
Cibo v2: Realtime
Livecoding A.I. Agent

Jeremy Stewart
Rensselaer Polytechnic Institute, Troy, NY
stewaj5@rpi.edu

Shawn Lawson
Rensselaer Polytechnic Institute, Troy, NY
lawsos2@rpi.edu

Mike Hodnick
mike@kindohm.com

Ben Gold
bgold.cosmos@gmail.com

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland

Abstract

Cibo v2 is a live-coding artificial intelligence (AI) agent that per-
forms TidalCycles and is trained on recorded performances by several
TidalCycles performers. This paper presents an entirely new architec-
ture from the original Cibo agent for realizing autonomous performing
agents.

Introduction

Cibo v2 represents an entirely new architecture from the previously
presented Cibo live-coding agent (Stewart and Lawson, 2019; Stewart,
2019, Cibo: Safeguard II). Cibo v2 performs TidalCycles (McLean
and Wiggins, 2010; McLean et al, 2019) code in a live-coding set-
ting for musical and sound performance. Cibo v2 is constructed with
autoencoder and variational autoencoder architectures as its founda-
tions, with additional neural network modules governing performance
progression and variable production. Cibo v2 trains faster and is
trained in a number of steps, allowing for a greater degree of flexibil-
ity during the development process. The resulting performance agent
produces TidalCycles code that is highly reminiscent of the provided
training material, while offering a unique, non-human interpretation
of TidalCycles performances. Cibo v2 is trained using recordings
of performances by several human performers, including Mike Hod-
nick, Ben Gold, and Jeremy Stewart. For the first time, the agent
in performance hints at each of these influences. Furthermore, the
manner by which the agent is constructed allows for visualizing the
organization of training material, allowing us to peer into the learned
AI-representation of these recordings. Finally, because each human
contributor performs with a unique sample corpus, a sample analysis
tool set is offered to allow the Cibo v2 agent to effectively substitute
samples based on sonic features.

20

mailto:stewaj5@rpi.edu
mailto:lawsos2@rpi.edu
mailto:mike@kindohm.com
mailto:bgold.cosmos@gmail.com 


Pre-Agent Technical Overview

The first step to creating the Cibo agent include recording TidalCy-
cles performances by human performers and tokenizing the TidalCy-
cles code to prepare it for training purposes. The following section
outlines the metholodies and software developed to satisfy these func-
tions.

Recording Tidalcycles(Sublime JENSAARAI)

Jensaarai, a custom text editor written in NodeJS with Electron, was
integral to the initial version of Cibo. Jensaarai created text record-
ings of all edits and code executions that a human performer would
make. These recorders were fed into Cibo for its training process.
When Cibo performs, Cibo’s edits and code executions are made vis-
ible in the Jensaarai editor. Cibo v2 uses exactly the same process,
with several differences in the text editor. Human performers making
text recordings and Cibo v2 performances use Sublime Text with the
Sublime Jensaarai plugin (Lawson, 2019). Using this plugin format
reduced numerous issues that were occurring when the userbase of
Jensaarai grew beyond the primary developers and Cibo. The func-
tionalities of the Sublime Jensaarai plugin are nearly identical to the
standalone Jensaarai application.

LEXER/TOKENIZATION

Tokenization of TidalCycles code is carried out using the PLY library
(Beazley, 2018), much like was described in “Cibo: An Autonomous
TidalCycles Performer” (Stewart and Lawson, 2019). The lexer dic-
tionary contains 248 discrete tokens, including all of those available
in the TidalCycles documentation (All the Functions - TidalCycles),
as well as additional tokens for custom function definitions. Vari-
able values are stored in a second vector (represented as the “values”
vector in Figure 1), and are replaced with INTEGER, FLOAT, and
STRING tokens.

We then convert this single token representation into an n-gram
encoding, combining up to four tokens into a single integer repre-
sentation, as seen in Figure 2, where the tokens [0, 30, 17, 28] are
combined into a single token: 40. Only n-gram tokens occurring in
the training material are preserved, resulting in a dictionary of 11267
discrete tokens—much fewer than the possible 2484 tokens. These
n-gram tokens are used as the input and output of the AutoEncoder
architectures described below.

