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Executive Summary 
This deliverable presents the overall development status of the Machine Learning Intrusion Detection (MLID) 

component on M18 of the project’s lifetime and the end of the first interim of MLID’s two-staged development 

phases (M10-M18, M22-M30). This is a versioned document and describes the progress of the development of 

the first prototype of the component. Within the first development phase of MLID, feature exploration has 

been performed and a list of the most informative features (reflecting different aspects of users’ behaviour) 

has been identified. Three AI pipelines for intrusion detection have been designed, developed and evaluated in 

an extensive comparative analysis that includes multiple variants of each pipeline with numerous machine 

leaning (ML) and deep learning (DL) models.  
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1 Introduction 

1.1 Purpose & Scope 
The scope of this report is to present the current status of the development of the MLID component.  The MLID 

component’s development phase is at the end of its first iteration (M10-M18). Three ML pipelines for intrusion 

detection on honeypots data have been designed, implemented, and tested. This report demonstrates the 

effectiveness of three proposed pipelines (two supervised and one unsupervised) via a thorough comparative 

experimentation that involves numerous feature exploration, data mining and machine/deep learning 

algorithms. The ultimate objectives of this report are to:  

i) Identify the pros / cons of the proposed AI pipelines  

ii) Identify which feature engineering approach is the most appropriate in our analysis 

iii) Quantify the effect of various ML models on each one of the three pipelines. The obtained 

optimized AI methodologies will be finally used to process the data coming from the honeypot 

component. In the second development iteration of the MLID component, the obtained AI pipelines 

will be finetuned to meet the requirements of the incoming honeypot data.  

 

1.2 Structure of the deliverable 
The rest of this deliverable is structured as follows. Section 2 presents the main characteristics of the dataset 

that was employed to guide the design phase of the MLID component. the component’s role within the SPHINX 

ecosystem, its design principles, and its technical characteristics. Section 3 provides a literature review on the 

use of machine learning for intrusion detection, the main concepts underpinning the proposed methodologies 

along with a detailed presentation of the three proposed SPHINX ML-empowered intrusion detection pipelines. 

Section 4 presents and discusses the results of the proposed methodologies and finally, Section 5 concludes 

this report by presenting a short summary and general conclusion deriving from this report. 

 

1.3 Relation to other WPs & Tasks 
This report is closely related to WP4 and more specifically to task 4.4 (The SPHINX AI Honeypots). The Honeypot 

component of SPHINX will be used to collect interaction data generated by attackers. The generated honeypot 

data will be sent to MLID, which classifies this data into different categories (classes). The MLID will then send 

the low-level classification outputs: (i) back to the honeypot, which will take immediate actions (if needed) and  

(ii) to the Decision Support System (DSS) of SPHINX (as presented in Task 5.1 Decision-Support Application), 

which will further process the received information and will transform it into actionable rules. Finally, the 

outcomes of MLID will be communicated to the knowledge base of SPHINX (KB component which is presented 

in Task 5.5 Common Cyber Security Toolkit). 
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2 Dataset presentation and analysis  

2.1 Dataset description  
To validate the performance of the proposed feature extraction methodology, the NSL-KDD dataset1  was 

employed. NSL-KDD is actually a variant of the KDD99 dataset, which is the most widespread IDS benchmark 

dataset at present. Overcoming the limitations of KDD99 (severely unbalanced data, many duplicated and 

redundant records), NSL-KDD represents a more balanced dataset with a moderate number of records that has 

allowed the application of various IDS in a large number of papers whose results are consistent as well as 

comparable. For the aforementioned reasons, we used it as a benchmark in our analysis.  

Our dataset consists of 41 features that are categorized in the following four subsets: basic, content, host-based 

statistical, and time-based statistical features.  

Within the data set, 4 different classes of attacks exist: Denial of Service (DoS), Probe, User to Root (U2R), and 

Remote to Local (R2L). A brief description of each attack can be seen below: 

- DoS is an attack that tries to shut down traffic flow to and from the target system. The IDS is flooded 

with an abnormal amount of traffic and requests, which the system cannot handle, and shuts down to 

protect itself. This prevents normal traffic from visiting a network. An example of DoS could be an 

online retailer getting flooded with online orders on a day with a big sale, and because the network 

cannot handle all the requests, it will shut down preventing paying customers to purchase anything. 

This is the most common attack in the data set. 

- Probe or surveillance is an attack that tries to get information from a network. The goal here is to act 

like a thief and steal important information, whether it be personal information about clients or 

banking information. 

- U2R is an attack that starts off with a normal user account and tries to gain access to the system or 

network, as a super-user (root). The attacker attempts to exploit the vulnerabilities in a system to 

gain root privileges/access. 

- R2L is an attack that tries to gain local access to a remote machine. An attacker does not have local 

access to the system/network, and tries to “hack” their way into the network. 

It is evident from the descriptions above that DoS attacks act differently from the other three attacks; DoS 

attempts to shut down a system by stopping traffic flow altogether, whereas the other three attacks, attempt 

to quietly infiltrate the system undetected. 

In the table below, a breakdown of the different subclasses of each attack that exists in the data set is shown: 

 
1 https://www.unb.ca/cic/datasets/nsl.html  

https://www.unb.ca/cic/datasets/nsl.html
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Table 1 Breakdown of the different subclasses of each attack that exist in the database 

 

2.2 Feature characteristics   
The data set contains 43 features per record; the first 41 of them are related to the traffic input itself and the 

last two are the Label (indicating whether it is a normal or attack) and the Score (i.e. the severity of the traffic 

input itself). 

The features can be broken down into four categories: Intrinsic, Content, Host-based, and Time-based. Below 

is a description of the different categories of features: 

- Intrinsic features can be derived from the header of the packet without looking into the payload itself 

and hold the basic information about the packet. This category describes features 1–9. 

- Content features hold information about the original packets, as they are sent in multiple pieces 

rather than one. With this information, the system can access the payload. This category describes 

features 10–22. 

- Time-based features hold the analysis of the traffic input over a two-second window and contains 

information like how many connections it attempted to make to the same host. These features are 

mostly counts and rates rather than information about the content of the traffic input. This category 

describes features 23–31. 

- Host-based features are similar to the time-based features, except instead of analysing over a 2-

second window, it analyses over a series of connections made (how many requests made to the same 

host over x-number of connections). These features are designed to access attacks, which span longer 

than a two-second window time-span. This category describes features 32–41. 
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no Feature Description 

1 Duration length (number of seconds) of the connection 

2 Protocol type type of the protocol, e.g. tcp, udp, etc 

3 Service network service on the destination, e.g., http, telnet, etc. 

4 Flag normal or error status of the connection 

5 Source bytes number of data bytes from source to destination 

6 Destination bytes number of data bytes from destination to source 

7 Land 1 if connection is from/to the same host/port; 0 otherwise 

8 Wrong fragment number of wrong fragments 

9 Urgent number of urgent packets 

10 Hot number of hot indicators 

11 Number failed logins number of failed login attempts 

12 Logged in 1 if successfully logged in; 0 otherwise 

13 Num compromised number of compromised conditions 

14 Root shell 1 if root shell is obtained; 0 otherwise 

15 Su attempted 1 if su root command attempted; 0 otherwise 

16 Num root number of root accesses 

17 Num file creations number of file creation operations 

18 Num shells number of shell prompts 

19 Num access files number of operations on access control files 

20 Num outbound cmds number of outbound commands in an ftp session 

21 Is host login 1 if the login belongs to the hot list; 0 otherwise 

22 Is guest login 1 if the login is a guest login; 0 otherwise 

23 Count number of connections to the same host as the current connection in the past 
two seconds 

24 Srv count number of connections to the same service as the 
current connection in the past two seconds 

25 Serror rate number of connections to the same host as the 
current connection in the past two seconds 

26 Srv error rate % of connections that have SYN errors 

27 Rerror rate % of connections that have REJ errors 

28 Srv error rate % of connections that have REJ errors 

29 Same srv rate % of connections to the same service 

30 Diff srv rate % of connections to different services 

31 Srv diff host rate % of connections to different hosts 

32 Dst host count Number of connections to the same host to the destination host as the current 
connection in the past 2 seconds 

33 Dst host srv count Number of connections from the same service to the destination host as the 
current connection in the past 2 seconds 

34 Dst host same srv rate % of connections from the same services to the destination host 

35 Dst host diff srv rate % of connections from the different services to the destination host 

36 Dst host same src port rate % of connections from the port services to the destination host 

37 Dst host srv diff host rate % of connections from the different hosts from the same service to the 
destination host 

38 Dst host error rate % of connections that have SYN errors from the 
same host to the destination host 

39 Dst host srv error rate % of connections that have SYN errors from the same service to the destination 
host 

40 Dst host error rate % of connections that have REJ errors from the 
same host to the destination host 

41 Dst host srv error rate % of connections that have REJ errors from the 
same service to the destination host 

Table 2  List of features referring to traffic input 
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Specifically, a 20% subset of the NSL-KDD training data (the NSL-KDD Train 20 variant), that is already available 

in the literature,  was used in this deliverable comprising of 25,192 data points, whereas the NSL-KDD Test + 

data file (comprising of 22,544 data points) was utilized for testing.  Given that the focus of the MLID is on the 

discrimination between attacks and normal data, the intrusion detection problem was considered as binary by 

merging all the anomalous records (categories 1-4) into one class. 
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3 SPHINX ML-based intrusion detection framework 

