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Abstract	
The	COVID-19	pandemic	is	proving	to	be	a	severe	test	of	current	epidemiological	and	
immunological	frameworks	and	technologies.	Several	striking	features	have	presented	
themselves,	including	the	extreme	disparity	in	infection	and	mortality	rates	from	one	
country	to	another	(and	from	one	state	to	another	within	the	US),	the	typically	very	slow	
decline	of	the	epidemic	after	peaking	in	a	given	country,	and	the	relatively	low	levels	of	
infection	in	some	countries	(based	on	antibody	testing)	despite	months	of	epidemic	status.	
Clarity	and	consensus	on	the	underlying	reasons	for	these	features	is	urgent	in	order	to	craft	
optimal	strategies	for	ending	lock-downs	and	planning	for	possible	subsequent	waves	of	
COVID-19.	In	this	paper	we	describe	a	framework	that	has	the	potential	to	explain	these	
features	of	the	pandemic.	We	hypothesise	an	emergent,	long-ranged	“pre-conditioning	
field”	(PCF),	generated	by	infected	individuals	and	provoking	a	preliminary	immune	response	
in	distant	non-infected	individuals.	We	show	that	incorporating	a	PCF	within	the	simplest	SIR	
model	is	capable	of	describing	the	epidemic	features	described	above,	and	also	predicts	
subsequent	waves	of	epidemic	if	pre-conditioning	deteriorates	too	rapidly	over	time.	Long-
ranged	dispersal	of	viral	detritus	from	infected	individuals	is	discussed	as	a	candidate	
mechanism	for	the	PCF,	and	biophysical	and	immunological	arguments	are	provided	for	its	
plausibility.	Our	main	conclusions	are	relatively	insensitive	to	the	precise	form	of	the	PCF.	
Should	the	general	concepts	given	here	prove	compelling,	some	proactive	steps	to	tackle	the	
pandemic	within	the	PCF	framework	can	be	considered	prior	to	a	detailed	specification	of	
the	PCF	itself.	
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1.	Introduction	and	motivation	
	
The	COVID-19	pandemic	originated	in	Wuhan,	Hubei	province,	China	in	late	2019	(Zhu	et	al	
2020),	and	has	spread	across	the	globe.	COVID-19	is	the	disease	caused	by	the	SARS-CoV-2	
virus	(Bar-On	et	al	2020	and	references	therein).	To	date	(June	2020)	COVID-19	has	infected	
well	over	8	million	people	with	a	death	toll	in	excess	of	400,000	(worldometers.info).	The	
pandemic	has	brought	epidemiology	into	the	spotlight	as	never	before.	Governments	
worldwide	have	urgently	sought	expert	advice	on	how	to	weather	the	storm	as	COVID-19	
sweeps	through	their	nations,	and	the	general	public	has	become	well-versed	in	principles	
such	as	“exponential	growth”,	“R0”,“herd	immunity”,	and	“flattening	the	curve”.	Detailed	
tracking	of	cases	and	mortality	has	been	undertaken	in	many	countries	yielding	rich	datasets	
with	which	to	evaluate	conventional	epidemiological	and	immunological	models	along	with	
new	theories.		
	
Epidemiological	modelling	has	been	essential	in	providing	early	estimates	of	the	infection	
and	mortality	rates	of	the	disease	(Kraemer	et	al	2020,	Kuchasrski	et	al	2020,	Lourenço	et	al	
2020,	Verity	et	al	2020,	Wu	JT	et	al	2020),	and	continues	to	be	used	to	better	understand	the	
disease	dynamics	and	to	provide	tools	to	evaluate	lock-down	strategies	(e.g.	Ianni	and	Rossi	
2020,	O’Sullivan	et	al	2020).	A	uniform	consensus	has	yet	to	emerge	about	key	aspects	of	
the	pandemic,	despite	similarities	in	modelling	frameworks,	with	widely	reported	
disagreements	between	epidemiologists	on	the	timing	and	duration	of	the	epidemic	and	the	
efficacy	or	otherwise	of	extraordinary	government	measures	such	as	lock-downs.	In	
addition,	inverse	modelling	using	Bayesian	inference	has	concluded	that	very	significant	
fractions	of	host	populations	may	not	be	susceptible	to	the	SARS-CoV-2	virus	(Friston	et	al	
2020,	Moran	et	al	2020).	This	chimes	with	seroprevalence	studies	which	show	quite	
disparate	rates	of	infection	in	countries	that	have	experienced	the	infection	for	many	
months	(Sereina	et	al	2020	and	references	therein,	Streeck	et	al	2020).	Additional	striking	
features	have	emerged,	such	as	the	very	significant	disparity	between	mortality	rates	from	
one	country	to	the	next	(and	from	one	state	to	the	next	in	the	US)	and	the	typically	very	
sluggish	decline	of	the	epidemic	after	peaking	in	a	given	country	(worldometers.info).	To	
what	degree	these	disparities	are	due	to	known	factors	(differences	in	efficacy	of	lock-
downs,	issues	with	accuracy	of	antibody	testing,	and	genetic	and	immunological	details	of	
immune	response	(e.g.	Wu	F	et	al	2020)),	or	to	fundamental	gaps	in	our	understanding	of	
COVID-19	remains	to	be	seen.		
	
There	is	of	course	an	urgency	to	better	understand	the	pandemic	that	goes	beyond	scientific	
consensus.	Societies	and	their	elected	representatives	desperately	need	to	determine	the	
efficacy	of	various	lock-down	strategies,	to	optimise	the	rate	of	subsequent	deregulation	of	
social	and	economic	interactions,	and	to	better	prepare	for	the	next	severe	pandemic,	which	
may	indeed	be	a	subsequent	wave	of	COVID-19.	As	such,	scientists,	engineers,	technologists	
and	physicians,	from	a	range	of	disciplines	outside	of	epidemiology,	have	felt	a	moral	and	
social	imperative	to	employ	their	expertise	to	provide	new	ideas	and	innovations	to	
governments,	think-tanks	and	the	epidemiology	community.	This	paper	is	offered	in	this	
spirit,	the	ideas	herein	stemming	from	a	theoretical	biophysics	perspective.	
	
When	confronting	complex	phenomena,	particularly	if	conventional	understanding	is	
strained,	there	are	two	broad	approaches	to	improve	our	understanding.	The	first	might	be	
termed	“bottom	up”	where	one	uses	existing	knowledge	and	well-understood	reductionist	
mechanisms	in	novel	or	more	complex	combinations	in	an	attempt	to	describe	the	data.	In	
the	context	of	pandemic,	this	approach	is	evidenced	by	highly	complex	epidemiological	
models,	in	which	dozens	of	demographic	characteristics	and	detailed	sociological	and	
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geographical	features	are	accounted	for,	to	explain	historical	data	and	to	predict	the	near	
and	intermediate	disease	dynamics	under	various	scenarios	of	government	and	healthcare	
interventions	(Kenah	et	al	2011,	Heesterbeek	et	al	2015,	Chowell	et	al	2016,	Lourenço	et	al	
2020,	Verity	et	al	2020).	Such	models	will	generally	be	able	to	fit	historical	data	if	enough	
modelling	complexity	is	introduced.	The	second	approach	might	be	termed	“top	down”	and	
in	this	case	one	seeks	new	hypotheses	that	can	explain	much	of	the	data	in	a	parsimonious	
manner,	with	little	reliance	on	a	large	number	of	fitting	parameters.	Successful	hypotheses	
might	have,	at	first	glance,	tenuous	connection	to	known	mechanisms,	but	can	lead	to	new	
understanding	of	the	phenomena	to	hand.	[An	historical	example	of	these	two	approaches	
in	biology	pertains	to	the	classic	problem	of	pattern	formation	during	embryo	development,	
with	the	first	approach	being	realised	through	differential	gene	expression	and	regulation	
(Gilbert	2003),	and	the	second	through	Alan	Turing’s	landmark	paper	on	morphogen	
gradients	(Turing	1952).]	Each	approach	serves	an	important	purpose	to	get	to	the	heart	of	
the	matter,	and	over	time	are	often	seen	to	converge	to	a	richer	coherent	understanding.	
This	paper	follows	the	spirit	of	the	second	approach	of	“top	down”	phenomenology,	offering	
a	new	hypothesis	which	parsimoniously	describes,	qualitatively,	much	of	the	pandemic	data,	
particularly	the	striking	features	described	above,	despite	this	hypothesis	having	from	some	
perspectives	less	direct	connections	to	known	mechanisms.	
	
In	a	recent	interview	oncologist	Karol	Sikora	described	epidemics	ending	“as	if	the	virus	gets	
bored”	(Sikora,	Unherd	2020).	This	phrase	was	vivid	and	clearly	metaphorical,	yet	brought	to	
the	author’s	mind	a	more	intrinsic	form	of	population	response	to	epidemic,	beyond	
behavioural	responses	such	as	social	distancing.	Could	there	be	what	one	might	call	a	
superorganismal	immunological	response	to	a	pathogen?	Indeed,	it	is	well	known	that	
bacterial	and	amoebal	communities	are	capable	of	coherent	population-level	responses	to	
environmental	stress	(Lewis	2007,	Strassmann	and	Queller	2011)	and	so	why	not	
populations	of	more	complex	organisms	such	as	humans?		
	
This	line	of	thought	is	consonant	with	the	decades	of	work	by	Rupert	Sheldrake	and	
coworkers	on	morphic	resonance	–	the	idea	that	organisms	within	a	species	are	capable	of	
shared	learning	and	behaviour	through	a	hypothesised	morphogenetic	field	that	spans	very	
large	distances	(Sheldrake	2009).	The	existence	of	morphic	resonance	remains	controversial	
in	the	wider	scientific	community.	Whilst	Sheldrake’s	concepts	have	inspired	the	hypothesis	
to	be	explored	in	this	paper,	our	approach	is	not	based	on	morphic	resonance	per	se.	
	
Our	hypothesis	is	the	following:	that	in	a	population	experiencing	epidemic	there	emerges	a	
superorganismal	immunological	response.	The	mediator	causally	connecting	the	infected	
subpopulation	with	the	remaining	uninfected	population	is	presumed	to	be	long-ranged,	
providing	protection	beyond	the	region	of	the	current	infection,	and	we	term	it	the	“pre-
conditioning	field”	(PCF).		
	
In	the	next	section	we	will	describe	how	the	PCF	can	be	incorporated	into	the	simplest	
epidemiological	model,	the	SIR	model	(Bailey	1975)	and	we	discuss	qualitatively	how	it	
would	affect	the	course	of	an	epidemic.	We	will	describe	one	possible	instantiation	of	the	
PCF:	large-scale	dispersal	of	(non-live)	viral	detritus	(ViDe)	from	infected	individuals	(Després	
et	al	2012)	carried	by	convective	air	currents	over	continental	scales,	and	being	
subsequently	inhaled	by	uninfected	individuals,	pre-conditioning	their	immune	systems	to	
later	exposure	to	the	live	virus;	an	“early	warning	system”	as	it	were.	The	conceptual	and	
qualitative	results	of	this	paper,	in	particular	given	the	overtly	simple	nature	of	the	
modelling,	are	relatively	independent	of	the	particular	form	of	the	PCF.		
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In	section	3	we	provide	proof	of	principle	by	quantitatively	investigating	the	effect	of	the	PCF	
within	the	SIR	model,	using	mathematical	and	numerical	analysis.	We	show	that	the	PCF	is	
able	to	account	for	the	striking	features	of	the	pandemic	described	above;	namely,	
apparently	low	levels	of	seroprevalence,	sluggish	decline	of	the	epidemic	in	a	given	region	
(the	so-called	heavy	tail	of	the	epidemic	curve),	and	disparate	rates	of	infection	and	
mortality	from	one	region	to	another	(this,	due	to	differing	levels	of	pre-conditioning).		
	