Agent Architecture

Figure 3: CiboV2 performance-ready architecture. Input vector is a
three-dimensional vector denoting the latent space coordinates which
are to be decoded by two stages of decoder module, resulting in n-
gram output

The Cibo agent is trained, first, to construct compact encodings of
TidalCycles code via an autoencoder and a variational autoencoder.
The training of these neural networks produces a three-dimensional
latent space: TidalCycles code can be converted into a point in this
latent space, and, inversely, coordinates in this latent space can be
decoded into usable TidalCycles code. The Cibo agent performs by
traversing the three-dimensional latent space using a recurrent neu-
ral network (RNN), producing TidalCycles code at each step. The

21



Figure 1: TidalCycles code is input into the lexer, which lexes the code in discrete tokens. Integer, Float, and String tokens are indicated as such,
while preserving the values associated with these tokens in a second vector.

RNN module, seen at the top of Figure 3, is trained to traverse the
resultant latent space in a manner consistent with the TidalCycles
recordings used for training. Importantly, this module outputs nor-
mal distributions which are sampled, resulting in non-deterministic
behavior. The basic performance-ready architecture is represented in

Figure 3. “Decoder1”, seen at bottom, is the first component to be
trained, followed by “decoder2”. These two modules together convert
a 3-dimensional latent space vector into an n-gram token sequence
which can be converted to TidalCycles code. The following sections
will detail each of the neural network components of the Cibo agent.

22



Figure 2: Tokens are combined into 4-gram representations.

Autoencoder

Once n-gram token sequences are produced by the lexer, the first stage
of the Cibo agent must convert these variable-length sequences into a
fixed-length representation. In order to accomplish these, we employ
an autoencoder architecture, seen in Figure 4.

Figure 4: Training the first stage autoencoder neural network. Vari-
able length input (n-gram token input, at top) is converted to a fixed-
length latent representation (Latent1), and then decoded back to a
variable length output (token output, bottom).

23



The token input passes, first, through an embedding layer, which
converts the discrete, integer token notation into a floating-point vec-
tor in a higher-dimensional space. The output from the embedding
layer is sent to a bidirectional recurrent neural network (BiRNN)
which reads the sequence both forward and backward, producing two
outputs: a variable-length out vector and a fixed-length hidden state
vector. The out vector is discarded. The hidden state vector is passed
through a fully connected (dense) layer in order compress the encod-
ing further, resulting in a vector that contains 500 values: Latent1
(This Latent1 vector will be used to train the subsequent VAE mod-
ule, discussed in the next section). The latent vector is then fed into
the decoder module, which is trained to convert it back to the origi-
nal input sequence, thus token input and token output are the same
sequence.

Variational Autoencoder

With the first stage autoencoder complete and trained, we construct
a variational autoencoder (Kingma et al, 2013) to further compress
the latent representations of TidalCycles code. The variational au-
toencoder (VAE) is constructed by alternating linear (fully connected)
layers with ReLU (Rectified Linear Unit) activation functions. The
encoder, labeled encoder2 in Figure 5, outputs two vectors which are
used as the mean and standard deviation of a normal distribution
(seen at center of Figure 5). This normal distribution is then sampled
and input into the decoder (decoder2) which reconstructs the Latent1
vector.

Figure 5: Training the second stage variational autoencoder (VAE).
The learned latent representation from stage 1 (seen in Figure 4) is
used as input and output here. The encoder module produces a nor-
mal distribution which is sampled before being sent to the decoder,
resulting in non-deterministic behavior.

During the development of the Cibo agent and many training ex-
periments, many different hyperparameter settings we tested, includ-

24



ing different numbers of layers, different numbers of hidden features
between each layer, and different activation functions. Figure 5 ac-
curately represents the architecture as it is currently in use, with 7
layers in each the encoder and decoder. The Latent1 input/target
vector contains 500 features, while the innermost latent representa-
tion—the result of sampling the normal distribution (and the input
into decoder2)—contains 3 features.

The variational autoencoder provides two strengths in this imple-
mentation. First, because the encoder (encoder2) produces a normal
distribution which is then sampled, the VAE is non-deterministic and
retains a degree of stochasticity in its final execution. Additionally,
the resulting latent space produces gradual changes in the output, i.e.,
the latent space, while highly complex and knotted, can be smoothly
traversed for continuous subtle changes in output.