3.1 Literature Review 
An intrusion detections system (IDS) is a security tool that collects information from various sources (e.g. 

routers, computers, network data) aiming at identifying malicious activities and/or users that attempt to either 

get access to computers, steal protected data or even manipulate and disable information systems [1]. IDSs can 

be categorized into three main categories [2]. The first category of IDSs compares the collected patterns of 

network traffic with specific and pre-determined signatures (attack patterns). An attack is detected once there 

is match with an already known pattern, however this kind of IDS is incapable of identifying new (unknown) 

malicious activities. The second category builds on a set of rules and thresholds (specifications) that have been 

manually specified by security experts. These specification-based IDSs do not generate false alarms when 

unusual (but legitimate) program behaviours are encountered but in general the specifications development is 

a tedious and expensive process while the specified set of rules is often very difficult to evaluate and verify. 

Unlike signature and specification IDSs, Automated Intrusion Detection (AID) systems are a new category that 

employs machine learning, statistical-based or knowledge-based methods to define a normal model of the 

behaviour of a computer system. The effectiveness of AID systems depends a lot on the quantity as well as 

quality of the network traffic patterns that are used as data instances during their training.  

In the last few decades, ML has been used to improve intrusion detection [3]. There is a large number of related 

studies using various synthetic datasets (such as KDD-Cup 99 or DARPA 1999 datasets) to develop and validate 

ML-empowered AID systems. Any significant deviation between the observed ‘normal’ behaviour can be 

regarded as an anomaly, which can be then interpreted as an intrusion. The main assumption of the 

aforementioned approaches is that malicious behaviour differs from typical user behaviour. One simplistic 

method to decide whether a behaviour is normal or abnormal is by comparing it with the standard deviation of 

the normal users’ behaviour in the training dataset. Any example exceeding the pre-determined threshold (e.g. 

three times the standard deviation) could be classified in the intrusion category. ML provides a more 

sophisticated method for decision making overcoming the deficiencies of the heuristic approaches (such as the 

manual selection of the threshold etc.). Development of ML-based AID systems comprises two phases: the 

training phase and the testing phase.  

a. In the training phase, the normal traffic profile is used to learn a model of normal behaviour,  

b. In the testing phase, a new data set is used to validate the system’s.  

AIDs can be classified into several  categories based on the method used for training, for instance, statistical 

based, knowledge-based and machine-learning-based [4]. The main advantages of ML-empowered AID systems 

are: (i) Their ability to identify zero-day attacks without relying on a signature database [5]. A danger signal can 

be triggered when the examined behaviour differs from the usual behaviour. (ii) Their capability to discover 

internal malicious activities. An alarm will be created in cases where an intruder starts making transactions in a 

compromised account that deviate from the typical user activity. (iii) The normal user behaviour is hidden to 

intruders and thus it becomes more difficult for them to remain undetected.  

The objective of using machine learning techniques is to create IDSs with improved accuracy and less 

requirement for prior human knowledge. However, one of the main challenges of current AIDs is the high false 

positive rates because anomalies may just be new normal activities rather than genuine intrusions. 

One of the crucial phases in today’s ML pipelines is the process of extracting knowledge from large quantities 

of data. To effectively extract knowledge from raw data, ML relies on a set of rules, methods, or complex 

“transfer functions” that are applied to find interesting data patterns, or to recognize and predict behaviour 

[6]. Many ML algorithms (such as clustering, neural networks, association rules, decision trees, genetic 
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algorithms, and nearest neighbour methods) have been recently applied in the area of AIDs for discovering 

knowledge from intrusion datasets ([7],[8]). Some prior research in data mining has examined the use of 

different algorithms to extract meaningful information for intrusion data. Two feature selection algorithms 

were investigated by Chebrolu et al. 2015 employing Bayesian networks (BN) and Classification Regression 

Trees (CRT) [9]. The outputs of the aforementioned algorithms were finally combined to increase accuracy. 

Bajaj et al. 2013, proposed a technique for feature selection using a hybrid approach that combines Information 

Gain (IG) and correlation attribute evaluation [10]. To validate the discrimination capacity of the selected 

features, the authors applied several classification algorithms such as C4.5, naïve Bayes, NB-Tree and Multi-

Layer Perceptron [11]. Genetic-fuzzy rule mining has been also explored to evaluate the importance of IDS 

features by Elhag et al. 2015 [12]. Thaseen and Kumar 2013 proposed a Random Tree model to improve the 

accuracy and reduce the false alarm rate [13], whereas Subramanian et al. also studied the performance of 

decision tree algorithms on the NSL-KDD dataset [14]. 

Unlike ML approaches that require the extraction of features, Deep learning (DL)-based detection methods 

learn features automatically, in an end-to-end fashion (directly from raw data to decisions). DL is gradually 

attracting more interest in AID studies. A Convolutional Neural Network (CNN) CNN-based AID methodology 

was presented by Potluri et al. 2018, conducting experiments on the NSL-KDD and the UNSW-NB datasets [15]. 

In the pre-processing phase, the features of the datasets were transformed into images of 8*8 pixels. Then, a 

three-layer CNN was trained to classify the attacks. Pre-trained deep networks (ResNet 50 and GoogLeNet) 

were also explored as alternative solutions to the task of extracting new informative features. The proposed 

CNN performed best, reaching accuracies of 91.14% on the NSL-KDD and 94.9% on the UNSW-NB 15. A sparse 

autoencoder was also proposed by Zhang et al. 2018 to extract features from the NSL-KDD dataset [16]. The 

extracted features were supplied to an XGBoost model with the objective to detect attacks. To overcome the 

observed data imbalance problem, data resampling was employed (using SMOTE). The SMOTE algorithm 

oversamples the minority classes and divides the majority classes into many subclasses so that every class is 

balanced.  Data augmentation with GANs has been also explored by Zhang et al. 2019 [17]. The GAN model was 

used to generate data similar to the flow data of KDD99. Adding this generated data to the training set increased 

the generalization capacity of the detection model that was able to identify not only attacks but attack variants 

as well. 
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3.2 Concepts underpinning the proposed methodologies  

3.2.1 Feature exploration  
Feature exploration is the initial step in data analysis, where users explore a large data set in an unstructured 

manner to uncover initial patterns, characteristics, and points of interest. This process is not meant to reveal 

every bit of information a dataset holds, but rather to help create a broad picture of important trends and major 

points to study in greater detail. This process makes deeper analysis easier because it can help in the targeting 

of future searches, and initiates the process of excluding irrelevant data points and search paths that may return 

no results. In this section, a hybrid feature exploration approach combining multiple FS algorithms to avoid bias 

was implemented. 

Hybrid combining multiple FS algorithms to avoid bias  

A hybrid feature selection methodology was employed consisting of filter, wrapper, and embedded techniques, 
whereas feature ranking was decided based on a majority voting system. Applying each technique separately, 
the order of the feature importance emerged from the frequency of feature appearance in the selection 
criteria. The features were ranked with respect to the votes received.  

A short overview of the feature selection algorithms investigated here, is given below. 

Filter algorithms:  

Pearson Correlation is the most important correlation factor and relates to quantitative variables, while based 

on the concept of linear relationship. If there is a linear dependence between the two features, then their 

correlation coefficient is ± 1. If there is no dependence, the correlation coefficient is 0. In this case, there is no 

linear relationship between the two factors. However, if two variables are highly correlated among themselves, 

they provide redundant information regarding the target. Consequently, the second variable does not add 

additional information, so removing it can help to reduce the dimensionality. In this approach, we set the 

maximum number of the selected features to be 30 [18]. 

Chi-squared independence test [19] was applied to examine the relationship between two quality variables. 

The Chi-squared statistical test also works manually with non-negative numerical and quantitative 

characteristics. The specific test compares the degree of agreement (or correlation) between the theoretical 

frequency and the actual frequency. The algorithm was decided to terminate at 30 selected features. The 

termination criterion was manually selected after a trial-and-error exploration process. 

Wrapper algorithms:  

Recursive Feature Elimination (RFE) [20] is a greedy optimization algorithm which aims to find the best 

performing feature subset. In each iteration, it creates models and keeps aside the best or the worst performing 

feature. Each next model includes reduced number of features until all the features are exhausted. At the end, 

it ranks the features based on the order of their elimination. In this approach, the logistic regression classifier 

was selected to drive the elimination process whereas the termination criterion was also set to 30 features. 