The	paper	ends	with	a	summary	of	the	main	results.	We	discuss	how	one	might	test	in	more	
detail	the	validity	and	utility	of	the	general	idea	of	a	PCF	and	the	possibility	that	airborne	
ViDe	is	the	relevant	PCF	in	the	COVID-19	pandemic.	We	discuss	important	real-world	
extensions	of	the	SIR	modelling	framework	to	include	the	PCF.	We	also	speculate	on	the	
evolutionary	origins	of	the	PCF	and	potential	healthcare	enhancements.		
	

All	mathematical	details	are	to	be	found	in	the	Appendices.		
	
	

2.	The	pre-conditioning	field	
	
Conceptual	definition	of	the	PCF	
	

Prior	to	discussing	any	particular	instantiation	of	the	pre-conditioning	field	(PCF),	we	aim	to	
define	it	conceptually,	and	this	can	be	accomplished	most	easily	by	considering	how	we	
would	incorporate	it	into	the	simplest	epidemiology	model,	i.e.	the	SIR	model	(black	boxes	
and	arrows	in	Figure	1).	Following	classical	epidemiology	(Kermack	and	McKendrick	1927,	
Bailey	1975)	we	disregard	for	simplicity	all	structure	of	a	given	population,	e.g.	age,	gender,	
spatial	distribution,	and	consider	each	individual	to	be	in	contact	with	all	other	individuals,	
and	to	belong	to	one	of	three	categories	or	“compartments”,	namely	susceptible	(S),	
infected	(I)	and	recovered	(R).	[For	the	purposes	of	labelling	interactions,	we	can	aggregate	
deceased	individuals	with	recovered	individuals,	since	both	are	absorbing	states	in	this	
simplest	of	models.]	In	the	spirit	of	such	models,	transitions	from	one	compartment	to	the	
next	(e.g.	S	to	I	or	I	to	R)	are	modelled	using	rate	constants	(i.e.	processes	with	a	constant	
probability	of	occurrence	per	unit	time).		
	
We	illustrate	the	addition	of	a	PCF	to	the	SIR	model	with	the	blue	boxes	and	arrows	in	Figure	
1.	The	essential	components	are:	
	

i)	the	identification	of	a	new	category	of	individuals:	“pre-conditioned”	(P);			
	

ii)	generation	of	the	PCF	by	infected	individuals;		
	

iii)	a	rate	at	which	susceptible	individuals,	on	exposure	to	the	PCF,	become	pre-conditioned	
(note,	this	process	competes	with	the	infection	transition	S	to	I);	
	

iv)	a	rate	for	reversion	from	pre-conditioned	back	to	susceptible;	
	

v)	a	rate	(not	illustrated)	of	degradation	of	the	PCF	through	environmental	processes.	
	

This	is	essentially	the	simplest	conceptualisation	of	the	PCF,	and	in	Section	3	(and	Appendix	
2)	we	provide	a	preliminary	mathematical	and	numerical	analysis	of	the	corresponding	
mathematical	representation	of	this	model.	We	show	that	the	PCF	radically	alters	the	
dynamics	of	the	SIR	model,	and	we	will	see	that	it	is	straightforward	to	find	combinations	of	
rate	constants	that	give	epidemic	trajectories	qualitatively	similar	to	those	seen	in	COVID-19.		
	
Intuiting	the	epidemic	dynamics	as	a	result	of	the	PCF	
	

Some	of	the	main	features	of	the	effect	of	the	PCF	can	be	understood	intuitively	from	the	
structure	of	the	model,	without	the	need	for	mathematics,	as	we	now	explain.	If	we	first	
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ignore	the	reversion	process	we	see	that	the	pre-conditioned	state	is	an	“absorbing	state”,	
just	like	recovery	and	death.	In	other	words,	once	an	individual	enters	that	state	they	are	
removed	from	any	subsequent	processes.	This	means	that	pre-conditioning	competes	with	
infection	for	susceptible	individuals.	If	the	PCF	is	strong	enough	and	the	rate	of	pre-
conditioning	high	enough,	pre-conditioning	will	“win”	this	competition	and	claim	more	
susceptibles	than	the	infection	process.	In	such	a	scenario,	the	PCF	will	have	buffered	the	
majority	of	the	population	from	infection.	Once	all	infected	individuals	have	either	
recovered	or	died	the	epidemic	will	have	completely	ended	with	most	individuals	(those	
who	are	pre-conditioned)	never	having	been	infected.	This	simplest	of	all	scenarios	is	
reminiscent	of	ecological	processes	involving	a	refuge	(Newman	et	al	2002,	Berryman	et	al	
2006),	namely	a	location	where	individuals	can	shelter	from	population	pressures	(e.g.	
competition,	predation	or	parasitism).	What	is	unusual	about	this	dynamics	though	is	that	
the	refuge	is	emergent;	pre-conditioning	is	mediated	by	the	PCF	which	is	itself	created	by	
infected	individuals.	Thus,	determining	precisely	how	strong	the	PCF	field	needs	to	be	to	
overwhelm	the	infection	is	non-trivial,	as	one	needs	to	essentially	solve	for	the	entire	
epidemic	dynamics	in	order	to	achieve	this.	In	Appendix	2	we	will	provide	an	approximate	
solution	of	this	problem	by	comparing	the	short-time	growth	trajectories	of	the	infected,	
recovered	and	pre-conditioned	populations.		
	
Re-instating	the	process	of	reversion	creates	a	richer	set	of	possibilities	for	the	epidemic	
dynamics.	In	this	case,	pre-conditioning	is	no	longer	an	absorbing	state	–	individuals	who	are	
pre-conditioned	will	eventually	return	to	a	susceptible	state	and	are	once	again	prone	to	
infection.	We	will	show	from	numerical	solution	of	the	model	that	a	moderate	level	of	
reversion	causes	the	epidemic	to	die	away	far	more	slowly.	We	can	understand	this	as	
follows.	At	the	start	of	the	epidemic,	as	the	number	of	infected	individuals	grows,	the	PCF	
grows	proportionately.	This	triggers	growth	in	the	pre-conditioned	population.	If	the	PCF	
mechanism	is	strong,	most	of	the	susceptible	individuals	will	become	pre-conditioned	and	
the	rate	of	new	infections	will	begin	to	wane.	As	this	occurs,	the	PCF	proportionately	
weakens.	The	process	of	reversion	continually	“drip-feeds”	pre-conditioned	individuals	back	
into	the	pool	of	susceptibles.	This	then	provides	new	material	for	the	infection	to	“work	on”,	
so	to	speak,	and	the	decline	of	the	infection	rate	will	be	reduced.	This	slows	the	decline	of	
the	PCF	which	in	turn	increases	the	net	flux	of	susceptibles	to	a	pre-conditioned	state.	We	
see	how	non-linear	the	epidemic	becomes,	as	it	slows	down	in	this	tug-of-war	between	
infection	and	pre-conditioning	mediated	by	reversion.	The	precise	trajectory	of	the	epidemic	
becomes	too	difficult	to	understand	through	intuition	along,	requiring	mathematics	and/or	
numerical	analysis.		
	
In	fact,	as	we	shall	see	in	section	3,	by	adjusting	the	rates	of	infection,	pre-conditioning	and	
reversion,	the	model	exhibits	more	extravagant	dynamics	beyond	drastic	slowing	of	the	
epidemic	decline.	For	a	low	rate	of	reversion	new	waves	of	epidemic	are	triggered	from	
residual	populations	of	infected	individuals.	These	new	waves	can	be	understood	from	the	
discussion	above	–	when	the	number	of	infected	individuals	becomes	very	small,	the	PCF	will	
have	all	but	vanished	and	over	time	the	pre-conditioned	population	will	revert	back	to	
susceptibles.	This	essentially	mimics	the	start	of	the	epidemic,	albeit	with	a	smaller	
susceptible	population,	and	so	long	as	there	is	a	remaining	pool	of	infected	individuals	new	
waves	of	epidemic	will	occur,	each	smaller	than	the	last.		
	
In	principle	one	can	fit	the	model	presented	here	to	the	data	of	COVID-19	epidemic	
trajectories	in	various	countries.	We	choose	not	to	pursue	that	in	this	paper.	In	section	3	we	
will	show	qualitatively	that	the	simplest	model	of	PCF	dynamics	can	reproduce	key	features	
of	the	pandemic.	To	go	beyond	this	without	accounting	for	very	important	real-world	



©	SOLARAVUS,	Cupar,	Fife,	UK																												www.solaravus.com	
	

7	

features	of	the	populations	is	of	questionable	relevance.	The	most	important	features	to	add	
are	age	structure,	co-morbidities	and	gender	–	demographic	characteristics	driving	much	of	
the	hospitalisation	and	morbidity	data	one	would	be	attempting	to	fit	(see	for	example	
COVID	infection	data	for	the	UK	at	ons.gov.uk).	Thus,	fitting	to	real-world	data	is	better	
explored	by	incorporating	the	PCF	mechanism,	as	parsimoniously	as	possible,	into	existing	
population-structured	epidemiological	models.	
	
Spatial	dynamics	of	the	PCF	
	

The	SIR	model,	when	described	in	terms	of	compartments,	dispenses	with	all	spatial	
information.	Nevertheless,	the	PCF	is	envisaged	to	act	over	long	distances,	whereas	SARS-
CoV-2	infection,	as	with	many	other	diseases,	is	primarily	transmitted	by	local	contact	(Bar-
On	et	al	2020	and	references	therein).	This	spatial	aspect	of	the	PCF	is	illustrated	
schematically	in	Figure	2,	and	its	ramifications	can	be	intuitively	explained	as	follows.	
	
The	epidemic	starts	in	a	well-defined	region.	All	individuals	bar	the	original	rare	infected	
individuals	are	susceptible.	Infection	spreads	via	local	contact	and	the	number	of	infected	
individuals	increases	exponentially.	All	infected	individuals	release	an	agent	that	contributes	
to	the	PCF.	In	the	early	stages	of	the	epidemic,	while	the	number	of	infected	individuals	is	
relatively	small,	the	total	PCF	will	be	weak,	but	growing	exponentially.		
	
Over	time,	the	number	of	infected	individuals	continues	to	increase	by	local	contact	
interactions	and	the	region	of	epidemic	spreads	(red	region	in	Figure	2).	The	concentration	
of	the	PCF	increases	proportionately	and,	via	long-range	spreading,	interacts	with	more	
distant	populations	which	have	yet	to	experience	any	infections.	These	more	distant	
populations	become	increasingly	pre-conditioned	by	the	PCF	(blue	region	in	Figure	2).	The	
epidemic	is	subsequently	expected	to	be	less	severe	in	the	mainly	pre-conditioned	
populations,	in	terms	of	transmissibility,	severity,	infection	rates	and	mortality	rates.		
	
