
Poly-temporality Towards an
ecology of time-oriented live
coding

Alejandro Franco Briones
McMaster University
francoba@mcmaster.ca

Diego Villaseñor
Independent Researcher
diego.vid.eco@gmail.com

David Ogborn
McMaster University
ogbornd@mcmaster.ca

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland

Abstract

The current paper traces the development of three platforms for poly-
temporal live-coding: Canon-Generator, FluentCan and TimeNot.
The platforms rely on concepts and ideas developed by the Mexican-
American composer Conlon Nancarrow and are based on an ongo-
ing collaboration around sonic experimentation and time. The paper
describes how a process of tensions and resistances have become a
productive context for research and knowledge production.

Introduction

The current research has at its core the path opened by the com-
poser Conlon Nancarrow and his life-work on time and music, more
specifically poly-temporal composition strategies. This research is an
on-going critical reflection that has pushed the authors to think differ-
ently about certain problems regarding time, sound, live coding and
poly-temporality. Firstly, it was necessary to produce a conception of
Nancarrow’s work that differs from the main North-American / Eu-
ropean narrative, even resist the tendency to assess Nancarrow as an
expatriate American composer in order to reframe him as a Mexican-
American socialist artist, thus conveying a constellation of implica-
tions that go beyond the conventional understanding of Nancarrow’s
work. Secondly, as access to the artifacts and scores regarding his oeu-
vre are restricted (particularly for people that are not supported by
academic infrastructures), it was necessary to refer mainly to the ideas
and notions that Nancarrow produced and that were interpreted and
analysed by people like Gann, Murcot, Collins, Thomas, Sandoval,
Estrada, among many others. We appropriated these loose sets of
ideas and used them as a creative and imaginative starting point.
And finally, the conversations kept by the authors of this text rely on
the idea of resistance (Franco and Villaseñor, 2018). Resisting each
others impulses to dominate the conversation and push forward what
emerged from the tension between the arguments.

The output of this research took its first form as the platform

105

mailto:francoba@mcmaster.ca
mailto:diego.vid.eco@gmail.com
mailto:ogbornd@mcmaster.ca

Nanc-In-A-Can/Canon-Generator, a series of SuperCollider classes
and functions capable of producing poly-temporality based on the con-
cepts, ideas and strategies of Conlon Nancarrow enmeshed with live
coding’s different conceptions of rhythm and time. From this point,
two diverging parallel paths were enabled. Namely, FluentCan, a Su-
perCollider extension and notation that offers new possibilities to pro-
duce poly-temporal structures in a way that fits the purposes and id-
iosyncrasies of live coding, and the computational notation TimeNot.
The present paper describes the latter in detail, both its notation and
its multi-contextual approach which breaks from some core ideas of
Nanc-In-A-Can in order to expand upon the expressive capabilities
for time-oriented live coding.

The three aforementioned projects critique the infrastructure and
time conceptions of live coding communities, seeking to widen the
possibilities of their practices. The poly-temporal structures enabled
by this notation form a space of resistance that might allow listeners
and performers to experience time beyond the scope of accelerated
and linear neoliberal subjectivity. The present project is an exten-
sive attempt to produce a mode of performance that emerges from
an experience and conception of time as slow, constant, in resistance,
multiple, simultaneous, non-linear, digital/analogue, and rhythmic.

Nanc-In-A-Can/Canon-Generator is a SuperCollider library de-
signed to produce temporal canons, like the ones proposed by Conlon
Nancarrow (Franco and Villaseñor, 2018). The ideas of Nancarrow
are explored in order to create new temporal conceptions within the
field of live coding. Notationally Canon-Generator offers an API that
has a compositional focus. It requires the performer or composer to
define a canon with all the traditional parameters one would expect
for it: a sequence for durations and melody, a convergence point, a
list of tempos, and also other less conventional options. This means
that, on the one hand, the musician has to define every one of these
parameters from the very beginning. On the other hand, the musi-
cian, upon reading the code, can have a fairly clear idea of what is
going to happen.

In contrast, the FluentCan extension for SuperCollider is an API

wrapper for Canon-Generator that responds to the necessities of live
coding performances. It offers a highly expressive syntax, various
strategies for providing default values, and powerful tools for express-
ing novel musical ideas in the field of poly-temporality..