Embedded FS techniques:  

Logistic regression (L2 penalty) is an embedded method relying on regularized logistic regression models. 

Furthermore, this approach is based on small subsets of the full feature space by sampling this space at random. 

The sampling probability depends on the estimated feature relevance. In addition, the initial relevance of each 

feature is estimated according to a t-test ranking [21]. 

Random forests are a popular method for feature ranking, due to the fact that they require very little feature 

engineering and parameter tuning. But they come with their own limitations, especially when data 
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interpretation is concerned. In highly correlated data, strong features can end up with low scores and the 

method can be biased towards variables with many categories. In addition, this method stochastically 

rearranges all values of the features for each tree and uses the RF model to predict this permuted feature [22]. 

Light GBM is a gradient boosting framework that uses tree-based learning algorithm. Specifically, the Gradient-

based One-Side Sampling and Exclusive Feature Bundling are used to deal with large number of data instances 

and large number of features. Light GBM can handle the large size of data and takes lower memory to run and 

is faster than Gradient Boosting Decision Tree [23]. 

The proposed feature selection proceeds along the following steps: 

Step 1: All features were normalized as described in Section 3.2 
Step 2: We performed each one of the six FS techniques separately resulting to the creation of the following six 
feature subsets FSSi, i=1…,6 
Step 3: Main loop 

Step 3.1 For each feature j, we set Vj=0, j=1,...,M where M the total number of features 
Step 3.2 Set j=1 
Step 3.3 if a feature j is selected in FFSi, then Vj=Vj+1; 
Step 3.4: We repeat step 3.2 for each one of the six FS techniques  
Step 3.5 Set j=j+1 and return to step 3.2 
Terminate main loop when j>m 

Step 4: Rank features to descending order with respect to Vj 
end 

3.2.2 Machine learning models  
Various ML models were evaluated for their suitability in solving the intrusion detection problem. A brief 

description of these models is provided below. 

XGboost is a popular and efficient implementation of the Gradient Boosted Trees algorithm. It is a supervised 

learning method that is based on function approximation by optimizing specific loss functions as well as 

applying several regularization techniques. Specifically, this model is a sum of CART (tree) learners that try to 

minimize the log loss objective and the scores at leaves. These scores are actually the weights that have a 

meaning as a sum, across all the trees of the model. Furthermore, they are always adjusted in order to minimize 

the loss [24]. 

Random Forest classifier is an ensemble algorithm. Ensemble algorithms are those that combine more than one 

algorithm of same or different kind for classifying objects. The random forest classifier creates a set of decision 

trees from randomly selected subsets of a training set. It then aggregates the votes from different decision 

trees to decide the final class of the test object [25]. 

Decision Trees (DTs) are a non-parametric supervised learning method used for classification and regression. 

DTs are simple to understand and to interpret. They require little data preparation and perform well even if 

their assumptions are somewhat violated by the true model from which the data were generated [26]. 

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’ theorem with the 

“naive” assumption of conditional independence between every pair of features given the value of the class 

variable. Naive Bayes learners and classifiers can be extremely fast. The decoupling of the class conditional 

feature distributions means that each distribution can be independently estimated as a one-dimensional 

distribution [27]. 

Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression 

and outlier’s detection. They are effective in high dimensional spaces and still effective in cases where the 



D3.4: Machine Learning empowered intrusion detection using Honeypots’ data v1 

    18 of 59 

 

number of dimensions is greater than the number of samples. Furthermore, SVMs use a subset of training 

points in the decision function, called support vectors [28]. 

K-Nearest Neighbor (KNN) is a simple algorithm that stores all the available cases and classifies the new data or 

case based on a similarity measure. In the classification setting, the K-nearest neighbor algorithm essentially 

boils down to forming a majority vote between the K most similar instances to a given “unseen” observation. 

Similarity is defined according to a distance metric between two data points. A popular one is the Euclidean 

distance method [29]. 

Logistic regression models the probabilities for classification problems with two possible outcomes. It’s an 

extension of the linear regression model for classification problems. The interpretation of the weights in logistic 

regression differs from the interpretation of the weights in linear regression, since the outcome in logistic 

regression is a probability between 0 and 1 [30]. 

AdaBoost is a generic iterative supervised learning algorithm that combines weak hypotheses into a much more 

accurate master hypothesis. This master hypothesis H is a weighted linear combination of these hypotheses. 

The master hypothesis typically performs much better than any of the weak hypotheses alone, and thus is likely 

to predict better on new examples as well. Although the original AdaBoost algorithm creates binary classifiers, 

there are a number of variants designed for multiple classes [31]. 

Linear discriminant analysis (LDA) refers to the classifier design. Given a number of variables as the data 

representation, each class is modelled as Gaussian (with a covariance matrix and a mean vector). Observations 

are now classified to the class of the nearest mean vector according to Mahalanobis distance. The decision 

surfaces between classes become linear if the classes have a shared covariance matrix. In this case the decision 

surfaces are called Fisher discriminants, and the procedure of constructing them is called Linear Discriminant 

Analysis [32]. 

Hyperparameter selection was implemented to optimize the performance of our models and to avoid the 

overfitting and the bias error. Each model was optimized with respect to a number of parameters.  Specifically 

(i) gamma, maximal depth, minimum child and weight were optimized for XGboost, (ii) criterion, minimum 

samples leaf, minimum samples split and number of estimators for Random Forest, (iii) maximal features, 

minimum samples and minimum number of decision splits for Decision Trees, (iv) C and kernel for SVMs, (v) 

leaf size and k-parameter for KNN and (vi) penalty and C for Logistic Regression. 

 

3.2.3 Deep learning  
Deep learning architectures are employed in pipelines B and C. A short theoretical background of the selected 

deep learning approaches is given in the subsections below.   

A. Siamese convolutional neural networks  

 A Siamese network [33] is a particular neural network architecture consisting of two identical sub-

convolutional networks, which is used in a weakly supervised metric learning setting. The goal of the network 

is to make the output vectors similar if input pairs are labelled as similar, and dissimilar for the input pairs that 

are labelled as dissimilar. Recently, the Siamese network has been applied to speech feature classification [34], 

text classification [35], wireless positioning and channel charting [36], multi-class classification of Alzheimer 

disease [37] and remote sensing scene classification [38]. 

Recently deep learning has achieved great success on many computer-vision tasks. Specifically, CNN has set 

records on standard object recognition benchmarks [39]. With a deep structure, the CNN can effectively learn 

complicated mappings from raw images to the target, which requires less domain knowledge compared to 

handcrafted features and shallow learning frameworks. 
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CNN is a multilayer learning framework, which consists of an input layer, a few convolutional layers, and fully 

connected layers, as well as an output layer on which the loss function is defined. The goal of CNN is to learn a 

hierarchy of feature representations. Signals in each layer are convolved with several filters and further down 

sampled by pooling operations, which aggregate values in a small region by functions including max, min, and 

average. The learning of CNN is based on Stochastic Gradient Descent [40]. 

Siamese Convolutional Neural Network has been used successfully for dimension reduction in weakly 

supervised metric learning. Instead of taking single sample as input, the network typically takes a pair of 

samples, and the loss functions are usually defined over pairs. A typical loss function of a pair has the following 

form: 

 

𝐿(𝑠1, 𝑠2, 𝑦) =  (1 − 𝑦)𝑎𝐷𝑤
2 + 𝑦𝛽eγDw                                                                       (1) 

 

where: 

-  𝑠1 and 𝑠2 are two samples, 

- y is the binary similarity label,  

- 𝐷𝑤 =  ‖𝑓(𝑠1; 𝑤1) −  𝑓(𝑠2; 𝑤2)‖1  is the distance, which is based on a defined distance function 

(normalized L1) (Chopra et al., 2005). 

This can be regarded as a metric learning approach. Unlike methods that assign binary similarity labels to pairs, 

the network aims at bring the output feature vectors closer for input pairs that are labelled as similar, or push 

the feature vectors away if the input pairs are labelled as dissimilar. 

This can be regarded as a metric learning approach. Unlike methods that assign binary similarity labels to pairs, 

the network aims at bring the output feature vectors closer for input pairs that are labelled as similar, or push 

the feature vectors away if the input pairs are labelled as dissimilar. The Siamese network is frequently 

illustrated as two identical networks for two different samples. In each Stochastic Gradient Descent iteration, 

pairs of samples are processed using two identical networks, and the error computed by equation (1) is then 

back-propagated and the gradients are computed individually base on the two sample sets. The Siamese 

network is updated by the average of these two gradients [41]. 
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Figure 1 Dimension reduction using Siamese network. 