Spatial	transport	or	spreading	of	the	PCF	is	not	instantaneous,	and	so	there	will	be	very	
distant	populations	which	are	“naïve”,	neither	experiencing	the	infection	nor	the	PCF.	In	this	
modern	age	of	intercontinental	air	travel	the	infection	can	be	rapidly	transported	to	these	
naïve	populations,	seeding	new	epicentres	of	epidemic.	In	these	regions	with	no	pre-
conditioning	the	early	spread	of	the	disease	will	mimic	the	original	epidemic,	with	higher	
transmissibility,	severity,	infection	rates	and	mortality.	Over	time,	these	new	epidemics	will	
create	their	own	spreading	PCF	giving	protection	to	adjacent	populations.		
	
This	intuitive	narrative	of	the	spatial	aspects	of	the	PCF	mechanism	has	a	degree	of	
consonance	with	some	of	the	continental-scale	aspects	of	the	pandemic:		
	

i)	the	rapid	spread	and	high	initial	mortality	rates	in	the	COVID-19	epicentre	of	Wuhan	(Wu	
JT	et	al	2020,	Verity	et	al	2020);	
	

ii)	the	apparently	less	aggressive	dynamics	of	COVID-19	in	some	geographically	adjacent	
regions	(e.g.	Japan,	Australasia,	SE	Asia,	Eastern	Europe)	(worldometers.info)	
	

iii)	the	high	infectivity	and	mortality	rates	seen	in	those	regions	geographically	farthest	from	
the	original	epicentre	(e.g.	US	eastern	seaboard,	and	parts	of	S	America)	(worldometers.info)	
	

At	this	time,	these	are	little	more	than	intriguing	qualitative	observations,	and	may	well	be	
explicable	in	terms	of	national	differences	in	lock-down	strategies,	population	density,	
population	structure,	etc.	If	the	PCF	is	responsible,	then	identification	and	characterisation	
of	the	underlying	PCF	mechanism	is	necessary	in	order	to	quantify	its	rate	of	spatial	
spreading	and	its	subsequent	effect	on	geographical	differences	in	disease	severity.	
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An	instantiation	of	the	PCF	–	viral	detritus	
	

It	is	helpful	then	to	attempt	to	be	more	specific	in	envisaging	the	PCF.	As	mentioned	in	
section	1,	the	original	conception	of	the	PCF	is	that	of	a	superorganismal	response,	and	was	
inspired	by	the	work	of	Rupert	Sheldrake	on	a	morphogenetic	field	that	allows	all	organisms	
of	a	particular	species	to	share	learning	and	new	behaviours	over	arbitrarily	long	distances	
via	morphic	resonance	(Sheldrake	2009).	These	concepts	remain	controversial,	yet	provide	a	
helpful	starting	point	in	conceptualising	the	nature	of	the	PCF	and	seeking	instantiations	
based	on	more	broadly	accepted	scientific	principles.		
	
The	instantiation	we	consider	here,	particularly	pertinent	to	COVID-19	and	other	respiratory	
illnesses,	is	that	the	PCF	is	a	concentration	field	of	viral	and	immune	system	fragments,	
which	we	denote	collectively	as	“viral	detritus”	(ViDe).	ViDe	from	fragmented	SARS-CoV-2	
viruses,	along	with	live	virus	particles,	is	emitted	into	the	surrounding	air	by	infected	
individuals	through	breathing	and	coughing.	We	must	be	clear	at	the	outset	to	distinguish	
long-range	transport	of	ViDe	from	short-range	transport	of	live	virus.	The	long-range	
transport	of	all	manner	of	biological	agents	(collectively	known	as	bioaerosols),	whether	
they	be	fungal	spores,	bacteria	or	viruses,	is	well-documented	(Després	et	al	2012),	though	it	
is	recognised	that	viruses	have	very	low	survivability	outside	the	host.	Indeed,	studies	have	
shown	that	the	live	SARS-CoV-2	virus	is	transmitted	locally,	through	inhalation	of	locally	
exhaled	microscopic	water	droplets	containing	the	virus,	or	through	contact	with	recently	
exposed	surfaces,	but	is	unlikely	to	survive	in	live	(infectious)	form	over	longer	distances	and	
timescales	(Bar-On	et	al	2020	and	references	therein).	Thus,	in	discussing	the	PCF	we	are	not	
concerned	with	the	survival	of	the	live	virus,	but	rather	with	long-ranged	spatio-temporal	
dispersal	of	fragments	of	the	virus,	be	it	RNA,	capsid	fragments	or	individual	capsid	protein	
molecules,	a	significant	proportion	of	which	we	assume	to	remain	structurally	intact	in	air	
currents	over	significant	time	periods.		
	
To	determine	whether	it	is	plausible	that	ViDe	can	be	transmitted	over	long	distances	in	
detectable	concentrations,	it	is	helpful	to	first	consider	a	well-known	paradigm	about	the	
non-intuitive	nature	of	such	questions.	One	asks	the	following	odd	question	“each	time	an	
individual	in	2020	breathes,	how	many	molecules	do	they	inhale	from	the	final	exhalation	of	
Julius	Caesar	on	his	death	on	March	15th	44	BC?”	At	first	glance	the	question	seems	bizarre	
but	is	worth	investigating	as	the	answer	is	surprising	and	informative.	It	turns	out	that	every	
time	we	breath	we	inhale	on	average	one	or	two	molecules	from	Caesar’s	last	breath.	The	
calculation	is	presented	in	the	first	part	of	Appendix	A.	It	is	a	beautiful	example	that	
highlights	how	our	intuition	can	be	misleading	when	trying	to	marry	the	product	of	a	very	
large	number	(the	number	of	air	molecules	in	Caesar’s	last	breath)	and	a	very	small	number	
(the	ratio	of	the	volume	of	Caesar’s	last	breath	to	the	volume	of	the	Earth’s	atmosphere).	It	
is	this	breakdown	of	intuition	in	the	Caesar	paradigm	that	we	believe	may	lend	an	
unexpected	plausibility	to	ViDe	acting	as	a	PCF.		
	
In	the	second	part	of	Appendix	A	we	provide	a	parallel	analysis	of	ViDe,	in	the	spirit	of	the	
Caesar	paradigm.	Crude	estimates	are	by	necessity	used,	and	so	the	outcome	can	only	be	
determined	to	within	a	few	orders	of	magnitude	at	best.	We	estimate	that	an	individual	
infected	with	SARS-CoV-2	exhales	a	total	of	ca	1014	molecular	viral	fragments	over	the	
course	of	their	illness	(note,	we	do	not	distinguish	between	clustered	molecules	constituting	
fragments	of	virus	particles	or	completely	disassociated	molecules/complexes).	This	number	
may	seem	large	at	first,	but	to	put	it	into	perspective,	consider	the	following:	each	human	
breath	contains	ca	1022	air	molecules,	and	so	1014	viral	fragments	(where	each	biomolecule	
has	a	mass	of	ca	105	daltons,	and	where	this	number	is	the	total	over	the	5-10	day	course	of	
the	illness)	has	one	ten	thousandth	of	the	mass	of	air	exhaled	in	a	single	breath.	Following	
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the	Caesar	paradigm,	we	then	estimate	that	subsequent	to	the	first	phase	of	the	COVID-19	
pandemic,	when	the	cumulative	number	of	infected	individuals	reached	of	order	1	million	
(including	both	mild	and	severe	cases),	susceptible	individuals	in	distant	regions	from	the	
epicentre	will	subsequently	be	inhaling,	on	average,	ca	1	molecular	SARS-CoV-2	fragment	
per	minute	(which	scales	up	to	ca	1000	fragments	per	day,	or	ca	50,000	fragments	in	one	
month	).	These	numbers	are	not	negligible,	and	thus	provide	a	degree	of	plausibility	to	the	
idea	that	ViDe	can	act	as	a	PCF	over	continental	and	global	length	scales.		
	
Crucially,	the	estimate	of	ViDe	concentrations	is	averaged	in	the	sense	of	assuming	that	ViDe	
is	completely	mixed	in	the	Earth’s	lower	atmosphere	with	a	uniform	concentration	over	the	
entire	surface	of	the	Earth.	This	will	not	be	the	case	over	the	relatively	short	timescales	of	
the	pandemic,	namely	weeks	and	months.	Lack	of	statistical	atmospheric	mixing	across	the	
entire	globe	over	these	shorter	timescales	will	mean	that	the	concentration	of	ViDe	will	be	
orders	of	magnitude	higher	in	some	locations,	directly	downstream	of	air	currents	
emanating	from	COVID-19	epicentres,	and	orders	of	magnitude	smaller	in	regions	which	are	
quiescent	in	terms	of	such	convective	transport.	Thus,	within	the	PCF	hypothesis,	some	
regions	of	the	world	would	benefit	from	strong	pre-conditioning	and	would	thus	experience	
milder	epidemics,	whilst	others	would	have	little	if	any	preconditioning	and	would	thus	
experience	the	full	onslaught	of	the	epidemic	in	the	manner	of	of	the	original	epicentre	in	
Wuhan.	To	give	further	plausibility	to	the	ViDe	mechanism	of	pre-conditioning	it	will	be	
essential	to	analyse	global	air	currents	over	the	period	January	to	June	2020,	seeking	
correlations	between	convective	transport	patterns	emanating	from	infection	epicentres	
and	disease	severity	in	downstream	areas	(higher	flux	of	air	currents	via	convective	
transport	from	the	epicentre	giving	higher	PCF	and	thus	lower	subsequent	disease	severity,	
and	vice	versa).	
	
We	stress	again	that	the	estimates	given	above	are	unavoidably	very	crude.	If	ViDe	is	
determined	to	be	a	plausible	instantiation	of	the	PCF	concept,	there	will	be	a	need	for	in-
depth	interdisciplinary	research,	involving	immunologists,	virologists	and	atmospheric	
scientists,	to	provide	more	accurate	(or,	one	might	say,	less	inaccurate)	estimates	of	ViDe	
concentrations.	We	refer	the	reader	to	a	recent	comprehensive	summary	of	airborne	
disease	transmission	from	the	Lawrence	Livermore	National	Laboratory	(Dillon	and	Dillon	
2020),	which	demonstrates	the	complexity	of	spatio-temporal	particle	dispersion	over	local,	
regional,	and	continental	scales.	
	
One	can	also	consider	the	effect	of	pre-conditioning	from	ViDe	at	smaller	scales.	There	will	
be	higher	levels	of	ViDe	in	densely	populated	areas,	such	as	large	metropolitan	areas,	during	
the	period	of	highest	infection,	and	although	this	ViDe	will	disperse	beyond	the	area	
relatively	quickly,	it	will	for	a	short	period	be	at	far	higher	concentrations	locally	than	
calculated	for	average	global	levels.	Likewise,	ViDe	will	be	present	at	very	high	
concentrations	in	the	homes	of	infected	individuals,	and	may	provide	pre-conditioning	and	
protection	to	other	members	of	households	assuming	that	high	levels	of	hygiene	are	
followed	that	delay	immediate	contact	infection.	This	chimes	with	the	recent	surprising	
finding	of	low	rates	of	secondary	COVID-19	infections	in	homes	(Streeck	et	al	2020).	
	
