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Abstract

This article describes the Mégra music system, a code-based, stochas-
tic music system that can be used in a live performance context, as
well as for longer compositions. Mégra relies on Probabilistic Finite
Automata (PFA) as its fundamental data structure. A case is made
for the use of PFAs as a data model that can not only be trained
(in the sense of machine learning), but also be interacted with on the
basis of predefined operations and, as a side effect, enables one to cre-
atively use the imperfections that occur when using very small data
sets to infer musical sequence generators with the help of machine
learning methods.

Introduction

Mégra is a code-based system that can be used to create music in
a live performance context, as well as in a composition context. It
allows one to interactively infer or create musical sequence generators
by using the live coding or exploratory coding method.

Its development started out from the idea of, as Fiebrink and
Caramiaux (2018) put it, ‘machine learning in which learning algo-
rithms can be understood as a particular type of interface through
which people can build model functions from data,’ and the subse-
quent search for a suitable data model. Further criteria were the
efficiency of the training methods so that they can be used in the
context of real-time music creation, as well as a syntax that reflects
the model well while being sufficiently intuitive for live coding.

The ’imperfections’ which occur when using very small data sets
(small enough to be observed and entered by humans) are a welcome
side effect of the chosen approach.

Furthermore, the system attempts to include methods to manip-
ulate the learned structures by means other than just choosing the
input data. Instead, it aims to employ a model that is more seman-
tically meaningful in comparison to other models currently common
in machine learning and artificial intelligence, such as deep neural
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networks. This semantic quality at a high level should allow for the
definition of more meaningful operations and interactions inside the
model, at a granular level. In that sense, the Mégra language presents
a case study on how a machine learning method can be put into action
within live coding practice.

Section 2 of this paper will evaluate this idea in the contexts of
Algorithmic Composition and the current Big Data trend, or in op-
position of the latter. Section 3 will evaluate the chosen data model
and eventual alternatives. Section 4 will give a brief overview over
the Mégra system, and how the model is used in the context of live
coding. Section 5 will present some usage examples.

Small Data as a Creative Tool

The part of the machine learning world commonly associated with
the Big Data buzzword seems to be dominated by huge data sets and
huge hardware effort. While it is hard to deny that the results are
impressive, they are still mostly beyond reach for people that are not
part of a company or a research group, as neither the necessary hard-
ware (like supercomputers or AI accelerators) nor the data sets are
commonly available1.

Furthermore, ‘black-box’ models that are commonly in use, like
deep neural networks, barely have any semantic significance for hu-
mans (one might say they aren not cognitively available). The seman-
tic meaninglessness of the data models makes a ‘discourse with mod-
els’ (Roberts and Wakefield 2018, p. 303), e.g. by applying meaningful
operations to them, quite hard, apart from ‘shaping model behavior
through data’ (Fiebrink and Caramiaux 2018). Manually modifying
the internal structure of the ‘black box’ would not only be tedious,
but also virtually impossible to do in a controlled manner.

Here is where the idea of Small Data comes into play. The term

came up in different fields, most prominently in marketing (Lindström
2016) or in e-Health systems research (Estrin 2014).

There does not seem to be a final consensus on what constitutes
Small Data. The idea is usually characterized in direct opposition
to Big Data, for example by data sets that can be generated by a
single person (Estrin 2014) or that are within the realm of human
comprehension, leading to intuitive insight (Lindström 2016). Decen-
tralization of the data sets also plays a role (Pollock 2013).

In this specific context of interactive music creation, the aspect of
smallness also can be extended to direct feedback. While Big Data ap-
plications usually need, in addition to hardware, a lot of time to give
accurate results, small data sets can be immediately evaluated and a
structure inferred within an exploratory, real-time-oriented composi-
tional approach, as is typical for live coding methods.

Furthermore, the idea of smallness can be extended to the model
itself, where the observation of the model or rules inferred from the
data can lead to further insight, as semantically meaningful models
are preferred.

Using small data sets and real-time inference surely won’t return
‘perfect’ (or perfectly predictable) results (e.g., in the sense of a stylis-
tic imitation that can’t be distinguished from an original). Given the
current state of technology, the representational capacity of the meth-
ods proposed in the following are behind of what is currently achieved
with deep learning methods and the like. In the context of artistic
production, though, this isn’t the only criterion. In fact, it might not
be all that significant as long as the results are inspiring and artisti-
cally valid, with the methods being available to anybody with access
to regular hardware.