TimeNot, is a computational notation that is capable of produc-
ing, in an expressive way, complex rhythmic ideas embedded in poly-
temporal structures. Many relevant aspects of the notation draw its
main features, particularly poly-temporal strategies for music cre-
ation, from Canon-Generator. The notation encourages performers
to project musical ideas further from the present than in the conven-
tional interaction model of live coding.

TimeNot allows the production of tempo canons as in the plat-
forms FluentCan and Canon-Generator but, in addition, it explores
new and expressive ways of representing them by complementing the
production of canons with strategies to describe other forms of tem-
poral organisation such as global durations and a specific form of
rhythm. The notation of TimeNot has been implemented in two dif-
ferent complementary ways with distinct advantages: It is embedded
in Estuary (Ogborn et al. 2017) as a mini-language which allows it to
engage in ensemble dynamics and be integrated in a rich ecosystem
of languages that encourage diverse ways of thinking time and music.
It is also an extension of the platform SuperCollider (Wilson, 2011)
using its IDE and server taking full advantage of its sound-synthesis
power and allowing it to be easily distributed.

Context

The poly-temporality that Nancarrow proposed can be regarded as
highly algorithmic; in it, temporal and pitch mapping functions are
the basic principle. This means that the melodic material of any given
music work (which consists mainly of pitch and duration series) can
by transposed into any tempo or any pitch register. Nancarrow devel-
oped the concept of a convergence point (CP) as a way of organizing
this intricate musical material. The CP is a point in time in which
the formal and the chronological temporalities of a musical idea are

106

identical. According to Thomas (1999), this strategy allows us to
listen different timelines moving towards the same point in chrono-
logical and formal time. Given that a poly-temporal canon can be
generated very easily by algorithms, it is a musical strategy that can
be implemented in computational settings with relative ease. Collins
(2003, pp 1) describes a compositional system capable of producing
various kinds of tempo canons, a precedent for this notation. More
recently we designed the software Canon-Generator (Authors, 2018).
Canon-Generator provides a programming notation that allows musi-
cians, artists, programmers and other creative users of code to create
multiple and simultaneous sound timelines based on the work of Con-
lon Nancarrow. This software was developed in SuperCollider (Mc-
Cartney, 2002) because of its powerful computational and synthesis
capabilities and its extended use among live coding practitioners in
Mexico City. Listing 1 allows the user to create a major scale in three
different tempos that converge at the fifth event (G, midinote 67).

Can.init;

(

// convergence canon;

~conv = Can.converge(

melody: Can.melody(

[8,8,8,8,8,8,8,8]. reciprocal , // 1/8 rhythmic

figures

[60 ,62 ,64 ,65 ,67 ,69 ,71 ,72]),

cp: 5,

voices: Can.convoices ([50 ,72.5 ,75] ,[-12 ,0 ,12])

);

~conv.visualize(s)

);

Listing 1: Canon-Generator

What we find more interesting are the “human-to-human” com-
munication aspects of this notation, including but not limited to the
cognitive dimensions of computational notation (Green, et al. 2001).

This piece of code is not only role-expressive (in Green’s terms) but
also brings to the foreground a series of cultural references that lo-
cate the user of the program within a cultural and socio-political
framework: the work of Conlon Nancarrow and its most salient tem-
poral strategy to establish poly-temporal musical structures: Tempo
Canon. The word ‘can’ also makes reference to the rigid steel or
tinplate container normally used to preserve food which often is re-
lated with vulgar or industrialised products and, in this case, cheap
nourishment for survival. This notation attempts to re-contextualise
and re-appropriate musical strategies often related to a privileged mu-
sic elite and academic activity, that claimed the ideas of Nancarrow
as part of their tradition even though the Mexican-American social-
ist artist required an untraditional context to flourish (Franco and
Villaseñor, 2018). The canon generator, by distributing it in commu-
nities away from the people that often control the canon of the music
academy, allows new meanings for the work of Nancarrow.