Latent Space Traversal

*
Once the latent space has been constructed by training the autoen-

coder and subsequent VAE (discussed above), all training recordings
are passed through the encoders, producing a normal distribution for
each training sample. Once these latent normal distributions are gen-
erated, we can visualize the latent space (see Figure 6). The three
TidalCycles contributors—blindelephants (Jeremy Stewart), kindohm
(Mike Hodnick), and bgold (Ben Gold)—are signified through differ-
ent colors, with each point representing an execution of a line or block
of TidalCycles code. Figure 6 was produced via t-SNE using the
latent-space vectors produced by the encoders (Maaten et al, 2008).
There are clear regions in this visualization, with groupings of the
same color in some areas, and mixing in others.

With this latent space constructed by the two encoder neural net-
works, all training recordings were encoded, resulting in a sequence
of normal distributions for each recording. More simply put, with
the latent space constructed as in Figure 6, it is possible to trace
pathways through this space which represent a given performance.

These sequences were used to train a recurrent neural network (using
a LSTM architecture; Hochreiter, 1997) in an autoregressive fashion.
The resulting model will trace a pathway through the latent space (in
Figure 6) in a manner based on the training recordings, at each step
producing a vector which can be sent to the two decoder modules and
output as TidalCycles code.

Generating Token Values

Figure 7: Generation of token values takes place by 3 neural networks,
one for each variable type: Integer, Float, and String

The token sequence that is generated by the agent modules dis-
cussed above will contain Integer, Float, and String tokens, without
yet specifying their values. The last step in the Cibo agent’s gen-
erative process is to produce these variables. It does so with three
neural networks, each dedicated to one of the variable types. The

25



Figure 6: The latent space produced by training, visualization aided by t-SNE processing. Each point represents a single execution of a TidalCycles
line or block. The two subfigures represent the same space, rotated by 90 degrees around the y-axis.

26



TidalCycles token sequence is read into a bidirectional recurrent neu-
ral network (BiRNN) which generates a variable length output (equal
to the sequence length). Indices of the given variable type are then
passed through a linear layer which outputs a single value. If the
variable type is float, the output is used directly; integer type will
result in the output being truncated and used. If the variable is of
string type, the value will be used to look up a sample name from an
available dictionary which contains all currently available samples.

Sound Analysis-Based Substitution

TidalCycles and SuperDirt make using one’s own sample library
very straightforward. While recording performances to use for
training the Cibo agent, each contributor used a unique sample
library—potentially containing a combination of publicly available
sound samples (such as those included with SuperDirt) and samples
created by each individual artist. While the agent is trained in a man-
ner that preserves all of these unique sample names and possibilities,
there is no guarantee that all of these samples will be available at the
time of performance. Therefore, we developed a small tool set (Stew-
art, 2019, Sample Corpus Sound Analysis) to analyze each sample,
producing a fixed-size vector that represents various spectral features,
including: centroid, bandwidth, contrast, flatness, and rolloff; as well
as a full STFT (short time fourier transform) and CQT (constant Q
transform). This analysis tool uses the Librosa audio analysis library.
From each of these analyses (the length of which would be based on
the duration of the sample) a mean, standard deviation, and sum
vector was calculated. Thus, each sample is represented by a vector
containing 3360 values.

Figure 8: Dimensionality reduction performed on sample audio anal-
yses with an autoencoder.

An autoencoder neural network was constructed for the sake of di-
mensionality reduction, allowing us to effectively reduce each sample’s
representation from 3360 values to 300 values. This neural network,
seen in Figure 8, contains five layers in each the encoder and decoder.

27



Figure 9: t-SNE visualization of the latent space produced by the autoencoder. Each point represents a single sample, with 13340 in all. The
two subfigures are of the same space, rotated 90 degrees on the y-axis. Z-depth is represented by color.

28



Figure 10: Here, the mapping is made more apparent. Red points indicate currently unavailable samples, while black points are those sample
currently available. The substitution method described here will map each red point to the nearest black point.

29



*

From here, a table is produced that maps all unavailable samples
to available samples, based on proximity of latent vectors. This table
is stored for use by the agent during performance. If the agent pro-
duces a sample name which is not in the currently available sample
library, this table is used for a simple name substitution.