Immunology	and	the	PCF	
	

A	critical	component	of	the	PCF	mechanism	is,	of	course,	the	response	of	a	susceptible	
individual’s	immune	system	to	the	pre-conditioning	field.	If	the	PCF	is	a	concentration	field	
of	ViDe,	the	physiological	question	is:	can	fragments	of	virus	pre-condition	the	immune	
system	to	later	exposure	to	live	virus,	and	if	yes,	can	this	occur	through	inhalation,	and	how	
does	it	depend	on	concentration	and	types	of	fragments?	Only	immunologists	can	give	
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precise	answers	to	these	questions,	bearing	in	mind	the	extraordinary	complexity	of	the	
immune	system	and	the	fact	it	remains	one	of	the	most	active	areas	of	discovery	in	biology.	
Vaccination	works	in	a	not	dissimilar	fashion	to	that	envisaged	for	the	PCF,	using	either	
related	viruses	or	deactivated	viruses	to	trigger	an	immune	reaction	giving	subsequent	long-
lived	protection	from	a	specific	viral	pathogen.	Vaccination	is	typically	discussed	in	terms	of	
triggering	the	adaptive	immune	system,	thereby	raising	antibodies	and	establishing	a	
population	of	memory	T	cells,	available	to	rapidly	mount	a	full	immune	response	on	later	
exposure	to	the	live	virus	(Sallusto	et	al	2010).	However,	it	is	well	known	that	vaccines	elicit	
far	broader	responses	in	the	host,	including	long-lasting	changes	to	the	innate	immune	
system	(Kleinnijenhuis	et	al	2012,	Benn	et	al	2013).	We	therefore	envisage	the	ViDe	
instantiation	of	the	PCF	as	an	emergent,	low	specificity,	low	concentration	vaccination.	
Emergent,	as	it	is	created	by	the	disease	itself	through	the	exhalations	of	ViDe	from	infected	
individuals;	low	specificity	since	the	ViDe	will	be	a	“soup”	of	various	viral	(and	possibly	
immune	system)	fragments;	low	concentration	because	of	the	nature	of	the	mechanism,	as	
has	been	described	in	some	detail	above.	We	note	also	the	phenomenon	of	“ischemic	
preconditioning”	(McDonough	and	Weinstein	2016),	in	which	long-lasting	immunological	
buffering	against	severe	outcomes	of	stroke	is	provoked	by	a	brief	period	of	cerebral	
ischemia,	and	mediated	by	innate	immune	response	pathways.	This	clinical	finding	
illustrates	that	immunological	preconditioning	can	take	unusual,	even	counter-intuitive	
forms,	encouraging	us	to	be	catholic	in	our	thinking	about	putative	instantiations	for	the	
PCF,	should	it	indeed	exist.		
	
For	pre-conditioning	to	be	effective	the	immune	system	needs	to	be	highly	sensitive	to	
incoming	signals	–	both	biochemical	(e.g.	ViDe)	as	well	as	biological	(e.g.	live	viruses).	We	
know	this	is	possible	in	principle	from	the	everyday	experience	of	allergic	reactions:	
overactive	immune	responses	to	low	concentrations	of	both	chemicals	(e.g.	perfumes)	and	
non-pathogenic	foreign	bodies	(e.g.	dust	mites,	pollen	grains).	In	section	4	we	will	return	to	
this	point	more	generally	and	argue	for	high	levels	of	sensitivity	based	on	biological	
analogues	and	evolutionary	principles.	One	specific	point	we	can	make	here	relates	to	the	
composition	of	the	ViDe	for	SARS-CoV-2.	Coronaviruses	are	so	called	because	of	their	halo	
appearance	under	the	microscope,	which	is	caused	by	the	viral	envelope	being	studded	by	
so-called	“spike	trimer	complexes”	(Bar-On	et	al	2020	and	references	therein).	Indeed,	it	is	
these	spike	proteins	that	allow	the	virus	to	firmly	attach	to	cells	in	the	lung	epithelium	and	
mucosal	tissues,	thereafter	provoking	endocytosis	and	infecting	cells.	A	significant	
proportion	of	the	ViDe	will	comprise	spike	proteins	(each	original	virus	particle	contains	ca	
100	spike	trimer	complexes).	On	inhalation	of	ViDe	by	a	susceptible	individual	it	would	
appear	plausible	that	spike	proteins	can	still	attach	to	cells	in	the	lung	epithelium.	This	will	
be	harmless	as	the	proteins	are	not	attached	to	live	virus.	Nevertheless,	this	could	
presumably	cause	a	low-level	lasting	immune	response	in	the	host	(either	innate	or	
adaptive,	as	discussed	above),	particularly	if	individuals	have	previously	experienced	
infection	of	related	coronaviruses.	One	last	point	concerns	the	dependence	of	an	individual’s	
PCF	response	on	characteristics	such	as	gender,	age	and	pre-existing	conditions.	For	
example,	the	elderly,	with	weaker	immune	responses,	would	experience	a	“double	hit”,	
receiving	less	benefit	from	pre-conditioning	and	being	more	prone	to	severe	infection.	
Similar	“double	hits”	would	be	an	issue	in	immuno-compromised	individuals.	As	such,	
strategies	on	exploiting	pre-conditioning	would	need	to	account	for	such	characteristics.	
	
Thus,	ViDe	appears	to	have	a	sufficient	degree	of	plausibility	to	warrant	further	study	as	a	
candidate	for	the	mechanism	of	pre-conditioning	in	SARS-CoV-2.	We	turn	now	to	a	
mathematical	and	numerical	analysis	to	demonstrate	that	in	its	simplest	possible	form	the	
PCF	mechanism	reproduces	key	dynamical	features	of	the	COVID-19	pandemic.	
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3.	Results	from	preliminary	modelling	
	
Modelling	principles	
	

As	we	saw	in	the	previous	section,	given	the	strongly	non-linear,	emergent	nature	of	the	
PCF,	it	is	not	possible	to	use	purely	intuitive	arguments	to	understand	the	full	dynamics	of	an	
epidemic	in	the	presence	of	a	PCF.	For	this	reason	it	is	necessary	to	use	mathematics,	
numerical	analysis	and/or	simulations	to	obtain	a	quantitative	understanding,	along	with	
predictions	that	can	then	be	tested	against	real-world	data.	Comparison	of	the	model	
against	data	allows	an	evaluation	of	the	validity	of	the	PCF	hypothesis	–	does	it	provide	a	
parsimonious	description	of	the	COVID-19	pandemic	and	other	epidemics?,	does	it	need	
fundamental	refinements?,	or	is	it	plain	wrong	and	of	no	use?	In	this	section	we	provide	a	
first	step	towards	such	a	comparison,	namely	a	proof	of	principle	test,	by	analysing	the	
simplest	possible	mathematical	instantiation	of	the	PCF.	We	will	find	that	the	PCF	
mechanism	passes	this	test,	and	is	able	to	reproduce	key	qualitative	features	of	the	
epidemic	dynamics	without	fine	tuning	of	parameters.		
	
Given	this	preliminary	model	is	so	simple,	we	will	not	attempt	to	fit	model	parameters	to	
real-world	data.	Two	important	issues	forbidding	this	are:	i)	the	intrinsic	variation	from	one	
country	to	the	next	in	how	data	is	collected,	particularly	the	absence	in	the	data	of	the	
number	of	infected	individuals,	as	generally	only	severe	cases	are	tracked,	and	ii)	the	
importance	of	key	demographic	characteristics,	particularly	age,	gender	and	pre-existing	
conditions.	The	proportions	of	individuals	with	these	characteristics	in	the	susceptible	
population	will	have	very	strong	effects	on	the	numbers	of	severe	cases	and	mortalities,	and	
so	any	model	that	attempts	to	fit	data	in	a	meaningful	way	must	include	sub-population	
structure	representing	these	characteristics.	These	added	layers	of	sophistication	take	us	
beyond	the	scope	of	this	preliminary	analysis.	Detailed	subpopulation	models	exist	in	the	
epidemiological	community,	as	discussed	in	section	1,	and	it	will	be	possible,	should	there	be	
sufficient	interest,	to	incorporate	the	PCF	mechanism	described	here	into	those	models,	and	
then	to	perform	systematic	fitting	to	data.	
	
We	refer	the	reader	to	Appendix	B	for	a	description	of	the	classic	SIR	epidemic	model	and	
how	the	PCF	can	be	straightforwardly	incorporated	into	this	framework,	resulting	in	the	
boxed	set	of	five	coupled	differential	equations.	We	list	below	the	parameters	of	the	model	
(all	of	which	are	rate	constants),	as	we	will	refer	to	their	values	in	subsequent	discussion	and	
figures.	We	use	a	convention	whereby	variables	describing	the	subpopulation	densities	(but	
not	the	PCF)	are	denoted	by	Roman	letters,	and	parameters	are	denoted	by	Greek	letters.	
	
α	–	rate	at	which	a	susceptible	individual	is	pre-conditioned	on	contact	with	the	PCF	
β	–	rate	of	infection	given	contact	between	susceptible	and	infected	individuals	
γ	–	rate	of	leaving	the	infected	state	(the	sum	of	recovery	and	death)	
ε	–	rate	at	which	a	pre-conditioned	individual	reverts	to	being	susceptible	to	infection	
κ	–	rate	of	production	of	the	PCF	by	infected	individuals	
λ	–	rate	of	environmental	degradation	of	PCF	
	
It	might	seem	odd	that	we	do	not	distinguish	between	recovery	and	death,	instead	
combining	them	in	the	parameter	γ.	In	this	simplest	model,	individuals	who	have	left	the	
infected	state,	whether	through	recovery	or	death,	play	no	further	role	in	the	epidemic	
dynamics.	Given	our	interest	is	in	the	epidemic	trajectory,	there	is	no	need	mathematically	
to	distinguish	them.	Of	course,	if	one	is	fitting	a	more	detailed	model	to	infection/mortality	
data,	then	it	will	be	necessary	to	separately	track	these	different	outcomes	from	infection.	
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One	further	comment	on	the	structural	formulation	of	the	model	is	in	order.	One	might	
argue	that	pre-conditioned	individuals	are	still	liable	to	infection,	just	less	so	than	
susceptible	individuals.	This	would	seem	to	be	quite	reasonable,	and	a	more	sophisticated	
model	might	have	“degree	of	pre-conditioning”	as	a	continuous	variable	within	a	susceptible	
compartment.	In	the	interests	of	simplicity	we	are	imposing	here	a	bi-modal	distribution	on	
pre-conditioning,	so	that	an	individual	is	either	not	pre-conditioned,	and	is	hence	
susceptible,	or	is	entirely	pre-conditioned,	and	is	hence	not	liable	to	infection	whilst	in	that	
state,	though	can	revert	back	to	being	susceptible	over	time.	
	
In	the	analysis	below,	we	first	look	at	the	behaviour	of	the	model	in	the	absence	of	reversion	
(𝜀 = 0).	This	enables	us	to	understand	most	straightforwardly	how	pre-conditioning	can	
buffer	the	population	from	infection.	The	dynamics	of	the	epidemic	in	this	case	are	relatively	
simple.	We	then	introduce	reversion	(𝜀 ≠ 0)	and	find	a	richer	set	of	epidemic	dynamics,	
including	“heavy	tails”	in	the	epidemic	curve	and	spontaneous	multiple	waves	of	epidemic.	
	