The notation style of Canon-Generator is heavily embedded in
SuperCollider’s inherent notation and it has a limited scope. There
are some aspects that do not facilitate live coding performance, for
instance: the nested parentheses very particular to SuperCollider.
SuperCollider language is not an expressive notation for rhythm as
time, in this context, is mostly represented through inter-offset du-
rations, namely wait patterns as understood in SuperCollider’s Pat-
tern Library (Harkins, 2009). This action produces a wait pattern,
which is expressed as duration, obfuscating its meaning and compro-
mising role-expressiveness. A more transparent use of the duration
could refer to the total length of a musical idea (which cannot be
expressed easily in the SuperCollider Pattern Library) or the length
of a sound event (which is expressed as legato). Rhythm is more in-
tuitively described in terms of offsets and onsets over an underlying
grid, which can hardly be inferred by the duration value described in
SuperCollider Pattern library. It also requires a binary distribution
to be installed, which is an impediment in some settings. From this
starting point a need for a new notational system that might be capa-
ble of representing the novel and compelling temporal forms already

107

made possible by Canon-Generator was identified. At this point the
endeavours of the two principal authors of this platform diverged:
Diego Villaseñor implemented FluentCan as a wrapper and extension
of Canon-Generator while Alejandro Franco developed the notation
of TimeNot.

Diverging Paths

FluentCan

FluentCan responds to one of the original premises of Nanc-in-a-
Can/Canon-Generator: to design a live coding interface and nota-
tion that can be self-contained in SuperCollider. This has allowed its
integration to a broad ecosystem of software development and prac-
tices; one with strong communities worldwide and which has been
particularly active in Mexico City (Nancarrow’s creative home).

Conceptually FluentCan is a direct response to the particular ne-
cessities of live coding practices, where a flexible, composable and
expressive notation is often desired. Flexibility means that the order
of parameters in the definition of a canon, or the fact that some of
them may be missing, should not be tremendously important: behind
the scenes, the parameters should be put in the correct order and
default values should be provided. Composability suggests that small
ideas should be able to gradually grow and transform through the
course of the performance. And expressivity means that it should be
easy to generate abstractions, be they of canons or of transformations
of canons (for example, allowing the musician to easily use one canon
as a prototype for another).

FluentCan takes its name from the so called “fluent interface”
technique of object oriented programming. Using this technique it
is possible to wrap the data driven and immutable Canon-Generator
API into a notation that can make use of method chaining to build
musical ideas. This simple wrapping offers not just the ability to write
canons in a more efficient way (by providing defaults), but also allows
for inheritance (canonB may inherit it configuration from canonA)

and offers a whole range of methods to transform inherited and non-
inherited data, the most radical of which is .apply (described below).

From a conceptual and processual standpoint, it has allowed
Canon-Generator to enter into a resistant dialogue with TimeNot:
because TimeNot and FluentCan are, so to speak, livecoding native
notations, they have allowed their authors to exchange ideas in a
fruitful dialogue of shared interests.

Syntactic simplicity

Because the new interface provided by FluentCan does not require the
user to provide all the parameters that Canon-Generator needs, it al-
lows them to take a simpler approach for making music. This means
the user can now use FluentCan for making non-canonic structures,
that are effective both syntactically and musically.

// Isorhythmic single voice sequence , 7 notes within

2 seconds. So called ‘color ’ comes from notes , ‘

talea ’ from durs

Can.init;

c = FluentCan (\can1).notes ([60, 62, 67]).durs([2, 3])

.period (2).len(7).play;

Listing 2: Code Example 2

This idea can then be easily extended into a temporal canon like
so:

Listing 3: Code Example 3

// Converts into a 2 voice canon with lower voice a

perfect fifth below.

c.transps ([0, -7]).tempos ([2, 3]).play;

108

In this sense, now it is idiomatic to express non-canonic ideas while
at the same time providing the means for the music and musicians to
project these ideas into a poly-temporal dimension.

3.1.2 The .apply case Throughout the TimeNot development pro-
cess, a notation for expressing rhythm called xo notation was devel-
oped; a notation that is similar to ixilang (Magnusson, Thor, 2011)
and Gibber (Roberts, Charlie & Kuchera-Morin, JoAnn, 2012) in
which graphic notation takes an important role. At its core, it con-
sists of a string of x’s and o’s (i.e. xooxooxo) which serves to determine
whether an event should sound (x) or not (o). The concept of the no-
tation itself is conducive to different interpretations and variations.
This has been the case not only between TimeNot and FluentCan,
but also within FluentCan itself. Triggered by the effervescent dia-
logue with the TimeNot philosophy, for FluentCan it was chosen to
allow any implementation of xo notation to be possible and easy to
use. This was the main driving force behind the development of the
.apply method.

