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Abstract— Since infancy humans can learn from social con-
text to associate words with their meanings, for example asso-
ciating names with objects. The open-question is which com-
putational framework could replicate the abilities of toddlers
in developing language and its meaning in robots. We propose
a computational framework in this paper to be implemented
on a robotics platform to replicate the early learning process
of humans for the specific task of word-object mapping.

I. INTRODUCTION

The success of the application of deep learning methods
in robotics has enabled state-of-the-art results for visual and
speech recognition and for learning complex behaviours.
However, these deep networks rely on supervised learning
with large and annotated datasets. The creation of such
datasets requires time and human supervision. Robots can,
thanks to their embodiment, gather a significant amount of
data from different modalities (cameras, microphones). These
data, if annotated, could be used to train deep networks in
a supervised way. For example, for the task of object local-
isation the different objects recorded from the robot camera
must be annotated and labelled manually. The challenge is
to find a way to let robots learn these labels autonomously,
associating an object with a semantic symbol to categorize
it. Human babies, in their early development easily learn to
associate semantic meaning to their experience through the
development of language. Language can create a mapping
from words to objects, actions, and emotions [1]. Human
infants decompose speech into approximately 40 phonemic
bins based on the languages they are exposed to [2]. An
important component of early language learning is the link
between heard acoustic patterns of speech and produced
speech. This is shown by the fact that, even early on, infants
begin to produce babble that is unique to the phonemes in
their native language [3].

We set out to study how this learned link between hearing
and reproducing phonemes might be implemented in robotic
perception. Social interaction plays an important role in the
development of language. The specific ability to associate
objects to words in toddlers has been found to emerge from
joint attentional mechanisms [4] during social interaction.
Visual attention for example, allows a baby to focus on an
object and retain its relevant information.

In this paper, we propose a cognitive architecture that
allows a robot to learn to associate visual and audio signals
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and to create a basic language driven by joint attention in a
natural social interaction.

We propose to use a VQ-VAE network [5] to extract a
discrete latent representation from the audio signal, which is
then used to train a deep network model for object localisa-
tion. The latent vector is used as label in a supervised fashion
and is associated with an object during social interaction.
The localisation of the object results from our work on
integration of visual and stereo-vision attentional mechanism
inspired by early vision in humans for a robotic platform
(PROVISION) [6]. We leverage also on our work on a bio-
inspired auditory attentional mechanism for the robot iCub
[7] to extract the relevant audio. The sensorial matching of
auditory and visual signals is performed by making the robot
point to the attended object similarly to what happens in
learning infants. In fact, the proposed architecture intends to
replicate the natural interaction between infants and adults
with a robot. Specifically, it will replicate the scenario where
an adult plays with objects in front of a baby and teaches
the name of the objects in the environment.

II. ARCHITECTURE

The architecture of our proposed system consists of five
components:

1) Visual Attention and Segmentation

2) Robot Non-verbal Response

3) Auditory Attention and Acoustic Feature Extraction

4) Object-Name Association Learning

5) Object Identification and Speech Production

as shown in Figure 1.

A. Visual Attention and Segmentation

The first component of the system is a model of bottom-
up visual attention based on [6]. This component allows a
human teacher to direct the robot’s attention to an object
for training. The assumption is that the human teacher
will naturally redirect the infant‘s attention to the object
by moving it. Next, through an elementary computation
chain leveraging on vergence and zero-disparity the object
of interest is segmented from the background [8].

B. Robot Non-verbal Response

After the robot has located and segmented the object,
the robot communicates to the human its focus of attention
with implicit signals such as gaze and pointing behaviour, as
infants typically interact. For example, the action of pointing
has been demonstrated to occur early on by infants and has
also been shown to be important for learning [2].
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C. Auditory Attention and Acoustic Feature Extraction

Once the robot has communicated to the human teacher
that it is attending the target object, the teacher says the name
of the object. The auditory attention model [7] coupled with
an voice activity detection system [9] allow to capture the
relevant audio signal associated with the object. We convert
the audio signal to an embedding space where embeddings
for the same words are closer than different words, regardless
of speaker. To do this we use a Vector Quantized-Variational
Autoencoder (VQ-VAE) network to convert the audio into an
embedding. When VQ-VAE networks are trained on audio,
their embeddings have been shown to be similar to phonemes
[5]. This means they can be used to model the content
of speech while not being influenced by the lower-level
differences in speech from different talkers.

D. Object-Name Association Learning

From the previous processes the meaningful embedding
of the spoken name of an object (Fig 1: Y symbol) and
its visuospatial information (Fig 1: X symbol) can be used
to train a state-of-the-art object localisation network (YOLO,
Faster-RCNN). This object-name association network is what
enables the robot to learn the connection between objects
with their spoken names.

E. Object Identification and Speech Production

Once the robot learned through interaction after gathering
more data to train on, the network will generalize and allow
the robot to localise and recognise objects. As the label used
to train the architecture is the latent representation learnt
from the encoder of the VQ-VAE it can be used in the
decoder network to generate new audio. The robot can then
finally pronounces the name of the object by playing the
generated audio.

This process allows the robot to engage in an active
learning procedure where it can point to a recognized object
and name it and gather social signals to validate the learned
association.
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Cognitive architecture: Illustration of a natural interaction between the iCub robot and a human partner with the different processes involved to

III. CONCLUSION

We propose in this work a bio-inspired cognitive archi-
tecture to replicate the autonomous mapping infants made
between words and objects. We combine state-of-the-art
supervised and unsupervised algorithms to guide the learning
of the robot by merging auditory and visual signals in a
natural interaction scenario.
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