The	strong	non-linearities	in	the	set	of	differential	equations	forbid	a	direct	mathematical	
solution	of	the	entire	epidemic	trajectory.	As	such,	numerical	analysis	is	the	main	method	to	
understand	the	model.	We	use	a	computer	algorithm	to	integrate	the	differential	equations	
forward	in	time	for	given	values	of	the	parameters	–	this	allows	us	to	study	detailed	
epidemic	trajectories,	and	we	can	explore	the	range	of	such	trajectories	by	varying	the	
parameters.	Because	there	are	six	rate	constants	in	even	this	simplest	of	models,	the	
“parameter	space”	is	in	fact	quite	large,	and	we	do	not	attempt	to	explore	it	exhaustively	in	
this	preliminary	analysis.	Instead,	guided	by	intuition,	we	investigate	particular	regions	of	
parameter	space	and	demonstrate	that	the	model	robustly	(meaning	without	fine-tuning	of	
parameters)	reproduces	key	qualitative	features	of	the	epidemic.	The	code	for	the	computer	
algorithm	is	provided	as	a	supplementary	file	so	that	all	interested	parties	can	investigate	
the	model	and	extend	it	as	they	see	fit.	
	
No	reversion	(𝜺 = 𝟎)	
	

We	provide	in	Appendix	B	an	approximate	mathematical	solution	for	short	times	under	the	
simplifying	condition	of	no	reversion.	This	is	useful	as	it	shows	that	pre-conditioning	can	
dominate	over	infection	and	recovery,	even	though	the	PCF	depends	on	infected	individuals	
for	its	very	existence.	The	analysis	gives	the	following	approximate	condition	on	the	rate	
constants	for	pre-conditioning	to	be	dominant:	 𝛼𝜅 >  𝛽(𝛽 − 𝛾 + 𝜆).	Numerical	solutions	
show	that	this	bound	is	in	fact	too	stringent,	and	that	lower	strengths	of	PCF	are	still	
sufficient	to	dominate	the	dynamics.	The	important	qualitative	point	is	that	pre-conditioning	
can	act	as	a	buffer	for	the	majority	of	the	population	against	infection,	regardless	of	the	
rates	of	infection	and	PCF	degradation,	so	long	as	the	rates	of	PCF	production	and	pre-
conditioning	are	sufficiently	high.	
	
Buffering	is	confirmed	through	numerical	integration	of	the	SIR	model	with	the	additional	
PCF	mechanism	(the	boxed	differential	equations	in	Appendix	B).	The	panels	in	Figure	3	
show	the	densities	of	the	subpopulation	compartments	as	a	function	of	time,	with	the	total	
population	density	normalised	to	unity.	The	PCF	mechanism	is	gradually	increased	in	
strength	from	zero	in	panel	A	to	increasing	values	across	panels	B	to	D	(we	keep	all	other	
parameter	values	fixed	and	successively	increase	the	value	of	α).	Details	of	initial	conditions	
and	parameter	values	are	given	in	the	figure	caption.	As	the	rate	of	pre-conditioning	is	
increased	the	susceptible	population	(green)	is	increasingly	channelled	into	a	pre-
conditioned	population	(orange),	and	is	thereby	buffered	from	the	infection	(red).	Note,	this	
pre-conditioning	is	emergent	–	arising	from	the	PCF	which	is	itself	generated	from	the	
infected	population.		
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This	is	a	primary	result	of	the	PCF	mechanism.	It	shows	that	if	pre-conditioning	is	occurring	
during	the	epidemic	then	a	significant	section	of	the	population	will	never	have	been	
infected.	This	provides	a	possible	explanation	to	a	number	of	recent	reports	from	different	
countries	who	find	relatively	low	proportions	of	the	population	with	antibodies	to	SARS-
CoV-2	despite	the	population	having	passed	the	peak	of	the	epidemic	trajectory	(Sereina	et	
al	2020	and	references	therein).	It	also	chimes	with	recent	work	(Moran	et	al	2020)	using	
Bayesian	inference	to	determine	underlying	variables	driving	the	epidemic	dynamics	in	the	
UK	and	several	other	countries.	The	study	revealed	that	epidemic	trajectories	could	be	best	
explained	if	susceptible	populations	were	many	times	smaller	than	total	populations.	The	
PCF	explanation	of	this	finding	is	universal	across	countries,	in	that	the	buffering	of	the	
susceptible	population	is	an	emergent	phenomenon	of	the	epidemic	itself,	requiring	no	
specific	heterogeneities	in	the	genetics,	diets	or	lifestyles	comprising	the	population.		
	
Including	reversion	(𝜺 ≠ 𝟎)	
	

It	is	unlikely	that	the	pre-conditioned	state	is	permanent	for	a	given	individual.	This	would	
presumably	require	a	strong,	specific	adaptive	immune	response	raising	antibodies	and	
creating	memory	T	cells,	and	is	at	odds	with	much	of	the	seroprevalence	data	as	discussed	
above.	Therefore,	it	is	important	to	consider	the	effect	of	reversion,	by	which	we	mean	the	
process	of	a	pre-conditioned	individual	once	again	becoming	susceptible	and	open	to	
infection.	[In	the	earlier	discussion	of	ViDe	as	a	candidate	for	the	PCF,	we	discussed	its	effect	
as	akin	to	that	of	a	low-specificity	vaccine,	eliciting	an	innate	immune	response,	and	it	may	
be	that	such	responses	decay	fairly	rapidly,	over	time-scales	of	weeks	or	months,	unlike	the	
potentially	life-long	protection	given	by	memory	T-cells	after	an	adaptive	immune	response.]	
	
The	panels	of	Figure	4	show	numerical	integration	of	the	SIR	model	with	the	additional	PCF	
mechanism,	but	now	varying	the	rate	of	reversion	𝜀.	Panels	on	the	left	show	the	densities	of	
the	subpopulations	as	a	function	of	time.	Partner	panels	on	the	right	are	for	the	same	
parameter	values	and	show	the	rate	of	increase	in	“recovered”	individuals,	which	we	define	
as	the	epidemic	curve	and	denote	by	𝑞(𝑡).	It	is	one	measure	of	the	“shape	of	the	epidemic”	
giving	periodic	(e.g.	daily)	values	for	newly	recovered	(and/or	deceased)	individuals.	The	
figure	caption	gives	details	of	initial	conditions	and	parameter	values.	[Note	the	change	in	y-
axis	scaling	in	the	right-hand	panels.]	The	twin	panels	A	correspond	to	an	extremely	high	
value	of	reversion	𝜀 = 10.0,	and	is	included	purely	as	a	check,	to	confirm	intuition.	In	this	
case	pre-conditioned	individuals	almost	immediately	revert	back	to	being	susceptible	and	as	
such	the	PCF	is	almost	completely	ineffective	at	buffering	the	population.	Note	in	this	case	
that	the	epidemic	curve	𝑞(𝑡)	rises	rapidly	and	decays	equally	rapidly.		
	
The	twin	panels	B	correspond	to	a	reversion	rate	𝜀 = 0.08,	which	is	of	the	same	order	of	
magnitude	as	the	values	of	other	rate	constants	in	the	model,	and	less	than	the	infection	
and	pre-conditioning	rates.	In	this	case	we	observe	a	very	interesting	effect:	the	right	tail	of	
the	epidemic	curve	𝑞(𝑡)	decays	very	slowly	–	giving	what	is	called	a	“heavy	tail”	of	the	
distribution.	This	has	been	observed	in	many	countries	(worldometers.info).	This	analysis	
shows	that	heavy	tails	are	a	straightforward	outcome	of	the	hypothesised	pre-conditioning	
mechanism,	thereby	lending	support	for	the	hypothesis.	It	is	likely	that	more	realistic	
metapopulation	models,	or	spatially	explicit	models,	will	generate	even	more	slowly	
decaying	tails	of	the	epidemic	curve,	through	desynchronisation	effects.		
	
In	twin	panels	C,	we	show	the	results	of	reducing	the	reversion	rate	still	further	to	𝜀 = 0.01.	
Here	we	see	a	new	effect,	namely	repeated	waves	of	epidemic.	This	is	entirely	intrinsic	to	
the	emergent	properties	of	the	system.	It	arises	because	when	the	reversion	rate	is	very	low,	
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pre-conditioned	individuals	are	returned	to	the	susceptible	compartment	quite	late	in	the	
epidemic,	but	before	the	infection	has	completely	died.	This	essentially	restarts	the	
epidemic	anew,	though	with	a	smaller	total	number	of	susceptibles.	Successive	waves	can	
be	seen,	each	smaller	than	the	last.	In	a	more	realistic	model	the	epidemic	would	finally	end	
if	the	density	of	the	infected	compartment	between	epidemic	waves	was	smaller	than	the	
equivalent	of	one	individual.			
	
Finally,	in	twin	panels	D	reversion	has	been	completely	removed,	and	we	return	to	the	type	
of	behaviour	seen	in	Figure	3	–	very	strong	buffering	of	the	population	and	suppression	of	
the	epidemic.	Note	the	symmetric	shape	of	the	epidemic	curve	in	D2.	This	indicates	that,	
given	the	frequent	occurrence	of	heavy	tails	in	the	real-world	data,	reversion	is	likely	to	be	
an	essential	ingredient	for	the	application	of	the	PCF	mechanism	to	the	COVID-19	pandemic.	
The	effect	of	buffering	is	still	present	in	this	case,	but	far	more	dynamic.		
	
In	summary,	preliminary	numerical	integration	of	the	very	simplest	model	of	PCF	dynamics	
shows	many	interesting	features	which	mirror	those	observed	in	the	actual	epidemic	data	
across	many	countries.	No	parameter	fine-tuning	has	been	required	as	these	behaviours	
appear	to	be	robust	emergent	properties	of	the	model.	It	is	hoped	that	this	promising	
preliminary	analysis	will	convince	epidemiology	groups	to	incorporate	the	PCF	mechanism	
into	more	realistic	epidemic	models	to	better	determine,	through	fitting	to	data,	whether	it	
provides	a	parsimonious	understanding	of	epidemic	data	across	multiple	countries.		
	
	
4.	Summary	and	discussion	
	
The	PCF	hypothesis	
	

In	this	paper	we	have	investigated	the	hypothesis	of	a	“pre-conditioning	field”	(PCF)	to	
explain	various	features	of	the	COVID-19	pandemic.	The	PCF	is	conjectured	to	be	a	long-
range	field	generated	by	infected	individuals	and	providing	immunological	pre-conditioning	
to	susceptible	individuals	(both	in	the	vicinity	of	and	distant	from	infected	populations).	
Fundamental	to	this	hypothesis	is	the	notion	that	the	PCF	is	an	emergent	outcome	of	the	
infection	itself	–	a	superorganismal	immunological	response.		
	
Summary	of	results	and	next	steps	for	modelling	
	

In	section	2	we	described	the	PCF	within	the	context	of	the	simplest	epidemiological	
framework,	the	SIR	model	(Bailey	1975).	We	used	intuitive	reasoning	to	understand	how	the	
PCF	will	influence	the	epidemic	dynamics,	the	outcomes	of	which	were	subsequently	
confirmed	by	a	preliminary	mathematical	and	numerical	analysis	of	the	model	in	section	3,	
as	summarised	below.	We	used	similar	reasoning	to	describe	the	spatial	influence	of	the	PCF	
–	providing	buffering	of	populations	distant	from	the	epidemic	over	time,	whilst	still	leaving	
very	distant	“naïve”	populations	unbuffered	over	shorter	timespans,	and	thus	vulnerable	to	
severe	epidemic	outbreaks	due	to	intercontinental	air	travel	of	infected	individuals.	We	
discussed	how	this	was	consonant,	at	first	glance,	with	some	aspects	of	the	large-scale	
continental	impact	of	the	COVID-19	pandemic,	with	regions	closer	to	the	Wuhan	epicentre	
being	less	badly	affected	(e.g.	Japan,	Eastern	Europe	and	Australasia)	than	those	on	the	
opposite	side	of	the	globe	(e.g.	Brazil	and	the	US	eastern	seaboard)	(worldometers.info).	
	