The .apply method is a generalization of the necessity to allow for
user generated functions to be used at runtime. The function itself
does nothing more than applying the built up canonic data struc-
ture (inside the FluentCan instance) to a function that returns a new
FluentCan instance (in Haskell style type notation it could be easily
described as FluentCan -¿ FluentCan). This method can be called
multiple times so that the effects of these calls are composed (see
example below).

The class IsoFluent is one that provides static methods (as pure
functions) which fulfill precisely this interface. Because Canon-
Generator can take functions for transposition1, the method IsoFlu-
ent.xo creates a transposition function that iterates over it’s melody,
for each voice of the canon (a MidiNote array). Using modulo arith-

metic it returns a new melody with rests in place of a o’s and the
input melody notes in place of the x’s, or when given a number (that
corresponds to the voice index) it returns the input note if the index
voice corresponds to the given number or a rest if not.

Through .apply FluentCan effectively extends Canon-Generator in
a possibly infinite number of ways. It gives the performer the ability
to create and modify their own functions (at compile time or on the
fly). Even more so, it opens Canon-Generator and the exploration
of time to the communal imagination. Now libraries that follow this
interface can be independently developed, each of which may explore
different ideas that nevertheless compose with any other ideas coming
from the community.

Can.init; Can.defaultServerConfig;s.boot;

// Models

m = FluentCan ().period (1.5).len(5); // model

n = FluentCan ().period (2).len(4); // model 2

o = FluentCan ().transps ([0, -7]).tempos ([1, 1/2]).

period (2); // use this to create canon , tempos

1/2 and 2 work well

// custom function for .apply

(

~aksakish = {|... nums| // input any sequence of

numbers

var aksakXos = nums.collect ({|n| // make a

list of x’s and o’s

n.collect ({|i| if(i == 0, {"x"}, {"o"})});

}).flatten;

// return a function that will receive the

1For transposing Canon-Generator takes an array of values on the key transp. Each value corresponds to the transposition of the voice that has the same index as the
value. transp takes either an array of numbers ([Number]) or an array of functions ([[Number] -> [Number]]) or a combination of numbers and functions. When provided
a Number, it simply maps the melodic sequence array over a function that adds the given number; if the value is a function [[Number] -> [Number]], it maps the melodic
sequence over it.

109

FluentCan instance

{| fluentCan|

// do whatever with the instance

fluentCan

.len(aksakXos.size)

.apply(IsoFluent.xo(

aksakXos));

}

}

);

// it is possible to switch from the different models

(m, n, o)

a = o.def (\1).notes ([65, 62]).apply(IsoFluent.xo("

xo01o")).cp(2).len(7).play;

(

b = o.def (\2)

.notes ([70, 77])

// ‘applyable ’ functions can be composed:

.apply(~ aksakish .(7, 5, 3))

.apply(IsoFluent.xo ("10")) // voice 0 and 1 alternate

.cp(3)

.play;

)

(

c = o.def (\3)

.cp(4)

.period (6.5)

.notes ([65, 62, 67, 75])

.len (15)

.apply(IsoFluent.xo(" o1ox0xo "))

.play;

)

a.pause;

b.pause;

c.pause;

Listing 4: Code Example 4

TimeNot

TimeNot was created in a specific context: at McMaster University,
and as a major research project (MRP) by Alejandro Franco in the
MA program in Communication and New Media. Moreover, its devel-
opment has been influenced by the activity in the Networked Imagi-
nation Laboratory (NIL), a space in which the concept of network is
explored broadly and often in relationship with live coding practices.
One notion that networked imagination conveys is the understand-
ing of artistic creation and research as an ecology of — among many
other things — natural and computational languages, artistic styles,
techniques, technologies, strategies, etc. In other words, in the NIL
a heterogeneous set of media is articulated, hacked, developed and
explored in order to produce aesthetic and intellectual works. The
premise that creation depends on an ecological approach to knowl-
edge resonates with Mexico City’s live coding scene (where Alejandro
Franco developed many of his artistic practices), where collective cre-
ation and assemblages of heterogeneous artistic practices are often
prominent. The main idea targeted by this notation is the tempo
canon. However, what is particular about this exploration in the con-
text of the poly-temporal ecology here explored is the many additional
temporal and rhythmic strategies and techniques that can be notated
easily.