 

B. Autoencoders  

 A deep autoencoder is a feed-forward multi-layer neural network in which the desired output is the input itself 

[42]. Upon first glance, this process may seem trivial since the identity mapping would have no reconstruction 

error. However, autoencoders become non-trivial when the identity map is disallowed either by way of some 

type of regularization or, more importantly for the current derivation, by having hidden layers which are a low-

dimensional, non-linear representation of the input data. In particular, autoencoders learn a map from the 

input to itself through a pair of encoding and decoding phases: 

 

𝑋̅ =  𝐷(𝐸(𝑋))                                                                                    (2) 

 

where X is the input data, E is an encoding map from the input data to the hidden layer, D is a decoding map 

from the hidden layer to the output layer, and 𝑋̅ is the recovered version of the input data. The idea is to train 

E and D to minimize the difference between X and 𝑋̅. 

In particular, an autoencoder can be viewed as a solution to the following optimization problems: 

 

min
𝐷,𝐸

‖𝑋 − 𝐷(𝐸(𝑋))‖                                                                             (3) 

 

where ‖·‖ is commonly chosen to be the l2-norm. 

Usually, an autoencoder with more than one hidden layers is called a deep autoencoder and each additional 

hidden layer requires an additional pair of encoders E(·) and decoders D(·). By allowing many layers of encoders 
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and decoders, a deep autoencoder can effectively represent complicated distributions over the input X. In the 

sequel, our focus will be on deep autoencoders with all autoencoders assumed to be deep [43]. 

To avoid trivial lookup table-like representations of hidden units, autoencoders reduces the number of hidden 

units. Autoencoders with various other regularization has also been developed. Contractive autoencoders use 

gradients of activations as penalty term and try to model data with sparse activations that only respond to the 

true nature of the data [44]. Denoising autoencoders uses a adds noise to the original input vector x and uses 

this noisy input 𝑥 as the input vector. The difference between the resulting output, the reconstruction of the 

noisy input, and the original input is used as the reconstruction error. In short, this is training the autoencoder 

to reproduce the original input x from a noisy input 𝑥. This allows the autoencoder to be robust to data with 

white noise and capture only meaningful patterns of the data [45].  

Autoencoder based anomaly detection is a deviation-based anomaly detection method using semi-supervised 

learning. It uses the reconstruction error as the anomaly score. Data points with high reconstruction are 

considered to be anomalies. Only data with normal instances are used to train the autoencoder. After training, 

the autoencoder will reconstruct normal data very well, while failing to do so with anomaly data which the 

autoencoder has not encountered. The anomaly detection algorithm is using reconstruction errors of 

autoencoders [46]. 

 

 

Figure 2 Autoencoder concept graph 

 

3.2.4 Key Performance Indicators 
The following criteria were used in our analysis to evaluate the effectiveness of the proposed pipelines:  

A.  Overall accuracy  

Overall accuracy is the probability that an individual will be correctly classified by a test; that is, the sum of the 

true positives plus true negatives divided by the total number of individuals tested. The overall accuracy is 

calculated by summing the number of correctly classified values and dividing by the total number of values. The 

correctly classified values are located along the upper-left to lower-right diagonal of the confusion matrix. The 

total number of values is the number of values in either the truth or predicted-value arrays. 
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B. Confusion Matrix 

A confusion matrix is a summary of prediction results on a classification problem. The number of correct and 

incorrect predictions are summarized with count values and broken down by each class. This is the key to the 

confusion matrix. The confusion matrix shows the ways in which your classification model is confused when it 

makes predictions. It gives us insight not only into the errors being made by a classifier but more importantly 

the types of errors that are being made. 

  Actual Values 

  Positive (1) Negative (0) 

P
re

d
ic

te
d

 

V
al

u
es

 Positive (1) TP FP 

Negative (0) FN TN 

 

where:  

- TP: True Positives 

- FP: False Positives  

- FN: False Negatives 

- TN: True Negatives   

 

C. Per class accuracies  

Per class accuracies can be extracted from the confusion matrix, but they can be misleading if they have not 

been differentiated into producers’ and users’ accuracy. It also referred to as errors of omission and errors of 

commission respectively. Errors of omission calculate the probability that a reference sample has been 

classified correctly. Furthermore, errors of commission calculate the probability that a sample from the 

classified data actually represents that category on the ground.  
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3.3 Proposed methodology and variants 

3.3.1 Pipeline A: Machine learning pipeline for intrusion detection  
A machine learning pipeline was initially designed and developed to identify intrusion patterns in the selected 

data classification problem. The proposed methodology is depicted in Figure 3 and comprises five (5) processing 

phases that are presented below. 

 

Figure 3 Proposed pipeline A  

A. Data preparation and handling  

The NSL-KDDTrain20 data file (comprising of 25,192 data points) was used for training and the NSL-KDD 

Test+ data file (comprising of 22,544 data points) was utilized for testing.  Moreover, simple data encoding 

techniques were employed to convert unstructured, textual data into numeric representations which can 

then be understood by machine learning algorithms (categorical values). 

B. Normalization  

Z-score was used to normalize features to a common scale (having a mean of zeros and a standard deviation of 

1).  Specifically, the data points 𝑥𝑖,𝑗  were standardized with the following formula: 

𝑧𝑖,𝑗 =
𝑥𝑖,𝑗−𝑥𝑗̅̅ ̅

𝑠𝑗
                                                                                     (4) 

where: 

- 𝑥𝑖,𝑗 denotes the feature j of data sample 𝑥𝑖 

- 𝑥̅𝑗 denotes the mean value of feature j  

- 𝑠𝑗 is the standard deviation of feature j 

- 𝑧𝑖,𝑗 denotes the normalized version of 𝑥𝑖,𝑗 

 

C. Feature Selection 

A feature selection approach was employed to identify the most informative features and rank them in order 

of significance (specifically, the hybrid FS technique that combines the outcomes of multiple well-known FS 

models to avoid bias) The specifics of this approach are given in Section 3.2.1 B.  
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D. Machine learning  

Six (6) machine learning techniques were investigated for their suitability in identifying intrusion patterns using 

the selected features (as generated in the previous phase C): 

- AdaBoost 

- Random Forest  

- Support Vector Machines 

- Nearest neighbor classifier 

- Decision Trees 

- Discriminant analysis  

Hyperparameter selection was performed to optimize the performance of the ML models. A validation subset 

was held out from the training set (a randomly selected 10%) as a criterion for selecting the optimum 

hyperparameters by means of a grid search process. 

 

E. Validation  

 The discrimination capacity of the proposed pipeline was performed on the testing dataset. 

 

3.3.2 Pipeline B: Novel feature dimensionality reduction 
empowered by deep learning towards the extraction of 
informative risk indicators  

The proposed pipeline B includes four processing steps: (i) data pre-processing making use of a  fuzzy allocation 

scheme  to convert raw data into fuzzy values, (ii) a data transformation technique that generates images 

comprising of fuzzy memberships, (iii) a novel feature extraction algorithm employing Siamese convolutional 

neural networks and finally (iv) a learning process for training, and evaluation of the results, as illustrated in 

Figure 4. The proposed methodology is thoroughly presented in the following sections. 

This deliverable contributes to current AID systems by transforming the available multi-dimensional network 

traffic data into an actionable and easy-to-understand indicator for security experts. This has been achieved by 

designing a novel feature extraction pipeline that builds on the latest advances of data mining and ML/DL. 

Specifically, a fuzzy allocation scheme is initially applied to transform raw data to fuzzy class memberships. Then 

a data transformation mechanism converts feature vectors to images (Vec2im) and a dimensionality reduction 

module makes use of Siamese convolutional neural networks to reduce the input data dimensionality into a 1-

d feature space. The performance of the proposed pipeline was validated via a thorough comparative analysis 

that demonstrated its effectiveness over a number of well-known feature selection and extraction techniques. 
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Figure 4 Proposed pipeline B 

 

A. Data preparation 

Specifically, a 20% subset of the NSL-KDD training data (the NSL-KDD Train 20 variant) was used in our paper 

comprising of 25,192 data points, where the NSL-KDD Test+ data file (comprising of 22,544 data points) was 

utilized for testing.  Moreover, simple data encoding techniques were employed to convert unstructured, 

textual data into numeric representations which can then be understood by machine learning algorithms 

(categorical values). 

 

B. Fuzzification and image formulation (Vec2im) 

First of all, the non-numeric attributes of the dataset were converted into numeric values. For the efficient 

training of machine learning algorithms, input data is typically transformed by a number of pre-processing 

routines with data normalization being the gold standard.  Different algorithms could be used to normalize the 

input data (such as min-max normalization or normalization with respect to standard deviation), however in 

this paper we employed a fuzzy allocation scheme as described below.  