We	discussed	in	some	detail	one	possible	instantiation	of	the	PCF,	relevant	to	COVID-19	(and	
other	influenza	type	illnesses),	that	being	a	concentration	field	of	viral	detritus	(ViDe).	We	
provided	(necessarily	crude)	order	of	magnitude	estimates	to	inform	the	plausibility	of	this	
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mechanism	of	pre-conditioning,	drawing	on	the	well-known	Caesar	paradigm	of	long-range	
transport	of	air	molecules	around	the	globe.	We	estimated	that	in	the	early	stage	of	the	
pandemic,	with	approximately	1	million	people	infected,	the	ViDe	field	would,	on	average,	
lead	to	each	person	on	Earth	inhaling	one	molecular	fragment	of	the	SARS-CoV-2	virus	every	
ten	breaths,	which	corresponds	to	approximately	50,000	inhaled	fragments	per	month.	We	
discussed	immunological	aspects	of	response	to	PCF,	likening	it	to	an	emergent,	low	
specificity,	low	concentration	vaccination.	We	discussed	briefly	the	non-specific	effects	of	
vaccines	on	both	the	innate	and	the	adaptive	immune	systems,	and	that	spike	proteins,	as	a	
key	component	of	the	SARS-CoV-2	ViDe,	could	possibly	bind	to	cells	in	uninfected	individuals	
and	thereby	trigger	a	low-level	pre-conditioning	immune	response.		
	
In	section	3	we	used	mathematical	and	numerical	analysis	to	explore	the	influence	of	the	
PCF	on	epidemic	dynamics	using	the	SIR	model	as	a	framework.	We	found	that	this	simple	
model	was	able	to	reproduce	many	of	the	features	of	the	COVID-19	pandemic:	the	possible	
large-scale	buffering	of	populations	in	the	presence	of	the	infection	and	the	slowly	decaying	
“heavy	tail”	of	epidemic	curves	(and,	for	other	choices	of	parameters,	a	sequence	of	
recurring	waves	of	epidemic).	The	PCF	provides	a	universal	and	emergent	resolution	of	the	
recent	finding	from	Bayesian	inference	studies,	that	the	pandemic	dynamics	are	best	
explained	by	the	susceptible	populations	being	much	smaller	than	the	actual	populations	
(Moran	et	al	2020).	Despite	the	highly	non-linear	nature	of	the	PCF	mechanism,	these	
features	are	intuitively	comprehensible	from	considering	the	competition	between	infection	
and	pre-conditioning	processes	for	susceptible	individuals,	with	the	peculiar	feature	that	the	
PCF	requires	infected	individuals	for	its	very	existence.	It	is	this	“tug-of-war”	between	
infection	and	pre-conditioning,	with	a	drip-feed	of	new	susceptibles	from	the	pre-
conditioned	population	through	reversion,	that	yields	the	behaviours	of	dynamic	buffering,	
slowly	decaying	epidemic	tails	and	repeated	waves	of	epidemic	(seen	in	different	regions	of	
the	parameter	space	of	the	rate	constants	controlling	the	underlying	processes).		
	
This	analysis	constitutes	important	proof	of	principle	for	the	PCF	as	a	parsimonious	
explanation	of	many	features	of	the	COVID-19	pandemic	dynamics.	The	SIR/PCF	framework	
(in	its	simplest	form	given	by	the	boxed	equations	in	Appendix	B)	is	not	limited	to	any	
particular	instantiation	of	the	PCF,	such	as	ViDe.	If	there	is	sufficient	interest	from	the	
community,	it	would	be	interesting	to	see	if	the	inclusion	of	the	PCF	into	more	realistic	
model	frameworks	can	yield	similarly	parsimonious,	robust	explanations	of	real-world	data.	
We	have	argued	that	fitting	of	the	PCF	mechanism	to	real-world	data	is	best	done	in	models	
that	at	least	capture	the	critical	demographic	categories	of	age,	gender	and	pre-existing	
conditions,	given	the	extremely	high	sensitivity	of	outcomes	related	to	these	categories	(e.g.	
COVID-19	mortality	data	from	England	and	Wales,	ons.gov.uk).		
	
Indeed,	more	sophisticated	modelling	will	be	essential	when	considering	particular	
instantiations	of	the	PCF.	Particularly	important	in	this	regard	is	the	inclusion	of	spatially	
explicit	dynamics.	A	range	of	such	models	has	been	developed,	many	for	influenza	type	
epidemics	(Viboud	et	al	2006,	Bedford	et	al	2010,	Kenah	et	al	2011).	Such	models	do	not	
generally	consider	biophysical	processes,	such	as	large-scale	air	currents.	Should	the	ViDe	
instantiation	of	the	PCF	be	considered	plausible,	these	models	in	conjunction	with	detailed	
analysis	of	continental-scale	air	currents	in	early	2020	can	be	used	to	test	for	a	correlation	
between	high	flow	rates	from	infected	regions	and	lower	rates	of	infections	and	mortality	in	
downstream	regions	(higher	transport	of	ViDe	into	a	region	leading	to	stronger	pre-
conditioning	and	thus	better	outcomes	during	the	epidemic	dynamics	in	that	region,	and	
vice	versa).	
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The	top-down	philosophy	of	PCF	and	its	evolutionary	context	
	

As	discussed	in	section	1,	the	PCF	is	offered	as	a	top-down	hypothesis.	If	the	general	PCF	
mechanism	is	able	to	explain	a	significant	amount	of	data	without	fine-tuning	then	there	is	
good	reason	to	believe	that	it	is	capturing	the	effects	of	hitherto	unidentified	lower-level	
processes	that	can	then	be	investigated	in	more	detail.	This	approach	is	in	the	spirit	of	
Turing’s	landmark	paper	hypothesising	morphogen	gradients	of	activators	and	inhibitors	to	
explain	pattern	formation	in	embryogenesis	(Turing	1952).	His	work,	in	tandem	with	
intensive	bottom-up	investigations	using	developmental	genetics	(Gilbert	2003),	has	led	to	a	
richer	and	more	coherent	understanding	of	embryo	development.	There	are	many	other	
examples	of	the	success	of	this	dual	approach	in	science	(throughout	physics	and	chemistry,	
and	also	in	ecology	and	evolution).	In	the	modern	era,	particularly	in	biology	and	medicine,	
there	is	perhaps	an	unduly	strong	preference	for	bottom-up	molecular	mechanisms	as	the	
“gold	standard”	or	even	the	“only	standard”.	This	can	be	self-limiting,	particularly	in	terms	of	
innovations	for	improving	public	health.	
	
The	most	successful	top-down	theory	in	biology	is	Darwin’s	theory	of	evolution	by	natural	
selection	(Darwin	1859,	Mayr	2000),	and	it	is	interesting	to	consider	the	PCF	from	an	
evolutionary	perspective.	If	the	PCF	mechanism	exists,	it	might	be	described	as	an	
“emergent	superorganismal	immunological	response”.	This	is	reminiscent	of	
superorganismal	behaviours	in	other	populations,	e.g.	
	

i)	dormancy	strategies	in	bacterial	colonies	under	environmental	stress,	with	a	fixed	
concentration	of	persisters	arising	in	the	population	through	successive	rounds	of	challenge	
(Lewis	2007);	
	

ii)	the	collective	migration	and	sporifying	strategy	of	Dictyostelium	amoeba	under	starvation	
conditions,	using	a	chemotaxis	signalling	field	to	cohere	population-level	behaviour,	
including	self-sacrifice	and	altruism	(Strassmann	and	Queller	2009);	
	

iii)	the	life	cycles	and	natural	histories	of	social	insects,	much	of	which	relies	on	population	
responses	through	pheromone	signalling	(Wilson	EO	and	Hölldobler	1990);	
	

iv)	the	long	list	of	herding	and	swarming	strategies	in	various	animal	groups	to	mitigate	
predation	pressures	(Parrish	et	al	2002,	Ballerini	et	al	2008).		
	

We	often	think	of	population-level	behaviours	of	humans	arising	from	sociological	
interactions	rather	than	deeper	innately	biological	ones.	The	existence	of	such	biological	
behaviours,	and	their	evolutionary	significance,	has	been	a	matter	of	intense	debate	for	
decades	(see	e.g.	Wilson	1975,	Sheldrake	2009).	Thinking	of	the	PCF	in	these	terms,	one	can	
frame	the	question:	if	a	population-level	immunological	response	is	possible	in	humans,	
would	evolution	through	natural	selection	having	found	it	then	dispense	with	it?	In	other	
words,	is	fitness	in	the	face	of	pandemic	improved	by	discarding	an	altruistic	(population-
level)	immune	response	and	relying	exclusively	on	“selfish”	(individual-level)	ones,	namely	
the	well-studied	innate	and	adaptive	immune	systems	each	of	us	possesses?	Although	
human	populations	are	genotypically	diverse,	each	individual	would	benefit	from	a	
population-level	response	to	a	new	pathogen,	including	those	individuals	spatially	co-
located	with	infected	individuals,	who	would	tend	to	be	more	genetically	related.	The	
individual	immune	response	still	provides	natural	selection	with	“grist	for	the	mill”	for	
selection	pressure	at	the	individual	level.	On	this	basis	one	sees	little	reason	a	priori	why	
evolution	would	deselect	superorganismal	immunological	responses.	
	
The	PCF	is	in	fact	quite	a	primitive	strategy	when	viewed	in	these	terms.	It	is	not	using	the	
total	antibody	library	of	the	population	to	find	a	cure-all.	It	is	more	of	an	early-warning	
system,	buffering	the	population	from	infection;	akin	to	an	emergent	(naturally-produced),	
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broad-spectrum	vaccination.	Indeed,	we	have	discussed	in	some	detail	the	ViDe	
instantiation	of	the	PCF,	which	would	allow	population-level	pre-conditioning	for	all	manner	
of	viral	diseases	which	utilise	airborne	transmission.	Admittedly,	the	concentration	of	ViDe	is	
very	small	–	we	estimated	1000	fragments	per	day	inhaled	on	average	by	each	person	on	
Earth	through	ViDe	produced	by	a	cohort	of	one	million	infected	individuals.	This	requires	
tremendous	sensitivity	of	the	immune	system;	acting	like	a	radio	telescope,	receiving	all	
manner	of	very	weak	signals,	and	being	able	to	refine	signal	from	noise.	But	then,	in	defense	
of	this	idea,	extraordinary	sensitivity	and	exquisite	filtering	are	in	fact	typical	outcomes	of	
evolutionary	processes,	and	common	in	humans,	e.g.	the	sensitivity	of	the	human	eye	to	
light	levels	in	the	few	photon	range	(Tinsley	et	al	2016)	and	the	filtering	ability	of	humans	to	
instantly	recognise	familiar	faces	in	a	crowd	(Chang	and	Tsai	2017).		
	