The author opted to create a new, independent, software project
based on the ideas of Canon-Generator so the notation could be
adapted to many contexts. TimeNot is now available in two forms:
within the Estuary platform, and as a SuperCollider extension. Es-
tuary (Ogborn et al., 2017) is an experimental software that can be
defined as a platform for learning and creating, and using live coding
as a main strategy that favours a multilingual approach, and which
makes live coding languages available on a zero-installation basis, like

110

Gibber (Roberts & Kuchera-Morin, 2012), LiveCodeLab, and Hy-
dra. SuperCollider (McCartney, 2002) has a powerful audio synthesis
engine as well as a well established community of users around the
world. Both platforms respond in different ways to the author’s cul-
tural and social context; these are the best ways to give access both to
a broad, general userbase as well as to key developers and more spe-
cialised audiences. There are other positive aspects of this decision;
the separation of TimeNot and Canon-Generator give room for Diego
Villaseñor to develop the notational style embedded in SuperCollider
that would become FluentCan.

|. 4s .| xxxxxxxx

ra: 4:5:6 tr: 0|12|24 cp: last

synths: saw sqr tri pitch: 60 62 64 65 67 69 71 72

Listing 5: Code Example 5

Listing 5 reproduces the musical scale of the previous Canon-
Generator example and presents a program that exemplifies all the
main possibilities that TimeNot allows: a sequence of global durations
and a rhythm arrangement in line one, a canonic configuration in line
two, and a configuration of instruments and pitch in line three. The
interplay among these four components produces rich poly-temporal
sonic textures. When this example is executed it produces a series
of musical events extending from the moment of evaluation into the
future (a C major scale repeated in three octaves with the temporal
proportions of 4:5:6 over a total duration of 4 seconds).

Strata

The architecture of the TimeNot notation is organised into four main
strata or sub-notations. Three of these allow the user to organise
sound events in time. The last stratum aids the organisation of sound
parameters.

The three time-oriented sub-notations reflect three main temporal
strategies that imply a heterogeneous understanding of temporal rela-
tionships. The first one allows the user to embed the sound output in
a specific overall duration; this allows the user a very intuitive degree
of control over the music material. The second sub-notation provides
an expressive and comprehensive way to create rhythmic structures;
this aspect of the notation was identified as the one that diverges
the most from the possibilities endemic to SuperCollider’s notational
style. The third sub-notation is the stratum in which rhythmic ideas
are transformed into a canon. This is the part of the notation in which
the tempo canon ideas developed by Nancarrow are put into practice.
The last sub-notation provides a simple syntax to invoke instruments
and organise its parameters into different kinds of patterns.

Duration Notation

Having control over the global duration of the canonic/rhythmic struc-
ture helps to achieve an overall view of the result. This stratum rep-
resents time as a succession of events that do not favour detailed cat-
egorisation or differentiation among its internal components. Time
here corresponds to the concept of durèe (Bergson, 2002) allowing
users to produce simple sequences of events producing an ever-going
sense of becoming.

The duration of the rhythmic/canonic structure is determined by
a number followed by an s that represents seconds. However, the num-
ber could represent beats in a given tempo by adding a t or indicate
a certain amount of cycles (cps) by adding a c. These multiple ways
of expressing duration respond to the multi-contextual nature of this
notation.

To determine a duration the number should be embedded in a spe-
cial list that uses symbols and separators. The lists that uses the |: :|
as a delimiter and the | as an internal separator generate an infinitely
looping musical idea. An unlooped event is delimited by |. .|. A finite
number of repetitions can be expressed with the symbol % followed
by whole number that determines the number of repetitions. If the

111

duration of the structure is omitted, the default is a 2 second event.

