul McConnell and Alex Peverett for the documentation
of the workshop. The research leading to these results has received
funding from AHRC through the MIMIC project, ref: AH/R002657/1
https://gtr.ukri.org/projects?ref=AH/R002657/1.

References

Aaron, S., Blackwell, A.F., 2013. From Sonic Pi to Overtone:
Creative Musical Experiences with Domain-specific and Functional
Languages, in: Proceedings of the First ACM SIGPLAN Work-
shop on Functional Art, Music, Modeling — FARM’13. pp. 35-46.
https://doi.org/10.1145/2505341.2505346

Armitage, J., 2018. Spaces To Fail In: Negotiating Gender, Com-
munity and Technology in Algorave. Danc. J. Electron. Danc. Music
Cult. 10, 31-45.

Barisié, A., Goulao, M., Amaral, V., Barroca, B., 2013. Evalu-
ating the usability of domain-specific languages, in: Software Design

and Development: Concepts, Methodologies, Tools, and Applications.
pp. 2120-2141. https://doi.org/10.4018/978-1-4666-4301-7.ch098

Bernardo, F., Grierson, M., Fiebrink, R., 2018. User-
Centred Design Actions for Lightweight Evaluation of an Interac-
tive Machine Learning Toolkit. J. Sci. Technol. Arts 10, 2.
https://doi.org/10.7559/citarj.v10i2.509

Bernardo, F., Kiefer, C., Magnusson, T., 2019. An AudioWorklet-
based Signal Engine for a Live Coding Language Ecosystem, in: Web
Audio Conference. Trondheim.

Bernardo, F., Zbyszynski, M., Fiebrink, R., Grierson, M., 2017.
Interactive Machine Learning for End-User Innovation, in: Proceed-
ings of the Association for Advancement of Artificial Intelligence

Symposium Series: Designing the User Experience of Machine
Learning Systems. pp. 369-375.

Choi, H., 2018. AudioWorklet: The future of web audio, in: Web
Audio Conference.

Dannenberg, R.B., Mercer, C.W., 1992. Real-Time Soft-
ware Synthesis on Superscalar Architectures, in: International
Computer Music Conference, International. pPp- 174-177.

https://doi.org/10.2307/3681016

Earley, J., 1970. An efficient context-free parsing algorithm. Com-
mun. ACM 13, 94-102. https://doi.org/10.1145/362007.362035

Grierson, M., Kiefer, C., 2011. Maximilian: An Easy to Use, Cross
Platform C++ Toolkit for Interactive Audio and Synthesis Applica-
tions, in: Proceedings of The International Computer Music Confer-
ence. pp. 276-279.

Grierson, M., Yee-king, M., McCallum, L., Kiefer, C., Zbyszyniski,
M., 2018. Contemporary Machine Learning for Audio and Music
Generation on the Web: Current Challenges and Potential

https://gtr.ukri.org/projects?ref=AH/R002657/1

Solutions, in: Proceedings of The International Computer Music
Conference.

Jaques, N., Gu, S., Turner, R.E., Eck, D., 2016. Generating Mu-
sic by Fine-Tuning Recurrent Neural Networks with Reinforcement
Learning. Thesis 410-420.

Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler, M.,
Volkel, S., 2009. Design Guidelines for Domain Specific Languages.
Proc. 9th OOPSLA Work. Domain-Specific Model.

Kiefer, C., Magnusson, T., 2019. Live Coding Machine Learning
and Machine Listening: A Survey on the Design of Languages and
Environments for Live Coding, in: Proceedings of the International
Conference on Live Coding. Madrid.

Magnusson, T., 2014. Herding Cats: Observing Live Coding in the
Wild. Comput. Music J. 38, 91-101. https://doi.org/10.1162/COMJ

Magnusson, T., 2011. The IXI Lang: A Supercollider Parasite
For Live Coding, in: Proceedings of the International Computer Mu-
sic Conference. pp. 5-8.

McCartney, J., 2002. Rethinking the computer music
language: SuperCollider. Comput. Music J. 26, 61-68.
https://doi.org/10.1162/014892602320991383

McLean, A., 2014. Making Programming Languages to Dance to:
Live Coding with Tidal, in: Proceedings of the First ACM SIGPLAN
Workshop on Functional Art, Music, Modeling —

FARM’14. pp. 63-70. https://doi.org/10.1145/2633638.2633647

McLean, A., 2004. Hacking Perl in Nightclubs [WWW Document].
Perl.com.

Myers, B.A., Stylos, J., 2016. Improving API usability. Commun.
ACM 59, 62-69. https://doi.org/10.1145/2896587

Oore, S., Simon, 1., Dieleman, S., Eck, D., Simonyan, K., 2018.
This Time with Feeling: Learning Expressive Musical Performance.
Neural Comput. Appl. 1-24. https://doi.org/10.1007/s00521-018-
3758-9

Roberts, C., Allison, J., Holmes, D., Taylor, B., Wright, M.,
Kuchera-Morin, J., 2016. Educational design of live coding envi-
ronments for the browser. J. Music. Technol. Educ. 9, 95-116.
https://doi.org/10.1386/jmte.9.1.95_1

Roberts, C., Kuchera-Morin, J.A., 2012. Gibber: Live coding au-
dio in the browser. ICMC 2012 Non-Cochlear Sound - Proc. Int.
Comput. Music Conf. 2012 64-69.

Sorensen, A.C., 2018. Extempore: The design, implementation
and application of a cyber-physical programming language. Aus-
tralian National University.

Wakefield, G., Roberts, C., 2017. A Virtual Machine for Live
Coding Language Design. Proc. New Interfaces Music. Expr. 2017
275-278.

Wang, G., Cook, P.R., Salazar, S., 2015. ChucK: A Strongly
Timed Computer Music Language. Comput. Music J. 39, 91-101.
https://doi.org/10.1162/COMJ

Yee-King, M., Grierson, M., D’Inverno, M., 2017.
STEAM WORKS: Student coders experiment more and ex-
perimenters gain higher grades, in: IEEE Global Engineer-
ing Education Conference, EDUCON. IEEE, pp. 359-366.
https://doi.org/10.1109/EDUCON.2017.7942873

Zakai, A.; 2011. Emscripten: An LLVM-to-JavaScript Compiler,
in: Proceedings of the ACM International Conference Companion on

Object Oriented Programming Systems Languages and Applications
Companion. ACM.

	Designing for a Pluralist and User-Friendly Live Code Language Ecosystem with Sema