Fuzzification: To normalize as well as evaluate the classification capabilities of each feature, we applied a simple 

fuzzy allocation scheme that assigs varying degrees of patterns to every class. For feature j, the fuzzy 

membership 𝑢𝑖(𝑥𝑘,𝑗) ∈ [0,1] indicating the degree to which  𝑥𝑘,𝑗 belongs to class i is determined by: 

 

𝑢𝑖(𝑥𝑘,𝑗) =
1

∑ [
(𝑥𝑘,𝑗−𝑢𝑖,𝑗)2

(𝑥𝑘,𝑗−𝑢𝑚,𝑗)2]

1 (𝑏−1)⁄
𝑐
𝑚=1

                                                                      (5) 

 

where  𝑢𝑖,𝑗 = ∑ 𝑥𝑘,𝑗 𝑁𝑖⁄𝑘∈𝐴𝑖
 is the class i mean along the 𝑥𝑘,𝑗 component, 𝐴𝑖  is the set of indexes of the training 

examples belonging to class i , 𝑁𝑖  is the number of class i patterns and b is a fuzzification factor (b = 2 in our 

experiments). In our paper, every feature component of 𝑥𝑘,𝑗, was converted to 𝑢1(𝑥𝑘,𝑗) that denotes its fuzzy 
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membership to class 1 (normal / non intrusion class). High values of 𝑢1(𝑥𝑘,𝑗) close to 1 indicate a strong 

membership to the non-intrusion class whereas low 𝑢1(𝑥𝑘,𝑗) values close to 0 are representative of examples 

belonging to the malicious class.  

Vec2im: At the second phase of processing, the generated memberships were re-placed in a matrix format 

resulting to one grey-scale image per example. Specifically, the 41 features 𝑥𝑘,𝑗, 𝑗 = 1, … ,41 were transformed 

to 41 fuzzy memberships  𝑢𝑖(𝑥𝑘,𝑗), 𝑗 = 1, … ,41 and finally a 7×7 image was created per sample by placing the 

fuzzy memberships in a matrix as presented in Figure 5. Zero values were also included in the matrix in random 

cells to fill the eight gaps (given that the dimensionality of the initial feature set was 41 with a total of 49 cells 

to be filled in the matrix). Fuzzy memberships and zero values were ordered randomly since it was concluded 

that their order has not any significant impact on the final performance of the proposed methodology.     

 

Figure 5  Converting feature vectors to images (Vec2im)  

 

C. Dimensionality Reduction with Siamese deep learning networks  

Deep Siamese Convolutional Neural Networks (SCNN) architecture is a variant of neural networks that was 

originally designed to solve signature verification problem of image matching [47]. It has also been used for 

one-shot image classification [48], face verification where the categories are not known in advance [33] as well 

as for dimensionality reduction [49]. SCNN consist of two identical symmetric CNN subnetworks that share the 

same weights. In our experiment, each identical CNN was built using one convolutional layer followed by three 

fully connected layers. The rectified linear units (ReLU) nonlinearity was applied as the activation function for 

all layers, and adaptive moment estimation (ADAM) optimizer was utilized to control learning rate [50]. The 

similarity between images was calculated by Euclidean distance, and the contrastive loss [33] was calculated to 

define the loss function as follows: 

                                (6) 

where 𝐷 = ‖𝑓(𝐼1) − 𝑓(𝐼2)‖2,                                                                            (7) 

 

𝐼1and 𝐼2 are a pair of the generated images fed into each of two identical CNNs. 1(·) is an indicator function to 

show that whether two images have the same label, where L = 0 represents the images have the same label 

and L = 1 represents the opposite. W is the shared parameter vector comprising of the weights that both neural 

networks share each other. 𝑓(𝐼1)  and 𝑓(𝐼2)  are the latent representation vectors of input 𝐼1  and 𝐼2 , 

respectively and D is the Euclidean distance between them. The selected SCNN architecture (as depicted in 

Figure 6) reduces the dimensionality of the 41-dimensional feature space to a single 1-d space.  
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Figure 6  Selected Siamese network architecture for dimensionality reduction 

 

D. Decision making on the reduced feature space  

To evaluate the discrimination capacity of the extracted features, we employed various machine learning 
models trained to implement the binary classification task on the resulted 1-d space. We tested linear 
discriminant analysis (LDA) and Naïve Bayes [51] to provide a baseline for comparisons with more advanced 
models. We also evaluated decision trees ([52],[53]), driven by Gini’s diversity index, KNN, as well as non-linear 
support vector machines (SVM) algorithms ([54],[55]) with Gaussian kernel, which can deal with the overfitting 
problems that appear in high-dimensional spaces. The ensemble techniques AdaBoost [56] and Random Forest 
[57] were also evaluated using DT models as weak learners.  

E. Validation 

To achieve a fair comparison between the different approaches, hyperparameter selection was performed for 
each one of the investigated machine algorithms. A validation subset was held out from the training set (a 
randomly selected 10%) as a criterion for: (i) selecting the optimum hyperparameters by means of a grid search 
process as well as (ii) deciding the termination of the SCNN learning.   

 

3.3.3 Pipeline C: Unsupervised approach for anomaly detection  
In contrast to the well-known classification setup, where training data is used to train a classifier and test data 

measures performance afterwards, there are multiple setups possible when talking about anomaly detection. 

Basically, the anomaly detection setup to be used depends on the labels available in the dataset. Unsupervised 

anomaly detection is the most flexible setup which does not require any labels. The idea is that an unsupervised 

anomaly detection algorithm scores the data solely based on intrinsic properties of the dataset. Typically, 

distances or densities are used to give an estimation what is normal and what is an outlier. 

To enable label-free intrusion detection, an unsupervised pipeline was also designed relying on the latest 

advances of deep learning and especially autoencoders. The proposed pipeline (figure 7) is organized in the 

following steps.  
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Figure 7  Proposed pipeline C 

 

A. Data handling  

The NSL-KDD Train 20 data file (comprising of 25,192 data points) was used for training and the NSL-KDD Test+ 

data file (comprising of 22,544 data points) was utilized for testing.  Moreover, simple data encoding techniques 

were employed to convert unstructured, textual data into numeric representations which can then be 

understood by machine learning algorithms (categorical values). 

 

B. Data normalization  

Z-score was also used here to normalize features to a common scale (having a mean of zeros and a standard 

deviation of 1). 

 

C. Feature Selection  

The hybrid FS technique (as described in Section 3.2.1 B) was applied to provide a ranking of the available 

features with respect to their expected discrimination capacity. The output of this FS processing step is the 

creation of training and testing feature subsets of increasing dimensionality. The autoencoder (step D) was 

applied on the each one of the generated feature subsets and the optimal feature subset was identified. 

 

D. Learning process 

An autoencoder was applied on the selected features using only data points of the training set that belong to 

class 1 (normal activity).  The main idea is to use autoencoders to learn the normal behavior of users and then 

to use them to detect abnormal states (intrusions).  After this “normal” data set (class 1) has been obtained the 

training of the ML model proceeds in unsupervised fashion, without the need of labels. A critical advantage of 

this method is that it will be able to identify faulty conditions even though these have not been encountered 

earlier during the training phase. With this method we do not need to inject anomalies (class 2) during the 

training phase and we do not require intrusion logs or changes to the standard users’ behavior. The learning of 

this methodology can be organized as given below: 
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(i) The autoencoder is trained using only data from class 1 (and specifically using the features selected 

in step C) 

(ii) Once constructed the trained model is used to reconstruct data from both Class 1 and Class 2.  

(iii) The differences D between the autoencoder’s input and output are calculated for each data point. 

(iv) The generated D values (that actually declare reconstruction errors) for class 1 training data are 

grouped together forming the group D1. The same process is repeated for Class 2 training data 

points generating the D2  group.  

(v) Higher the reconstruction error, higher the possibility of that data point being an anomaly. Based 

on this, a classifier is finally applied to separate groups D1 and D2 and identify whether an input is 

an anomaly (possibly an intrusion) or not. 

The hyperparameters of the autoencoder (number of layers and nodes per layer) were selected by trial and 

error.  

 

E. Validation  

The testing dataset was supplied to the trained autoencoder model. The obtained reconstruction errors were 

used as input to the trained classifier that classifies them as anomalies or not. The classification accuracy on 

the testing set was considered as the final evaluation criterion of the proposed methodology.  
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4 Results  
Section 4 presents the evaluation results of the three proposed AI pipelines for intrusion detection. Subsections 

4.1 – 4.3 demonstrate the classification performances of the approaches A, B and C, respectively, whereas an 

overall comparative assessment is performed in Section 4.4.   

 

4.1 Intrusion detection pipeline A 
Two variants of pipeline A were proposed in Subsection 3.3.1, in which two different FS algorithms were 

employed.  First of all, the hybrid FS approach was utilized in the proposed pipeline A and a comparative analysis 

was performed to identify the optimal ML model that maximizes the detection performance. At a second phase, 

the optimal ML model was selected to be the basis for the sequential backward feature elimination technique 

(2nd variant) in an attempt to further enhance its classification capacity. The results are presented in the 

following.   

 

A. Hybrid FS approach  

Figure 8 shows the testing classification accuracy of pipeline A with respect to the number of selected features 

as they have been selected by the hybrid FS approach. The overall best testing performance (82.47%) was 

obtained by AdaBoost on the first 30 selected features.  