*

All sample analyses (those containing 3360 values each) are pre-
served, allowing for recalculation of the substitution tables if the avail-
able sample library changes or if new training recordings, referencing
additional samples, become available.

Results

The Cibo v2 agent, as described above, performs as a live-coding per-
former using TidalCycles code in a self-directing manner based on
learned characteristics from training material. Video documentation
of the agent’s performance (Stewart, 2019, Cibo V2 Demo) demon-
strates Cibo v2’s ability to produce valid TidalCycles code in way
that is highly reminiscent of the contributing performers, while also
producing novel output that effectively blends between these influ-
ences.

Conclusions

Cibo v2 represents a novel implementation of artificial intelligence
(AI) and machine learning (ML) techniques to create an autonomous
live-coding performance agent. The construction of Cibo v2 around
autoencoder and variational autoencoder modules results in a faster
training process (than previous versions of the Cibo agent, specifi-
cally) and more robust sequence generation. Additionally, the ability
to visualize the learned latent space (Figure 6) allows us to begin to
develop a better understanding and conceptualization of how Tidal-
Cycles performances might be organized and correlated.

References

All the functions – TidalCycles, viewed 25 September 2019, https:
//tidalcycles.org/index.php/All the functions

Beazley, D., 2018. PLY (Python-Lex-Yacc), viewed 25 September
2019, http://www.dabeaz.com/ply/

Bingham, E., Chen, J.P., Jankowiak, M., Obermeyer, F., Pradhan,
N., Karaletsos, T., Singh, R.,

Szerlip, P., Horsfall, P. and Goodman, N.D., 2019. Pyro: Deep
universal probabilistic programming. The Journal of Machine Learn-
ing Research, 20(1), pp.973-978.

Hochreiter, S. and Schmidhuber, J., 1997. Long short-term mem-
ory. Neural computation, 9(8), pp.1735-1780.

Kingma, D.P. and Welling, M., 2013. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114.

Lawson, S., 2019. Sublime Jensaarai, viewed 26 September 2019,
https://github.com/shawnlawson/SublimeJensaarai

LibROSA, viewed 25 September 2019, https://librosa.github.io/
librosa/

Loshchilov, I. and Hutter, F., 2017. Fixing weight decay regular-
ization in adam. arXiv preprint arXiv:1711.05101.

Maaten, L.V.D. and Hinton, G., 2008. Visualizing data using t-
SNE. Journal of machine learning research, 9(Nov), pp.2579-2605.

McLean, A., et al, 2019. Tidal, viewed 6 December, 2019,
https://github.com/tidalcycles/Tidal

McLean, A., and Wiggins, G., 2010. Tidal—pattern language for
the live coding of music. Proceedings of the 7th Sound and Music
Computing Conference.

30

https://tidalcycles.org/index.php/All_the_functions
https://tidalcycles.org/index.php/All_the_functions
http://www.dabeaz.com/ply/
https://github.com/shawnlawson/SublimeJensaarai
https://librosa.github.io/librosa/
https://librosa.github.io/librosa/
https://github.com/tidalcycles/Tidal


Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito,
Z., Lin, Z., Desmaison, A.,

Antiga, L. and Lerer, A., 2017. Automatic differentiation in py-
torch.

Stewart, J., 2019. Cibo: Safeguard II, viewed 26 September 2019,
https://vimeo.com/288889990/6d92fd1a55

Stewart, J., 2019. Cibo V2 Demo, viewed 26 September 2019,
https://vimeo.com/361567860/abac29e10f

Stewart, J., 2019. Sample Corpus Sound Analysis, viewed
26 September 2019, https://github.com/BlindElephants/
SampleCorpus SoundAnalysis

Stewart, J. and Lawson, S., 2019. Cibo: An Autonomous Tidal-
Cyles Performer.

Williams, R.J. and Zipser, D., 1989. A learning algorithm for con-
tinually running fully recurrent neural networks. Neural computation,
1(2), pp.270-280.

31

https://vimeo.com/288889990/6d92fd1a55
https://vimeo.com/361567860/abac29e10f
https://github.com/BlindElephants/SampleCorpus_SoundAnalysis
https://github.com/BlindElephants/SampleCorpus_SoundAnalysis

	Cibo v2: Realtime Livecoding A.I. Agent