Rhythmic Notation

The rhythmic aspects of the notation can be used independently from
the canonic ones. Nevertheless a minimal rhythmic idea has to be
written for the notation to produce sound. An example of a com-
prehensive use of this rhythmic notation might be the idea in the
following code example, in which an opening idea is presented in 5/8
manually introducing rhythmic onsets and offsets, then it is concate-
nated to an Euclidean pattern representing a tresillo (ie. the Eu-
clidean rhythm that distributes 3 attacks over 8 slots), over a two
attack onset pattern that is repeated two times. Finally, another 5/8
idea is manually expressed to close the musical idea.

|. 8s .|

xoxxo !3:e:8 p: xx #2 xooox samples: hibongo

Listing 6: Code Example 6

Onset Patterns

Notating minimal rhythmic ideas as onset patterns has two main ad-
vantages; it provides a declarative materiality to the notation, and
it frees the user from being limited to algorithmic structures (such
as Euclidean rhythms), allowing arbitrary organisations that do not
respond to explicit logical or computational patterns.

xxoooooo xxoooooo samples: hibongo

xooxooxo ooxoxooo samples: cabasa

Listing 7: Code Example 7

Patterns are notated with the characters x and o, where x denotes
an attack and o denotes a rest. In the following example, the first pat-
tern produces two attacks followed by 6 rests and the second pattern
produces the Cuban clave rhythm. The following expressions should
be evaluated one at the time, to evaluate both add a ; at the end of
the first expression.

Repeat Patterns

Repetition allows the user to produce meta-metric cycles in which
the same idea is presented until a variation marks the end of a pe-
riod. This can be achieved because the onset patterns and the repeat
patterns can be composed together to express a single musical idea.
With the symbols ! and # we can indicate how to repeat a pattern.
It is possible to create nested ideas within this language, such that a
repeat pattern can contain an onset, repeat or Euclidean pattern. Af-
ter the ! the onset, repeat or euclidean pattern to be repeated should
be written and after the # a value that represents the number of rep-
etitions. The first line in Listing 8 can be simplified as the example
shown in the last section.

!xx!o#6#2 samples: hibongo

Listing 8: Code Example 8

3.2.1.2.3 Euclidean Patterns TimeNot’s Euclidean Pattern sub-
notation is a very expressive and complete tool for rhythm which can
integrate embedded onset, repetition and other euclidean patterns.
The non-optional values to be given are n and k values as specified by
Godfried Toussaint (2003). The Euclidean algorithm produces pat-
terns of distribution of integer numbers as evenly as possible. Given n
time intervals and k impulses, this algorithm provides a simple way to
distribute the k impulses over the n time intervals. These patterns are
found in many forms of music, particularly “in sub-Saharan African

112

music, and world music in general” (Toussaint, 2003, pp. 1). The syn-
tax proposed in this notation is k:e:n, a number representing impulses
and another representing intervals. The first line of the following code
example generates a Cuban tresillo and the second generates a clave
that is the combination of a tresillo concatenated to a 4/4 measure
with onsets only in the second and third beats.

3:e:8 samples: hibongo

3:e:8 oo xo xo oo samples: hibongo

5:e:8:r:4 p: xx samples: bd

Listing 9: Code Example 9

The k and n values are chained by the operator :e:;There are two
other ways to manipulate the structure produced by this sub-notation:
:r: which creates a rotation value, wherein the pattern produced will
maintain its same number of impulses and same intervals but will
appear starting from a different point of the structure. The operator
p: produces a structure that can be a repeat, an onset or another
euclidean. This pattern becomes the k value and the non-k values
of the time intervals, a series of offsets occupying the same length as
the pattern are produced, if k is xx the non-k will be oo, as in the
example above

Canonic Notation

A fundamental difference between the tempo canons produced by the
earlier Canon-Generator project and those produced by TimeNot con-
cerns the minimal components of a tempo canon. Conlon Nancarrow
was restrained by the media at hand: the player piano. The player
piano can not play two or more notes that are the same, in the same
register, at the same time. To perceive distinct tempos it was nec-
essary to differentiate the voices of the canon somehow. This was
achieved by pitch transposition. In TimeNot, where an alternative
mechanism to differentiate voices is provided, pitch transposition is

not as fundamental. In TimeNot pitch transposition is not a manda-
tory parameter for canonic transformation. Differentiation of voices
is acquired by providing a straightforward mechanism to select instru-
ments. Different voices can be identified by different timbral quali-
ties instead of, or in addition to, pitch and register. Canons can be
thought of as based on samples. In TimeNot, pitch transposition is
optional in the case of pitched instruments and, in the case of un-
pitched (sample-based) instruments, it is incompatible. In this way,
less typing is needed to produce a ”canonic transformation” and the
idea of a tempo canon becomes even more focused on temporal aspects
of the musical ideas.