 

Figure 8 Testing accuracies with respect to number of selected features (Pipeline A with hybrid FS) 

 

Table 3 cites: (i) the best testing accuracies achieved by each one the six competing ML models and (ii) the 

number of selected features where this accuracy was obtained. Overall, AdaBoost was proved to be the most 

efficient model, whereas RF was the second most effective model (82.19% at 26 features). The rest of the ML 

models achieved lower testing accuracies (<80%). 
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ML model Best accuracy  Number of features where the best accuracy was achieved 

AdaBoost  82.47% 30 

Random Forest 79.47% 37 

SVM 78.58% 37 

kNN 78.67% 30 

DT 82.19% 26 

LDA 78.97% 29 

Table 3 Testing accuracies achieved by the competing ML models 

Table 4 cites the first more informative features as they have been selected by the proposal FS approach. The 

full list of selected features has been sent to FINT (leader of the honeypot) in order to be considered in the 

development of the component.  

 

Feature ID Feature name  Feature description  

34 Dst host same srv rate % of connections from the same services to the destination 
host 

36 Dst host same src port rate % of connections from the port services to the destination 
host 

23 Count number of connections to the same host as the current 
connection in the past two seconds 

3 Service network service on the destination, e.g., http, telnet, etc. 

5 Source bytes number of data bytes from source to destination 

25 Serror rate number of connections to the same host as the 
current connection in the past two seconds 

10 Hot number of hot indicators 

27 Rerror rate % of connections that have REJ errors 

2 Protocol type type of the protocol, e.g. tcp, udp, etc 

1 Duration length (number of seconds) of the connection 

41 Dst host srv error rate % of connections that have REJ errors from the 
same service to the destination host 

Table 4  Most informative features selected by the FS algorithm 
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4.2 Intrusion detection pipeline B 

4.2.1 Data visualization  
Figure 9 depicts indicative images generated by the proposed Vec2im for both intrusion and non-intrusion 

(normal) classes. White areas correspond to features in which a strong membership to the normal class is 

observed and vice versa for the black areas. Observing the generated images, there is a clear visual distinction 

between the two classes, with the normal class (Fig. 3a) being represented by whiter images. Some of the pixels 

receive high values (close to 1) in images from both classes, however there are some areas on the images that 

are solely activated in one of the two classes creating distinct colour patterns. The objective of the Siamese 

neural network that follows is to capture these patterns via their convolutional layer and further convert this 

information into a more compressed representation (reduced feature space).  

 

  

(a) (b) 

Figure 9  Indicative images generated by Vec2im for the normal (a) and intrusion class (b) 

 

4.2.2  Siamese network learning  
Figure 10 shows the progression of contrastive loss of the SCNN with respect to the number of iterations. One 

critical aspect of SCNN training is the termination of the learning process. A validation subset was held out from 

the training set (a randomly selected 10%) and a linear classifier (LDA in our paper), trained on the 90% of the 

training set, was utilized to act as a termination criterion. Specifically, the learning process terminates on the 

iteration where the validation performance of the trained LDA models reaches its maximum value (at iteration 

441 in our example).  Figures 11 and 12 depict the histogram of the extracted feature values on the reduced 1-

d space (that is actually the SCNN output) at iterations 1 and 441 iterations, respectively. The histogram at the 

first iteration shows that there is a significant overlap between the data distribution of the two classes. On the 

contrary, the resulted space at iteration 441 is more informative with a small overlap between the per-class 

distributions (Figure 12) and with most of data points concentrated at the distribution edges.   
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Figure 10  Training contrastive loss with respect to number of iterations 

 

 

 

 

 

Figure 11 Histogram of the reduced feature space (SCNN output) at iteration 1 
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Figure 12  Histogram of the reduced feature space (SCNN output) at iteration 441 

 

4.2.3  Comparative analysis  
a. Identifying the optimum ML performer on the reduced feature space 

Seven ML models were investigated for their suitability on discriminating intrusion from non-intrusion data. 

Specifically, we tested: (i) Naïve Bayes, (ii) AdaBoost, (iii) Random Forest, (iv) Support Vector Machines (SVM), 

(v) nearest neighbor classifier (kNN), (vi) decision trees (DT) and (vii) discriminant analysis trained on the 

reduced 1-d feature space as have been generated by Vec2im-Siam.   

Figure 13 shows the progression of the testing accuracy in relation to the number of iterations for the 

aforementioned ML models. To implement this, we stored the extracted feature values for both training and 

testing after the end of each iteration of the SCNN learning process. This led to the creation of 500 1-d training 

and testing sets in which the seven ML were trained and validated, respectively.  
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Figure 13 Testing accuracy with respect to number of iterations of different ML models trained on the resulted 1-d 

feature space   

Table 5 cites the best performances (training and testing) as accomplished by the seven competing ML models. 

AdaBoost achieved the overall best testing accuracy (86.64%) whereas slightly reduced testing accuracies (more 

than 86%) were received by RF, Naïve Bayes and SVM.  LDA, DT and kNN were 1% - 2% less effective in our data 

classification task. Overall, all competing models had similar learning curves (as shown in Figure 13) and they 

achieved similar testing accuracies within a range of approximately 2%. This finding verifies the effectiveness 

of the proposed feature extraction methodology that leads to a very informative 1-d feature space in which all 

ML models (either linear or non-linear) perform well. The confusion matrixes of the four best performing ML 

models (as shown in Table 6) demonstrate that all four perform similarly exhibiting non important differences 

in the achieved class accuracies. 

 

Exp. Feature Extraction Classification model Training (%) Testing (%) 

1. Fuzz-Vec2im -Siam1 Naïve Bayes 98.52 86.17 

2. Fuzz-Vec2im -Siam1 AdaBoost 98.43 86.64 

3. Fuzz-Vec2im -Siam1 Random Forest  98.48 86.40 

4. Fuzz-Vec2im -Siam1 SVM 98.53 86.01 

5. Fuzz-Vec2im -Siam1 kNN - 1 100 84.29 

6. Fuzz-Vec2im -Siam1 Decision Trees 99.5 84.31 

7. Fuzz-Vec2im -Siam1 Linear Discriminant 98.69 85.38 

Table 5 Comparative analysis with respect to optimal choice of the machine learning model 

 

 

 

   
   

   
   

   
A

B
 

 

 Class 1 Class 2 Per class accuracy 

Class 1  9323 388 96.00% 

Class 2 2624 10209 79.55% 

 Overall accuracy  86.64% 

  

 

R
F 

 Class 1 Class 2 Per class accuracy 

Class 1  9336 375 96.14% 

Class 2 2692 10141 79.02 

 Overall accuracy  86.40% 
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N
B

 

 

 Class 1 Class 2 Per class accuracy 

Class 1  9393 318 96.73% 

Class 2 2800 10033 78.18% 

 Overall accuracy  86.17% 

 

SV
M

 

 

 Class 1 Class 2 Per class accuracy 

Class 1  9400 311 96.80% 

Class 2 2842 9991 77.85% 

 Overall accuracy  86.01% 

Table 6  Confusion Matrixes of the best four performing ML models (LDA and AdaBoost) trained on the reduced feature 

space 

 

b. Comparison with other feature selection / feature extraction techniques  

A thorough comparative analysis between the proposed methodology and other well-known competing feature 

extraction / selection techniques is presented below.  

• Experiments 8 – 9: Evaluating the effect of fuzzification on the proposed feature extraction 

methodology  

In experiments 8 – 9, we evaluated the effect of fuzzification on the performance of the proposed methodology. 

To accomplish this, we replaced the proposed fuzzification technique with a standard data normalization into 

the range [0, 1]. Both pre-processing techniques scale the data into the same range, however they have 

different characteristics: 

- data normalization applies a linear transformation on the data rescaling all features to the same range, 

whereas 

-  the proposed fuzzification technique transforms raw data into class memberships (the generated fuzzy 

values declare at what extend a sample belongs to class 1).  

The application of the fuzzy allocation scheme prior to feature extraction had a positive effect on both training 

and testing accuracies. Specifically, replacing the proposed fuzzification scheme with a standard data 

normalization technique lowered the testing accuracy by 6% (refer to experiment 9 in Table 7).  

• Experiments 10 – 17: Comparing the proposed feature extraction approach with other FS techniques 

For comparison purposes, a wrapper FS technique was also employed to reduce the feature dimensionality of 

the initial 41-d space. This technique employs a search strategy to look through the space of possible feature 

subsets, evaluating each subset based on the quality of the performance of a given algorithm. A sequential 

forward selection strategy was implemented that starts with no feature and progressively adds one feature at 

a time. The same classifier was utilized in both the wrapper FS and the proposed vec2im+Siam methodology in 
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order to set a fair comparison ground. The wrapper FS technique was implemented four times setting different 

termination criteria as follows:  

- in the experiment 10, the wrapper FS was implemented to identify the most important feature from the 

entire feature space. The obtained 1-d space was compared with the 1-d space as it has been generated 

by the proposed in this paper methodology.  A much lower testing accuracy was observed in experiment 

10 (77.91%) indicating that the selected feature is less informative compared to the extracted feature 

from Vec2im-Siam. 