In some sense the Small Data idea is also reminiscent of the early
days of computer composition, when neither the amount of data nor
the hardware capacity was anywhere near today’s level, and more

1It should be mentioned that in recent times some effort has been made to make machine learning technology more widely available, with projects like the Julia language
(Innes 2018), or, in the context of music (especially synthesis and instrument creation, as opposed to structure generation), the Nsynth dataset and GANSynth (Engel et
al. 2019). Their usefulness in the context of live coding has yet to be evaluated.
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domain-specific knowledge may have been needed to achieve valid re-
sults. Today’s technical world allows us to re-create some of this in
real time.

Thus, the idea of Small Data in the given context could be seen
as less of a black box approach, but a more human, democratic use of
machine learning methods (Pollock 2013), not with the goal of giving
accurate predictions or categorizations of the world around us, but
rather for artistic inspiration, by means of discourse with the model
itself.

Probabilistic Finite Automata

Using Markov Chains of different orders for musical sequence gener-
ation is a well-known method in algorithmic composition (Nierhaus
2009). Common Music, for example, provides methods to create se-
quence generators based on those (Taube 2014).

Probabilistic Finite Automata (PFA) (Ron, Singer and Tishby
1996) are a representation of Variable Order Markov Chains, which
combine the predictive power of fixed higher-order Markov chains
(where needed) with a more compact memory footprint.

Mathematically, PFAs are described by a 5-tuple Q,Σ,Γ,Υ,Π and
a memory length N , where:

• Q is a finite set of states, the states being labeled over Σn, n ≤
N ;

• Σ is a finite alphabet;

• Γ is the transition function, determining the next state given a
current state and an emitted symbol;

• Υ is the next symbol probability function, determining the prob-
ability of a symbol

The PFA model isn’t necessarily interesting for its novelty, but
for its versatility, and in this case, the ability to support a semanti-
cally meaningful dialog. The semantic quality (i.e. the capacity for

transmitting meaning) of the model becomes clear if you think of the
elements of the alphabetas musical events. Thus, the states, their
labels and the transitions between them can easily be read in natural
language (“after four repetitions of a bassdrum follows a snare with
50

Probabilistic Finite Automata can be used as sequence genera-
tors, whether they are inferred from user-provided rules or trained
from given sequences of observations. The training and inference al-
gorithms are efficient enough to be used in the context of real-time,
on-the-fly composition (as the examples in the following sections will
show).

Furthermore, it is fairly straightforward to interact with and ma-
nipulate the learned or inferred structures to create variation, either
by adding rules or by manipulating the inferred structures directly
through predefined operations. Thus, PFAs are a good approxima-
tion of the Small Data idea and present a data model that is trainable
in the machine learning sense while also allowing for discourse with
the model through live interaction.

Especially with limited data sets, the model is somewhat intu-
itive. Smaller sequence generators (that might nonetheless produce
interesting results) can be even written by hand or drawn onto a sheet
of paper (Fig. 1). This intuitive accessibility corresponds well to the
idea of using Small Data for artistic inspiration.

Findings by David Huron might give hints regarding the usefulness
and limitations of the PFA model in relationship to human cognition.
As Huron writes:

In describing conditional probabilities, two concerns are
the contextual distance and contextual size. Some states
are influenced only by their immediate neighbors (i.e.,
small contextual distance). Other states are influenced
only by states that are far away in space or time (i.e.,
large contextual distance). [. . . ] The size of the context
of probabilistic influence is sometimes also called the prob-
abilistic order. [. . . ]
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As we will see in later chapters, music exhibits a complete
range of such dependencies. Most of the time, the prin-
cipal constraints are of low probability order and involve
a near context (e.g., one note influences the next note).
But music also exhibits distinctive patterns of organiza-
tion where distant contexts are more influential than near
contexts and the probability order is quite large. (Huron
2006, p. 56)

In the context of live coding, the smaller contexts can be easily
represented by the PFA model, as we will see later on, while, due to
restrictions regarding processing power and time, the larger contexts
are still in the hands of the performer.

Alternative Models

Among alternative models that might fit the Small Data idea, in that
they are comparatively human-readable, one might be Augmented
Transition Networks, as previously applied by David Cope (Nierhaus
2009), even though based on extensive musical corpus analysis rather
than intuitive data entry in a live coding situation.

Generative Grammars or Probabilistic Generative Grammars
(Nierhaus 2009) might also be considered, even though they might
be more suited to offline sequence generation rather than real-time
generation due to the way non-terminal symbols are handled.

The use of these models in the context of live coding needs further
research to determine their practicality.

The Mégra System

In Mégra, the mathematical details are transparent to the user; only
the details essential to interaction made it to the syntax. Also, the
model can be visualized fairly easily, as seen in the code examples and
their visualizations 1-4.