The model that is implemented in TimeNot so far is what Nancar-
row would have called a “convergence canon”, that is to say a canon
with only one CP and without tempo change per voice.

In TimeNot, the number of voices per canon is decided by the
number of values given to the argument ratio. Ratio is a list of pro-
portions which can have a corresponding list of transpositions that
‘canonise’ the rhythmic structure.

|. 35s .| xoox !5:e:8#5 xxoxoooxx

ra: 13:17:20 tr: 0|5|8 cp: last

synths: saw sqr tri

eu pitch: 60 67 65 68 72 75.5 67 55 56 59 60

Listing 10: Code Example 10

Sound Notation

Sound notation allows the performer to parametrise the sound aspects
of the program. At the moment, there are 5 non-temporal aspects
that can be arranged: instruments, pitch, amplitude, panning and
out bus. If a list of instruments is provided, it will be distributed as
one instrument per voice of the canon. The rest of the sound parame-
ters are organised as sequences that will be replicated exactly in each

113

voice of the canon. This can be arranged in two different ways: as an
isorhythmic configuration, in which each value is assigned from left to
right until all rhythmic events have been exhausted, or as a Euclidean
distribution that distributes evenly k sound values over n rhythmic
events.

Conclusions

With regards to FluentCan’s .apply method, it is important to remark
that it’s development nevertheless is the direct result of the contra-
puntal dialogue between the authors of both libraries. The original
necessity for this method was to use it to implement a type of xo
notation (as proposed by TimeNot). However its generality was able
to exceed the requirements of this notation (as explained in 3.1.2).
The result was a powerful opening up of both FluentCan and Canon-
Generator to any number of possible extensions and new ideas com-
ing from anyone interested from the SuperCollider and Live Coding
communities. These results (conceptual, social, and technical) even
if tangential in their surface relationship with TimeNot are strongly
linked to it by the network of ideas underlying the conceptual space
that has become Nanc-in-can. Conversely, TimeNot derived its dura-
tion sub-notation from the notion of period that is a product of the
FluentCan development. In an interesting parallel with the properties
of temporal canons, namely, their tendency to continuously diverge
and converge (from which unforeseeable textures emerge); the process
so far followed by the authors has spawned a critical and creative flux
of independent-related ideas that can further find convergence points
in the softwares so far developed or in new ones to come.

TimeNot pushes to its limits the notion of permeable autonomy.
This means that it is part of multiple processes that consume it but
not in its totality. Neither the possibilities enabled by Estuary, the
algorithms inherited from Canon-Generator nor the dialogue that it
maintains with FluentCan are sufficient to explain what TimeNot
might actually be. Although TimeNot stands as an autonomous soft-
ware, it is only possible for it to exist as the outcome of the multiple

explicit and implicit conversations that happen around it. In this
sense, its boundaries are unclear at the same time that its identity
remains unambiguous. As this context can be identified as relevant
to the development of this software a similar pattern can also be
identified in the way its sub-notations are organised. Moreover, it
also stands as a valid reflection on the way the multiple concepts of
time interplay: Poly-temporality, rhythm and duration might be three
ways of explaining time that presents three different perspectives of
the same phenomenon. The ecology that surrounds the development
of TimeNot is also the form that the notation takes and it is, as well,
the way in which it allows artists to think about time: as an ecology.

The authors of the libraries here described, FluentCan and
TimeNot, have paid particular attention to the way that researchers
relate with knowledge. The concept of co-creation used by Donna
Haraway (2015) seems to be relevant here. Co-creation here implies
that knowledge is the product of conversations and exchange of ideas,
but in a way that resistance and tension is not inhibited but fore-
grounded.

Forthcoming (Divergent) Convergences

Our exploration of the multiple temporal dimensions in music has
begun to bring forth fundamental questions:

1. How is time and poly-temporality represented in other domains?
a. What particular dimensions of time are exposed by each of
these domains?