Is	there	then	more	to	breathing	than	meets	the	eye?	Beyond	fulfilling	our	need	for	oxygen,	
is	it	also	a	mechanism,	mediated	by	ViDe,	connecting	individual	immune	systems	and	
allowing	pre-conditioning	to	airborne	diseases	at	the	population	scale?	Perhaps	the	cough	
response	of	flus	and	colds	is	not	an	evolutionary	innovation	of	the	virus	to	spread	infection,	
but,	in	fact,	an	innovation	from	the	host	population	to	spread	pre-conditioning.	
	
PCF	and	the	COVID-19	pandemic	
	

This	paper	is	being	completed	in	mid-June	2020.	The	pandemic	is	very	slowly	dying	down	in	
Europe,	Asia	and	the	US,	but	rages	in	other	parts	of	the	world	(worldometers.info).	Many	
countries	are	tentatively	relaxing	lock-down	regulations,	but	there	is	a	climate	of	fear	and	
uncertainty	about	recurrence	of	the	epidemic	and	subsequent	future	waves.	There	is	talk	of	
“a	new	normal”	of	long-term	enforced	social	distancing.	
	
If	the	PCF	concept	has	some	level	of	validity	it	will	provide	insights	to	help	interpret	
epidemic	data	and	to	optimise	future	strategies,	lessening	the	need	for	lock-downs	and	
social	distancing,	with	all	of	their	consequent	deleterious	effects	(e.g.	under-treatment	of	
other	illnesses,	less	effective	education	delivery,	economic	decline,	exacerbation	of	mental	
health	conditions,	and	restrictions	on	personal	liberty).	The	level	of	pre-conditioning	in	each	
population	can	be	estimated	from	epidemic	data	and	used	as	a	guide	to	predict	the	degree	
of	buffering	each	population	has	to	new	waves	of	the	epidemic.	The	preliminary	modelling	
in	this	paper	shows	that	reversion	of	the	pre-conditioned	state	makes	buffering	more	
dynamic,	slows	the	decline	of	the	epidemic	and	spontaneously	triggers	new	waves.	Thus,	
with	the	caveat	that	if	the	PCF	concept	has	some	degree	of	validity,	key	interventions	would	
be	to	enhance	the	level	of	pre-conditioning	and/or	to	slow	the	rate	of	reversion.	This	is	
particularly	important	for	the	elderly	and	the	immuno-compromised,	who	are	likely	to	be	
less	sensitive	to	an	ambient	PCF,	on	top	of	having	elevated	risk	of	severe	illness	should	they	
become	infected.	If	ViDe	is	confirmed	as	the	mechanism	underpinning	the	PCF,	then	(with	
tongue	slightly	in	cheek)	we	can	envisage	wind-farms,	not	harvesting	energy,	but	pumping	
out	ViDe	of	the	latest	flu	strain	or	head	cold.	We	can	envisage	encouraging	individuals	to	
cough	more	–	not	near	others,	but	far	enough	upstream	that	water	droplets	containing	live	
virus	are	safely	grounded	whereas	viral	fragments	are	widely	dispersed.		
	
On	a	final	forward-looking	note,	we	can	take	advantage	of	the	detailed	data	arising	from	the	
COVID-19	pandemic,	and	the	resulting	conundrums	presented	to	both	the	scientific	
community	and	the	general	public,	to	take	stock	of	our	current	immunological	and	
epidemiological	understanding.	There	is	opportunity	in	challenge.	Combining	top-down	and	
bottom-up	approaches	may	identify	fundamental	new	concepts	with	the	potential	to	
transform	medical	interventions	in	the	treatment	of	infectious	disease.	
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Appendix	A:	estimates	of	concentration	of	viral	detritus	
	

The	Caesar	paradigm	
Consider	the	air	molecules	exhaled	in	the	final	dying	breath	of	Julius	Caesar	on	that	fateful	
day	in	March,	44	BC.	How	many	of	these	molecules	on	average	do	we	each	inhale	with	each	
breath?	We	can	use	straightforward	order	of	magnitude	estimates	to	determine	this.	The	
average	tidal	volume	(breath)	of	a	human	adult	is	0.5	litres	(Saladin	2007).	One	mole	of	air	
contains	Avogadro’s	number	(ca	6	×	1023)	of	molecules	and	occupies	a	volume	of	ca	20	litres	
at	STP.	Thus,	one	tidal	breath	contains	ca	(0.5/20)	×	6	×	1023	~	1022	air	molecules.	Caesar	is	
chosen	for	this	paradigm	because	he	is	a	clearly	identifiable	figure	from	ancient	history	–	
enough	time	has	passed	that	the	molecules	from	his	last	breath	have	fully	mixed	with	the	air	
in	the	Earth’s	atmosphere,	i.e.	“Caesar’s	molecules”	are	statistically	uniformly	spread	in	the	
atmosphere.	Next	we	estimate	the	volume	of	air	in	the	Earth’s	atmosphere.	The	surface	area	
of	the	Earth	is	4πr2	where	r	is	the	Earth’s	radius,	which	has	the	approximate	value	6000	km,	
or	6	×	106	m.	The	density	of	air	decreases	exponentially	with	height	in	the	atmosphere,	so	
we	take	the	height	of	the	lowest	atmospheric	layer	(the	troposphere)	as	an	estimate,	and	
that	is	ca	10	km,	or	104	m.	Thus,	the	volume	of	air	in	the	Earth’s	lower	atmosphere	is	ca	4π	×	
36	×	1012	×	104	m3	~	5	×	1018	m3.	One	cubic	metre	is	1000	litres,	and	thus	2000	tidal	volumes,	
and	so	the	volume	of	air	in	the	Earth’s	lower	atmosphere	is	ca	1022	tidal	volumes	(breaths).	
Therefore	we	have	the	remarkable	result	that	the	relative	volume	occupied	by	one	air	
molecule	at	STP	to	the	volume	of	a	human	breath	is	the	same	as	the	relative	volume	of	one	
human	breath	to	that	of	the	entirety	of	air	in	the	Earth’s	atmosphere.	Thus,	given	the	
molecules	from	Caesar’s	last	breath	are	well	mixed	in	today’s	atmosphere,	we,	each	of	us,	
with	each	breath,	inhale	on	average	one	molecule	of	Caesar’s	last	breath.	
	
Average	concentrations	of	viral	detritus		
(specific	data	on	coronaviruses	including	SARS-CoV-2	is	from	Bar-On	et	al	2020	and	
references	therein;	subsequent	percentage	estimates	are	those	of	the	author)	
We	can	attempt	a	similar	analysis	to	estimate	the	amount	of	viral	detritus	(ViDe)	in	the	
Earth’s	atmosphere	arising	from	a	population	of	infected	individuals,	and	to	then	determine	
the	amount	of	ViDe	inhaled	by	distant	individuals.	The	estimates	used	here	are	necessarily	
very	crude.	Some	of	the	data	required	on	SARS-CoV-2	is	the	subject	of	current	research,	but	
previous	research	on	coronaviruses	allows	informed	estimates.	A	typical	infected	individual	
will	have	viruses	replicating	in	pneumocytes	and	alveolar	macrophages	in	the	lung	and	in	
cells	lining	the	mucosal	membranes.	The	number	of	cells	in	these	tissues	ranges	from	109	to	
1011.	Assuming	a	10%	cell	infection	rate	over	the	course	of	the	illness,	we	take	ca	1010	as	the	
number	of	infected	cells.	SARS-CoV-2	viruses	bud	off	from	the	host	cell,	and	it	is	estimated	
that	infected	cells	each	create	ca	103	viruses.	Each	virus	comprises	various	protein	molecules	
(in	the	capsid	and	spike	trimer	complexes)	and	the	viral	RNA	genome.	The	number	of	such	
constituent	molecules	is	ca	103.	Assuming	that	10%	of	viruses	(or	their	constituent	
fragments)	are	exhaled	by	the	infected	individual,	and	that	10%	of	these	fragments	remain	
intact	in	the	atmosphere,	we	estimate	that	an	infected	person	over	the	course	of	their	
illness	exhales	ca	1010	×	103	×	103	×	10-1	×	10-1	~	1014	intact	molecular	viral	fragments	into	the	
atmosphere.	Thus,	an	infected	population	of	1	million	individuals	will	release	ca	1020	viral	
fragments	into	the	atmosphere.	Since	these	fragments	are	significantly	more	massive	that	
air	molecules,	we	assume	that	they	are	mainly	present	in	the	lower	10%	of	the	troposphere,	
and	so	these	1020	fragments	exist	in	an	atmosphere	volume	1/10th	of	that	used	in	the	Caesar	
paradigm,	i.e.	1021	tidal	volumes.	Thus,	we	find	on	average	that	one	SARS-CoV-2	fragment	
will	be	inhaled	by	each	uninfected	individual	on	Earth	every	ten	breaths.	Humans	take	ca	
1.5×104	tidal	breaths	per	day.	Over	one	month	of	the	early	epidemic	each	individual	will	
have	breathed	ca	5×105	times,	inhaling	on	average	ca	50,000	viral	fragments.	We	re-stress	
that	these	are	crude	estimates,	but	they	give	us	a	sense	of	the	orders	of	magnitude	involved.		 	
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𝑑𝑠
𝑑𝑡

= −𝛽𝑖𝑠 − 𝛼𝜑𝑠 + 𝜖𝑝	
	

𝑑𝑖
𝑑𝑡
= 𝛽𝑖𝑠 − 𝛾𝑖	

	

𝑑𝑟
𝑑𝑡

=  𝛾𝑖	
	

𝑑𝑝
𝑑𝑡

= 𝛼𝜑𝑠 − 𝜖𝑝	
	

𝑑𝜑
𝑑𝑡

= 𝜅𝑖 − 𝜆𝜑	

	

Appendix	B:	mathematical	details	
	
In	this	appendix	we	provide	mathematical	details	of	the	incorporation	of	the	PCF	mechanism	
into	the	classic	SIR	model	of	epidemiology	(Kermack	and	McKendrick	1927,	Bailey	1975).	
	
The	SIR	model	
	

The	SIR	model	tracks	the	dynamics	of	three	subpopulations:	susceptible,	infected	and	
recovered.	It	is	convenient	to	normalise	these	subpopulations	by	the	total	population	size,	
and	to	denote	the	density	of	subpopulations	by	s,	i,	and	r	respectively.	The	dynamics	of	the	
infection	can	be	described	by	the	following	first-order	differential	equations:	
	

𝑑𝑠
𝑑𝑡

= −𝛽𝑖𝑠	
	

𝑑𝑖
𝑑𝑡
= 𝛽𝑖𝑠 − 𝛾𝑖	

	

𝑑𝑟
𝑑𝑡

=  𝛾𝑖	
	

where	β	is	the	rate	of	infection	given	contact	between	a	susceptible	and	an	infected	
individual	and	γ	is	the	rate	of	recovery	and/or	death	(these	two	outcomes	are	aggregated	in	
this	simplest	model,	as	the	“recovered”	compartment	is	an	absorbing	state	and	plays	no	
further	role	in	the	dynamics).		
	
This	model	shows	first	an	exponential	increase	in	the	number	of	infected	individuals,	and	
then,	as	the	number	of	susceptible	individuals	decreases	there	comes	a	tipping	point	at	
which	the	rate	of	production	of	new	infected	individuals	is	less	than	the	loss	of	infected	
individuals	through	“recovery”.	Then	the	number	of	infected	individuals	rapidly	vanishes	and	
the	resulting	population	will	be	a	mixture	of	recovered	and	susceptible.	The	conventional	
concept	of	herd	immunity	is	thereby	implicit	in	this	simple	model.	
	