-  In experiments 12, 14 and 16, different termination criteria were set in the Wrapper FS technique 

leading to feature spaces of higher dimensionality (2-d, 3-d and 10-d, respectively). The discrimination 

capability of the resulted spaces was also compared with the 1-d space of the proposed methodology 

using the same classifier. The results verify that the extracted 1-d feature space of Vec2im-Siam is more 

descriptive than the resulted spaces of the Wrapper FS technique. This is even valid in the case of the 

10-d feature space, in which the application of the same classifier led to a testing accuracy of 84.06 

(exp.16) that is 2.6% lower than the testing performance of the proposed methodology implemented 

on a 1-d space.  

To further evaluate the usefulness of the proposed fuzzification routine, we applied it as a pre-processing tool 

prior to the application of the Wrapper FS technique (refer to experiments 11, 13, 15 and 17) and finally 

compared the classification accuracy obtained with the one obtained in experiments 10, 12, 14 and 16 (where 

a standard data normalization is employed). Equal accuracies were obtained in experiments 10 and 11 (77.91 

% in testing for both) and in experiments 12 and 13 (82.04% in testing for both). A slight increase was observed 

in the testing accuracy of experiments 15 and 17 (85.81% and 85.93%, respectively) compared to the accuracies 

achieved in experiments 14 and 16 (82.98% and 84.06%, respectively) indicating that the proposed fuzzification 

algorithm might also have a positive effect on a variety of other machine learning pipelines.  

• Experiments 18 – 20: Comparing the proposed feature extraction approach with PCA 

The proposed Vec2im-Siam feature extraction methodology was finally compared with Principal Component 

Analysis (PCA) that is a well common feature dimensionality reduction approach. Three different feature spaces 

of varying dimensionality were generated via PCA as follows: 

- A 1-d feature space using only the first extracted principal component (experiment 18) 

- A 2-d feature space using the first two extracted principal components (experiment 19) 

- A 3-d feature space using the first three extracted principal components (experiment 20). 

The results highlighted the superiority of the Vec2im-Siam given that it outperformed PCA by more than 10% 

in testing even in the case in which higher dimensional spaces were used (e.g. in experiments 19 and 20).  

 

Exp. Preprocessing  Feature Extraction Dimensionality of the 

resulted feature space 

Training 

(%) 

Testing 

(%) 

8. Fuzzification Vec2im – Siam1 1 98.69 86.64 

9. Normalization  Vec2im – Siam1 1 90.20 80.64 

10. Normalization  FS (best feature) 1 82.84 77.91 

11. Fuzzification FS (best feature) 1 82.84 77.91 

12. Normalization FS (2 first features) 2 90.79 82.04 
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13. Fuzzification FS (2 first features) 2 90.79 82.04 

14. Normalization FS (3 first features) 3 92.20 82.98 

15 Fuzzification FS (3 first features) 3 91.24 85.81 

16. Normalization FS (10 first features) 10 92.33 84.06 

17. Fuzzification FS (10 first features) 10 92.03 85.93 

18. Normalization PCA (1 principal component) 1 89.69 75.64 

19. Normalization PCA (2 principal components) 2 89.47 76.30 

20. Normalization PCA (3 principal components) 3 89.48 76.32 

Table 7  Comparative analysis with respect to competing feature selection / extraction techniques using the same 

classifier (LDA) 

 

A journal paper presenting the design and the results of the proposed pipeline B was submitted in Springer 

Open, Cybersecurity2 journal: 

 S. Moustakidis, P. Karlsson, A novel feature extraction approach using Siamese convolutional neural networks 

for intrusion detection, Cybersecurity, Springer Open, under review  

  

 
2 https://cybersecurity.springeropen.com/  

https://cybersecurity.springeropen.com/
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4.3 Intrusion detection pipeline C 
The results of the unsupervised pipeline C for intrusion detection are presented in this subsection. Pipeline C 

was applied repeatedly on feature subset of progressively increased dimensionality (as driven by the proposed 

FS algorithm). The classification accuracy on the testing dataset is depicted in Figure 14 below with respect to 

the number of features.  

 

Figure 14  Testing accuracy with respect to number of features (pipeline C) 

 

It was observed that the best testing accuracy (83.48%) was achieved at 30 features (similarly to pipeline A), 

whereas a first peak in the testing accuracy (82%) was obtained using only the first five selected features.  

Figure 15 shows the histogram of the autoencoder’s output (reconstruction error) trained at the 30 first 

selected features. It is clearly shown that classes 1 and 2 have different distributions on their reconstruction 

errors with a relatively small overlapping area between them. So, applying a final classifier on these 

autoencoder’s output leads to an intrusion detection performance of 83.48%.  
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Figure 15  Histogram of reconstruction error for the testing data point of Class1 (normal – red color)  and Class2 

(intrusion – blue color) 

 

4.4 Overall assessment  
Table 8 below presents an overall comparative assessment with all three proposed pipelines and their variants. 

The following conclusions can be drawn from Table 8: 

- Pipeline B with AdaBoost performed the best testing accuracy (86.64%). The main advantage of this 

technique is that it achieves the higher testing accuracy whereas at the same time reduces the feature 

dimensionality into a 1-D dimensional feature space.  

- The unsupervised pipeline C achieved a relatively high testing accuracy (83.48%). It should be stressed 

out that pipeline C is the one that can be more easily applied in a real case scenario since it only requires 

normal traffic data (unlabelled).  

- Moderate testing accuracies were received by the variants of Pipeline A (76.41% - 82.47%).  
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Pipeline Models Results 

Pipeline A 
(Supervised  
with SoA ML) 

Naïve Bayes 76.41% 

AdaBoost 82.47% 

Random Forest 79.47% 

SVM 78.58% 

kNN 78.67% 

Decision Trees 82.19% 

Discriminant 78.97% 

Pipeline B 
(Supervised  
with novel DL pipeline) 

Naïve Bayes 86.17% 

AdaBoost 86.64% 

Random Forest 86.40% 

SVM 86.01% 

kNN 84.29% 

Decision Trees 84.31% 

Discriminant 85.38% 

Pipeline C 
(Unsupervised  
with autoencoder) 

Autoencoder  83.48% 

Table 8  Comparative analysis 
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5 Conclusions and future plans 

5.1 Conclusions  
This deliverable presented the overall development status of the MLID component on M18 of the project’s 

lifetime and the end of the first interim of MLID two-staged development phases (M10-M18, M22-M30). This 

is a versioned document and describes the progress of the development first prototype of the component. 

Within the first development phase of MLID, the following accomplishments have been achieved:  

- Feature exploration has been performed and a list of the most informative features (reflecting different 

aspects of users’ behaviour) has been identified 

- Three AI pipelines for intrusion detection have been designed, developed and implemented  

- Pipeline A employed a standard ML methodology achieving moderate results     

- A novel deep learning – based methodology for dimensionality reduction and intrusion detection was 

designed and tested using Siamese convolutional neural networks (pipeline B) 

- A journal paper was prepared and submitted in Springer Open   

- An unsupervised pipeline was implemented and tested that requires only normal traffic data to be 

trained (pipeline C) 

- An extensive comparative analysis was performed between all three pipelines and their variants  

 

5.2 Integration plan  
The second version of this document will present all the foreseen functionalities of the MLID component and 

will report the second and final prototype development of the components’ development. The integration plan 

between the MLID component and the rest linked components of SPHINX will be implemented along the 

following steps. 

1. The Honeypot (HP) collects real time information from users’ behaviour  

2. A feature vector is formulated by the HP comprising traffic features that correspond to a specific pre-

determined time period 

3. The feature vector is sent to the MLID component 

4. The MLID component processes the feature vector and produces a classification decision. 

5. The classification output is sent to: (i) the HP and (ii) the DSS that will convert the received information 

into actionable rules / actions.  

The second version of this deliverable will demonstrate the detection capacity of the MLID component on the 

actual data received by the HP.  
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Abstract: Intrusion detection systems (IDS) can play a significant role in detecting security threats or 

malicious attacks that aim to steal information and/or corrupt network protocols. To deal with 

the dynamic and complex nature of cyber-attacks, advanced intelligent tools have been 

applied resulting into powerful and automated IDS that rely on the latest advances of machine 

learning (ML) and deep learning (DL). Most of the reported effort has been devoted on building 

complex ML/DL architectures adopting a brute force approach towards the maximization of 

their detection capacity. However, just a limited number of studies have focused on the 

extraction of user-friendly risk indicators that could be easily used by security experts. Many 

papers have explored various dimensionality reduction algorithms, however a large number of 

selected features is still required to detect the attacks successfully. The objective of this paper 

is to transform the available data collected by IDS into a single actionable and easy-to- 

understand risk indicator. To achieve this a novel feature extraction pipeline was implemented 

consisting of the following components: (i) a fuzzy allocation scheme that transforms raw data 

to fuzzy class memberships, (ii) a mechanism for converting feature vectors to images 

(Vec2im) and (iii) a dimensionality reduction module that makes use of Siamese convolutional 

neural networks that finally reduces the input data dimensionality into a 1-d feature space. 