The system embodies the Small Data idea by providing a com-
pact and semantically meaningful syntax both for creating sequence

generators by hand, to gain a better understanding of the underlying
model, as well as for inferring structures from tiny data sets, which
can then again be turned into code, visualized, manipulated, and, of
course, sonified.

Learning, Inferring and Extending Structures, Making Up
Rules

The Mégra system allows for the creation of musical sequence gener-
ators on the fly in several ways. One way is to explicitly specify a set
of transition rules (Listing 1 ).

;; Code Example I: a simple beat generator inferred

from explicit rules

;; see visualisation in Figure 1

(infer ’beat

(events (x (sn)) (o (bd)) (- (hats))) ;; symbol -

to -sound -event mapping ,

;; x = snare , o = bassdrum , - = hats

(rules

((x) - 1.0) ;; hats follows snare ,

always

((o) - 1.0) ;; hats follow bassdrum ,

always

((-) x 0.4) ;; after hats , either

have another snare ,

((-) o 0.4) ;; ... another bassdrum ,

...

((-) - 0.2) ;; ... or, less

frequently , another hats.

((- - - -) o 1.0))) ;; after four

sequential hihat sounds , always

emit a bassdrum

Listing 1: Mégra Code Example I, a simple beat generator
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Figure 1: Graphical Representation of Code Example I

Another way is to train a sequence generator from an observed
or made-up sequence (Listing 2 ). Once the sequences’ structure has
been inferred, it can be modified in different ways. A straightforward
way would be to export the learned structure as code, such as in the
first example, which is possible, but the amount of code might quickly
grow too big to manually edit it.

;; Code Example II: a more complex beat generator

learned from a pattern

;; see visualisation in Figure 2

(slearn ’beat

(x (sn) o (bd) - (hats)) ;; symbol -to -sound -

event mapping (shorter syntax)

"x-o-x-o-x-o-x-o-x-o-x-o-x-o-x-o-x-

o-x-o-x-o-x-ox-xo-x--ox-ox--xo-x-xo

-xox -ox-ox-ox-xx-ox") ;; a sample string to

learn from

Listing 2: Mégra Code Example II, Training Generator
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Figure 2: Graphical Representation of Code Example II

Thus, a more manageable interface with the model would be to
manipulate the learned PFA by inserting additional states on the ba-
sis of predefined operations, and the actual history of emitted events.
In that manner, it is also possible to start from a very simple structure
(Listing 3 and Figure 3 ) and ‘grow’ the sequence generator succes-
sively by inserting nodes and edges following certain criteria.

;; Code Example III: a very simple starting point , a

nucleus

;; see visualisation in Figure 6

(s ’the ()

(nuc ’nucleus (saw ’a2 :dur 102 :atk 2 :rel 100 :

lp-freq 1000)))

Listing 3: Mégra Code Example III, Training Generator

Figure 3: Graphical Representation of Code Example III

The growth operation, as described in the following (Listing 4 and
Figure 4) is an example of this kind of interaction with the model. It
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will spawn a new node based on the last one that has been evaluated,
modify the parameters of the formerly emitted event(s) with an av-
erage variance of 0.3, and arrange the new edges in a way that small
loops of three musical events will emerge.

;; Code Example IV: growth operation

;; successively extend - see visualisation after

extension in Figure 4

(grow ’nucleus :variance 0.3 :method ’triloop)

Listing 4: Mégra Code Example IV - Growth operation

Figure 4: Graphical Representation of Code Example IV after
growth iterations

The growth method above can again be automated, e.g. by a sim-
ple life-modeling algorithm. This gives each node a certain lifespan
after which they perish and spawns new nodes after a specified amount
of evaluations in the way described above, tied to the availability of a
predefined amount of “resources.” This way, the generated generators

will stabilize (or perish) after a while, once the resources for further
growth run out. If the context requires a more deterministic outcome,
the Mégra system also allows for the creation of sequence generators
from a more musically oriented description, e.g. from a layered loop
(or pattern) syntax (Listing 5), which translates to the same PFA
model and thus allows for using the same interactions later on.

3mm

;; Code Example V: layered loop syntax

(s ’beat ()

(cyc ’layer2 "hats ~ ~ hats ~ ~ ~ hats hats") ;;

loop 2

(cyc ’layer1 "bd ~ ~ bd sn ~ ~ casio:’hi")) ;;

loop 1

Listing 5: Mégra Code Example V

Time Handling

The examples above rely on a fixed time spacing (no explicit time in-
formation given), but it is also possible to have explicit time control,
with time values specified in milliseconds (Listing 6).