2. How can the calculations involving time become as flexible, free
and liberating, as their results?

• In purely technical means, how can poly-temporal expres-
sions evolve beyond the current strategy of precalculating
each event in advance, into a completely live interaction
that would allow us to interact with time and its effects in
full real time?

114

The first set of questions beg for platforms other than SuperCol-
lider and the TimeNot language. These platforms need to be powerful
enough to deal with disparate mediums such as audio, graphics, web,
poetry, etc; and should also be capable enough to deal with the larger
scale architecture that dealing with multiple media requires. At their
core, such questions requires a focus on pure time and an architecture
that can route time events into different media effectuations.

The second question demands a disassembling of our current no-
tions for constructing time oriented structures. The diverse elements
that conform these structures must become independent of each other.
Each one must be able to change without needing to stop or restart
the temporal flow of events.

This new perspective and aspiration takes its cue from the experi-
ence in divergent development. What has been experienced so far is a
fertile inter-fluence of independent elaborations over a shared concep-
tual environment, a truly evolving ecosystem made up of experiences
and ideas about time. The first degree of divergence exposed here,
two programs diverging and exchanging ideas, is to be interiorized into
multiple divergences within a single convergent ecosystem-platform:
now the mediums and the parameters of pure time must be allowed to
diverge as well. The future platform should be simultaneously diver-
gent, which means: no single point of focus, no single dominant idea
or way of doing things, etc; and convergent, that is to say, compos-
able ideas feeding into each other, multiple mediums expressing events
organized by singular and multiple polytemporal instances and free
routes for interpretations that expose the nature of time.

References

A.F. Blackwell, C. Britton, A. Cox, T.R.G. Green, C. Gurr,G.
Kadoda, M.S. Kutar, M. Loomes, C.L. Nehaniv, M. Petre, C. Roast,
C. Roe, A. Wong, R.M. Young (2001). Cognitive Dimensions of Nota-
tions: Design Tools for Cognitive Technology . Proceedings of the 4th
International Conference on Cognitive Technology. Coventry, UK.

Bergson, Henri (2002). Concerning the nature of Time in Henri
Bergson: Key Writings. Edited by

Ansell Pearson and John Mullarkey, London: Continuum.

Collins, Nick (2003). Microtonal Tempo Canons After Nancar-
row/Jaffe. Proceedings of the International Computer Music Confer-
ence, Singapore.

Franco, B and Villaseñor, D. (2018). Nanc-in-a-Can Canon Gen-
erator. SuperCollider library for generating and visualising temporal
canons critically and algorithmically. Proceedings of the International
Conference of Live Coding, Madrid.

Haraway, Donna; Kenny, Martha (2015). Anthropocene, Capi-
talocene, Chthulhu. Art in the Anthropocene. Davis, Heather and
Turpin Etienne. Encounters Among Aesthetics, Politics, Environ-
ments and Epistemologies. London, UK: Open Humanities Press

Harkins, James (2009). A Practical Guide to Patterns.
http://distractionandnonsense.com/sc/A Practical Guide to Patterns.pdf

Last accessed: 12th August, 2019.

Magnusson, Thor (2011). The IXI Lang: A SuperCollider Parasite
for Live Coding.

McCartney, James (2002). “Rethinking the Computer Music Lan-
guage: SuperCollider.” Computer Music Journal 26 (4). MIT Press:
61–68.

Ogborn, David; Beverley, Jamie; Navarro Del Ángel. Luis;
Tsabary, Eldad; McLean, Alex. Betancur, Esteban (2017). Estu-
ary: Browser-based Collaborative Projectional Live Coding of Musical
Patterns. International Conference on Live Coding (ICLC) 2017.

Roberts, Charlie & Kuchera-Morin, JoAnn (2012). Gibber: Live
coding audio in the browser. 64-69.

115

Thomas, Margaret (1999). Nancarrow´s Temporal Dissonance.
Intégral 13.

Toussaint, Godfried (2003). The Euclidean Algorithm Generates
Traditional Musical Rhythms. School of Computer Science, McGill

University Montréal, Quebec, Canada.

Wilson Scott; Cottle, David and Collins, Nick (2011). The Super-
collider Book. The MIT Press.

116

	Poly-temporality Towards an ecology of time-oriented live coding