Incorporating	the	PCF	into	the	SIR	model	
	

We	retain	here	the	minimal	model	assumption	of	a	completely	mixed	population,	in	order	to	
see	most	clearly	the	effects	of	adding	the	PCF.	A	new	subpopulation	P	is	identified,	that	
being	pre-conditioned	individuals,	the	density	of	which	is	denoted	by	p.	In	addition,	we	
denote	the	strength	of	the	PCF	by	the	function	φ.	The	SIR	model	equations	above	are	
extended	to	the	following	set:	
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In	these	equations,	α	is	the	rate	at	which	a	susceptible	individual	is	pre-conditioned	on	
exposure	to	the	PCF,	ε	is	the	rate	at	which	a	pre-conditioned	individual	reverts	to	being	
susceptible,	κ	is	the	rate	of	production	of	the	PCF	by	infected	individuals,	and	λ	is	the	PCF	
environmental	degradation	rate.	We	have	retained	the	original	SIR	terms	in	black	for	clarity,	
and	have	written	the	additional	PCF	terms	and	equations	in	blue.	These	equations	
correspond	to	the	schematic	in	Figure	1.	These	model	equations,	in	the	simple	case	of	a	non-
spatial	population,	are	relatively	independent	of	any	particular	instantiation	of	the	PCF.	This	
mathematical	form	of	extension	of	the	SIR	model	may	well	exist	in	the	vast	epidemiology	
literature,	possibly	arising	from	a	concept	other	than	the	PCF,	given	the	innumerable	
extensions	that	have	been	made	to	the	SIR	model	over	the	years.	The	author	has	not	found	
any	such	examples	to	date.		
	
We	have	used	numerical	integration	with	a	basic	2nd	order	Runge-Kutta	algorithm	(Press	et	
al	1992)	to	solve	these	equations	for	various	combinations	of	parameter	values.	This	
provides	a	more	detailed	understanding	of	the	possible	dynamical	outcomes	of	the	PCF	(see	
section	3).	For	the	parameter	values	used,	a	time	increment	of	10-3	has	been	sufficient	to	
ensure	accuracy	of	the	solutions.	In	section	3	and	Figure	4	we	refer	to	the	“epidemic	curve”,	
which	we	define	here	to	be	the	rate	of	newly	recovered	individuals	over	time.	We	denote	
this 𝑞(𝑡)	and	it	is	equal	in	value	to	𝑑𝑟 𝑑𝑡 =  𝛾𝑖.	The	code	used	for	this	numerical	work	is	
provided	in	the	Supplementary	Information	as	a	separate	file.	
	
Important	extensions	of	this	basic	model	include	population	structure	(as	discussed	in	the	
main	text),	and	also	the	effects	of	stochasticity,	to	allow	a	connection	to	individual-based	
models,	and	the	possibility	of	non-trivial	effects	induced	by	demographic	stochasticity	
(McKane	and	Newman	2004,	2005).	Continuum	models	including	spatial	degrees	of	freedom	
will	allow	connections	to	be	made	to	partial	differential	equations,	and	the	vast	literature	on	
pattern	formation	and	travelling	waves.	There	have	been	studies	in	the	epidemiology	
literature	of	integro-differential	equations	arising	from	the	SIR	model	with	non-local	
processes	(Wang	and	Wu	2010)	and	one	can	envisage	that	the	SIR/PCF	model	presented	
here	would	result	in	similar	equations	after	integrating	out	the	mediating	PCF	φ.	
		
Short-time	analysis	
	

We	briefly	present	below	some	preliminary	mathematical	analysis	of	these	equations	for	the	
simplified	case	of	no	reversion	(𝜀 = 0).	An	early-time	analysis	provides	a	guide	on	the	
required	magnitudes	of	κ	(the	rate	of	PCF	generation)	and	α	(the	rate	of	pre-conditioning)	in	
order	for	the	PCF	mechanism	to	be	effective	in	suppressing	the	epidemic.		
	
We	normalise	the	total	population	size	to	unity	and	as	an	initial	condition	seed	an	arbitrarily	
small	infectious	subpopulation:	𝑖 0 = 𝑖! ≪ 1.	Then	𝑠 0 = 1 − 𝑖!	and	𝑝 0 = 𝜑 0 =
𝑟 0 = 0.	We	will	focus	on	the	initial	stages	of	the	epidemic	such	that	the	susceptible	
population	does	not	deviate	appreciably	from	its	initial	value	of	approximately	1.	This	
approximation	is	accurate	for	times	such	that	(𝛽 − 𝛾)𝑡 ≪ ln (1 𝑖!).	In	this	case	we	have:	
	

𝑑𝑖
𝑑𝑡
≈ (𝛽 − 𝛾)𝑖	

	

𝑑𝑟
𝑑𝑡

=  𝛾𝑖	
	

𝑑𝑝
𝑑𝑡

≈ 𝛼𝜑	
	

𝑑𝜑
𝑑𝑡

= 𝜅𝑖 − 𝜆𝜑	
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It	is	straightforward	to	integrate	these	linearised	equations,	and	we	find		
	

𝑖 𝑡 ≈ 𝑖!𝑒 !!! !	
	

𝑟 𝑡 ≈
𝑖!𝛾
𝛽 − 𝛾

𝑒 !!! ! − 1 	
	

𝑝(𝑡) ≈
𝛼𝜅𝑖!

(𝛽 − 𝛾 + 𝜆)
𝑒 !!! ! − 1
𝛽 − 𝛾

−
1 − 𝑒!!"

𝜆
	

	
Comparing	the	exponential	growth	terms	in	these	solutions	we	see	that,	roughly	speaking,	
the	pre-conditioned	population	will	dominate	the	sum	of	the	infected	and	recovered	
populations	so	long	as	𝛼𝜅 > 𝛽(𝛽 − 𝛾 + 𝜆).	Improving	on	this	condition	is	not	
straightforward	due	to	the	non-linear	behaviour	of	the	equations.	We	find	from	numerical	
integration	that	the	condition	is	in	fact	too	stringent	on	the	rates	of	pre-conditioning.	
	
A	more	detailed	analysis	is	required	to	explore,	mathematically,	the	range	of	epidemic	
dynamics	in	the	presence	of	the	PCF,	but	is	beyond	the	scope	of	this	paper.	
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Significant	efforts	have	been	made	to	cite	epidemiological,	immunological	and	biophysical		
studies	having	a	direct	bearing	on	the	PCF	concept.	Given	the	diverse	subject	areas	contributing	
to	the	PCF	hypothesis,	comprehensiveness	of	surveying	the	literature	has	been	balanced	against	
the	imperative	of	making	results	public	in	a	timely	fashion,	to	inform	ongoing	efforts	to	combat	
the	COVID-19	pandemic.	References	will	be	updated	as	appropriate	based	on	feedback.	
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Figures	
	

	
Figure	1:	schematic	diagram	illustrating	the	concept	of	pre-conditioning.	Black	boxes	and	
labels	describe	the	classic	SIR	model	of	epidemiology.	Blue	boxes	and	labels	describe	in	the	
simplest	form	the	emergent	pre-conditioning	mechanism	mediated	by	the	PCF.	
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Figure	2:	schematic	diagram	illustrating	spatial	dynamics	of	PCF.	The	original	epicentre	has	
no	pre-conditioning	and	high	rates	of	infection	through	local	contact.	The	emerging	PCF	is	
longer	ranged	and	allows	pre-conditioning	of	more	distant	populations	over	time,	leading	to	
lower	infection	and	mortality	rates	as	the	epidemic	spreads.	New	epicentres	of	infection	can	
be	established	in	very	distant	“naïve	populations”,	which	have	yet	to	experience	infection	or	
pre-conditioning,	but	which	are	accessible	to	the	pathogen	through	intercontinental	air	
travel	of	infected	individuals.	
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Figure	3:	Numerical	integration	of	the	SIR	model	with	the	additional	PCF	mechanism,	in	the	
form	of	the	boxed	differential	equations	in	Appendix	B.	Panels	show	the	densities	of	the	
subpopulations	as	a	function	of	time,	with	susceptible,	infected,	recovered	and	pre-
conditioned	population	trajectories	in	green,	red,	blue	and	orange	respectively.	The	
reversion	process	is	absent	here,	i.e.	𝜀 = 0. The	total	population	density	is	normalised	to	
unity.	The	initial	condition	is	𝑖 0 = 𝑖!,		𝑠 0 = 1 − 𝑖! with	𝑖! = 10!!,	and	all	other	
densities	initialised	to	zero.	The	time	increment	used	is	10-3.	The	rate	parameters	are	set	to	
𝛽 = 0.25, 𝛾 = 0.1, 𝜅 = 1.0, 𝜆 = 0.01.	The	strength	of	the	pre-conditioning	process	is	
increased	from	zero	(absence	of	preconditioning)	through	panels	A	to	D,	with	values	
𝛼 = 0.0, 0.005, 0.02, 0.05	respectively.	Note	the	increasing	suppression	of	the	infection	and	
recovered	compartments,	and	the	increasing	buffering	of	the	population	(occupying	the	pre-
conditioned	compartment)	as	𝛼	is	increased.	
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Figure	4:	Numerical	integration	of	the	SIR	model	with	the	additional	PCF	mechanism,	in	the	
form	of	the	boxed	differential	equations	in	Appendix	B.	The	reversion	process	is	now	
present,	i.e.	𝜀 ≠ 0	(except	in	panels	D1	and	D2	which	show	the	control	with	no	reversion).	
Panels	on	the	left	show	the	densities	of	the	subpopulations	as	a	function	of	time,	with	
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susceptible,	infected,	recovered	and	pre-conditioned	population	trajectories	in	green,	red,	
blue	and	orange	respectively.	Partner	panels	on	the	right	are	for	the	same	parameter	values	
and	show	𝑞(𝑡),	the	rate	of	increase	in	recovered	individuals,	which	is	used	as	a	measure	of	
the	epidemic	curve.	As	before	the	total	population	density	is	normalised	to	unity.	The	initial	
condition	is	𝑖 0 = 𝑖!,		𝑠 0 = 1 − 𝑖! with	𝑖! = 10!!,	and	all	other	densities	initialised	to	
zero.	The	time	increment	used	is	10-3.	The	rate	parameters	are	set	to	𝛼 = 0.4,𝛽 = 0.25, 𝛾 =
0.1, 𝜅 = 1.0, 𝜆 = 0.05.	The	rate	of	reversion	has	the	values	𝜀 = 10.0, 0.08, 0.01, 0.0	through	
panels	A	to	D.	Note	that	an	extremely	high	rate	of	reversion	(A	panels)	effectively	removes	
the	efficacy	of	the	PCF	buffering,	as	expected.	As	the	reversion	rate	is	decreased	(B	panels)	
the	buffering	becomes	effective,	though	dynamic,	and	the	right	tail	of	the	epidemic	curve	
broadens	considerably	creating	the	so-called	“heavy	tail”.	Further	decreasing	the	reversion	
rate	leads	to	clearly	separated	waves	of	epidemic	(C	panels).	In	the	absence	of	reversion	(D	
panels)	the	buffering	is	strongly	dominant,	consistent	with	the	results	shown	in	Figure	3,	and	
the	epidemic	curve	loses	the	“heavy	tail”	feature.	
	