;; Code Example VI: Same as example 1, with some

explicit time values

(infer ’beat

(events (x (sn)) (o (bd)) (- (hats)))

(rules

((x) - 1.0 100) ;; hats follows snare

, always , after 100ms

((o) - 1.0 100) ;; hats follows

bassdrum , always

((-) x 0.4) ;; after hats , either

have another snare ,
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((-) o 0.4) ;; \dots another bassdrum

, \dots

((-) - 0.2 50) ;; \dots or, less

frequently , another hats (50ms)

((- - - -) o 1.0))) ;; after four

sequential hihat sounds , always

emit a bassdrum

Listing 6: Mégra Code Example VI, a simple beat generator with
some explicit time control

Pragmatic Interaction

;; Code Example VII: Event Streams

(s ’sawtooths () ;; <- This is an event sink.

;; ^

;; | Events flow in this direction ...

;; |

(prob 30 (rev 0.2)) ;; Modifier! 30% chance to

add some reverb.

(nuc ’nucleus (saw ’a2 :dur 102 :atk 2 :rel 100 :

lp -freq 1000)) ;; Source

Listing 7: Code Example VII: Pragmatic interaction by modifying
the event stream.

Especially in an exploratory situation it is sometimes helpful to
quickly change certain parameters or create some variation by modi-
fying a parameter with a certain probability.

The Mégra system allows for those pragmatic modifications (prag-
matic in the sense that they’re not necessarily covered by the PFA
model) by altering the event stream with certain operators that select

and modify the parameters of the passing events (Listing 7), inspired
by what is commonly called Reactive Programming, e.g. as described
in Maier et al. (2010).

Technical Foundations

Mégra is built upon Common Lisp as a base language and utilizes
SuperCollider for sound synthesis. The two communicate via Open
Sound Control.

The Common Lisp language has been chosen for its expressive
power and the syntactical freedom it provides. Furthermore, there
are several powerful libraries for music creation available, most promi-
nently Incudine (Latini 2019) and an ancient, but functional, version
of Common Music (Taube and Finnendahl 2019).

Usage Examples

In the following, two specific usage examples and some more generic
remarks about the usage of the Mégra system will be presented.

Creating a Pattern Syntax on the fly

The Mégra system can be used to create small pattern languages on
the fly by associating sound events with symbols and entering a se-
quence as a string2. The possibilities can be explored by modifying
the string and eventually adding new symbol/sound associations.

The resulting syntax might be somewhat similar to other ap-
proaches (think of Gibber (Roberts n.d.) or FoxDot (Kirkbride
2019)), allowing the application of previous pattern knowledge. But,
as a non-deterministic sequence generator is inferred, the results might
not be totally expected. Code Example II above (Fig. 3) also follows
a similar idea.

2Demo: https://vimeo.com/321099751
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Simple Language Sonification

Another possible use of this system is to enter a slightly larger, given
data sequence and to associate its symbols with sounds, e.g. to sonify
text snippets3 from ‘simple’ language texts like Toki Pona (Lang
2014).

Performance and Composition

The Mégra system has been continuously used for composition4 and
live coding concerts5 since its inception, which has been an important
aspect in its development process. Especially through the use in a
live situation, many inconveniences in syntax and handling have been
exposed and successively improved, and it is currently approaching a
somewhat stable state. 6 FUTURE OUTLOOK While further simpli-
fying the syntax and increasing expressive possibilities is an ongoing
project, a major future goal is inferring the PFA structures not only
from code input, but also from audio input. That way, a sequence
generator could be created simply by clapping a rhythm, or singing
a melody. This has, as a first step, required some audio feature ex-
traction, which has been done by creating Common Lisp bindings for
the popular Aubio library. As a next step, a method to transfer the
extracted features into the symbolic domain is needed so that they
can be used in the same manner as the code-based input.

Conclusions

With Probabilistic Finite Automata, a trainable data model that still
allows for versatile real-time interaction and thus, discourse with the
model, has been identified and implemented.

From personal experience, engaging in an active discourse with

the PFA model, training or inferring sequence generators, keeping or
discarding the results and subsequently applying the mentioned op-
erations to transform the results allows for the frequent discovery of
non-obvious, yet interesting sequences and sound combinations.

My aim with this project was to engage the audience (and myself
as a performer) by creating and exposing a semantically meaningful
discourse with a Small Data model through sound and code.

It does need some practice to be uses effectively, and the pragmatic
interaction (as described in Section 4.3) is still an important part,
especially in the context of performances that require more rapidly-
shifting dynamics, such as Algorave. On its own (without much prag-
matic interaction), the presented system shines in types of music that
unfold more slowly in time.

Nonetheless, having used it successfully in performances so far,
the Mégra system continues to be extended and field-tested.
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