The performance of the proposed methodology was validated via a thorough comparative 

analysis that demonstrated its effectiveness over a number of well-known feature selection 

(FS) and extraction techniques. The output of the proposed feature extraction pipeline could 

be potentially used by security experts as an indicator of malicious activity, whereas the 

generated images could be further utilized and/or integrated as a visual analytics tool in 

existing IDS. 
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Abstract  

Intrusion detection systems (IDS) can play a significant role in detecting security threats or malicious attacks that 

aim to steal information and/or corrupt network protocols. To deal with the dynamic and complex nature of 

cyber-attacks, advanced intelligent tools have been applied resulting into powerful and automated IDS that rely 

on the latest advances of machine learning (ML) and deep learning (DL). Most of the reported effort has been 

devoted on building complex ML/DL architectures adopting a brute force approach towards the maximization 

of their detection capacity. However, just a limited number of studies have focused on the extraction of user-

friendly risk indicators that could be easily used by security experts. Many papers have explored various 

dimensionality reduction algorithms, however a large number of selected features is still required to detect the 

attacks successfully. The objective of this paper is to transform the available data collected by IDS into a single 

actionable and easy-to-understand risk indicator. To achieve this a novel feature extraction pipeline was 

implemented consisting of the following components: (i) a fuzzy allocation scheme that transforms raw data to 

fuzzy class memberships, (ii) a mechanism for converting feature vectors to images (Vec2im) and (iii) a 

dimensionality reduction module that makes use of Siamese convolutional neural networks that finally reduces 

the input data dimensionality into a 1-d feature space. The performance of the proposed methodology was 

validated via a thorough comparative analysis that demonstrated its effectiveness over a number of well-known 

feature selection (FS) and extraction techniques. The output of the proposed feature extraction pipeline could be 

potentially used by security experts as an indicator of malicious activity, whereas the generated images could be 

further utilized and/or integrated as a visual analytics tool in existing IDS.  

Keywords: feature extraction, Siamese convolutional neural networks, machine learning, intrusion detection  

 

1. Introduction 

An IDS is a security tool that collects information from various sources (e.g. routers, computers, network data) 

aiming at identifying malicious activities and/or users that attempt to either get access to computers, steal 

protected data or even manipulate and disable information systems (Sharma and Gupta 2015). IDSs can be 

categorized into three main categories (Biijone 2016). The first category of IDS compares the collected patterns of 

network traffic with specific and pre-determined signatures (attack patterns). An attack is detected once there is 
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D3.4: Machine Learning empowered intrusion detection using Honeypots’ data v1 

    48 of 59 

 

match with an already known pattern, however this kind of IDS is incapable of identifying new (unknown) 

malicious activities. The second category builds on a set of rules and thresholds (specifications) that have been 

manually specified by security experts. These specification-based IDSs do not generate false alarms when 

unusual (but legitimate) program behaviors are encountered but in general the specifications development is a 

tedious and expensive process while the specified set of rules is  often very difficult to evaluate and verify. Unlike 

signature and specification IDSs, automated intrusion detection (AID) systems is a new category that employs 

machine learning, statistical-based or knowledge-based methods to define a normal model of the behavior of a 

computer system. The effectiveness of AID systems depends a lot on the quantity as well as quality of the 

network traffic patterns that are used as data instances during their training.  

In the last few decades, ML has been used to improve intrusion detection (Sahasrabuddhe et al. 2017). There is a 

large number of related studies using various synthetic datasets (such as KDD-Cup 99 or DARPA 1999 datasets) 

to develop and validate ML-empowered AID systems. Any significant deviation between the observed ‘normal’ 

behavior can be regarded as an anomaly, which can be then interpreted as an intrusion. The main assumption of 

the aforementioned approaches is that malicious behavior differs from typical user behavior. One simplistic 

method to decide whether a behavior is normal or abnormal is by comparing it with the standard deviation of 

the normal user behaviors in the training dataset. Any example exceeding the pre-determined threshold (e.g. 

three times the standard deviation) could be classified in the intrusion category. ML provides a more 

sophisticated method for decision making overcoming the deficiencies of the heuristic approaches (such the 

manual selection of the threshold etc.). Development of ML-based AID systems comprises of two phases: the 

training phase and the testing phase.  

c. In the training phase, the normal traffic profile is used to learn a model of normal behavior,  

d. In the testing phase, a new data set is used to validate the system’s capacity to generalize to 

previously unseen intrusions.  

AIDS can be classified into a number of categories based on the method used for training, for instance, statistical 

based, knowledge-based and machine learning based (Butun et al. 2014). The main advantages of ML-

empowered AID systems are: (i) Their ability to identify zero-day attacks without relying on a signature database 

(Alazab et al. 2012). A danger signal can be triggered when the examined behavior differs from the usual 

behavior. (ii) Their capability to discover internal malicious activities. An alarm will be created in cases where 

an intruder starts making transactions in a compromised account that deviate from the typical user activity. 

(iii)The normal user behavior is hidden to intruders and thus it becomes more difficult for them to remain 

undetected. The objective of using machine learning techniques is to create IDS with improved accuracy and less 

requirement for prior human knowledge. However, one of the main challenges of current AIDS is the high false 

positive rates because anomalies may just be new normal activities rather than genuine intrusions. 

One of the crucial phases in today’s ML pipelines is the process of extracting knowledge from large quantities of 

data. To effective extract knowledge from raw data, ML relies on a set of rules, methods, or complex “transfer 

functions” that are applied to find interesting data patterns, or to recognize and predict behavior (Dua and Du 

2016). Many ML algorithms (such as clustering, neural networks, association rules, decision trees, genetic 

algorithms, and nearest neighbor methods) have been recently applied in the area of AIDs for discovering 

knowledge from intrusion datasets (Kshetri and Voas 2017, Xiao et al. 2018 ). Some prior research in data mining 

has examined the use of different algorithms to extract meaningful information for intrusion data. Two feature 

selection algorithms were investigated by Chebrolu et al. 2015 employing Bayesian networks (BN) and 

Classification Regression Trees (CRC). The outputs of the aforementioned algorithms were finally combined to 

increase accuracy. Bajaj et al. 2013 proposed a technique for feature selection using a hybrid approach that 

combines Information Gain (IG) and correlation attribute evaluation. To validate the discrimination capacity of 

the selected features, the authors applied several classification algorithms such as C4.5, naïve Bayes, NB-Tree 

and Multi-Layer Perceptron (Khraisat 2018). Genetic-fuzzy rule mining has been also explored to evaluate the 

importance of IDS features by Elhag et al. 2015. Thaseen et al. 2012 proposed a Random Tree model to improve 
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the accuracy and reduce the false alarm rate, whereas Subramanian et al. also studied the performance of decision 

tree algorithms on the NSL-KDD dataset. 

Unlike ML approaches that require the extraction of features, Deep learning (DL)-based detection methods learn 

feature automatically in an end-to-end fashion (directly from raw data to decisions). DL is gradually attracting 

more interest in AID studies. A CNN-based AID methodology was presented by Potluri et al. 2018 conducting 

experiments on the NSL-KDD and the UNSW-NB datasets. In the pre-processing phase, the features of the 

datasets were transformed into images of 8*8 pixels. Then, a three-layer CNN was trained to classify the attacks. 

Pre-trained deep networks (ResNet 50 and GoogLeNet) were also explored as alternative solutions to the task of 

extracting new informative features.   The proposed CNN performed best, reaching accuracies of 91.14% on the 

NSL-KDD and 94.9% on the UNSW-NB 15. A sparse autoencoder was also proposed by Zhang et al. 2018 to 

extract features from the NSL-KDD dataset. The extracted features were supplied to an XGBoost model with the 

objective to detect attacks. To overcome the observed data imbalance problem, data resampling was employed 

(using SMOTE). The SMOTE algorithm oversamples the minority classes and divides the majority classes into 

many subclasses so that every class is balanced.  Data augmentation with GANs has been also explored by Zhang 

et al. 2019. The GAN model was used to generate data similar to the flow data of KDD99. Adding this generated 

data to the training set increased the generalization capacity of the detection model that was able to identify not 

only attacks but attack variants as well. 

This paper contributes to current AID systems by transforming the available multi-dimensional network traffic 

data into an actionable and easy-to-understand indicator for security experts. This has been achieved by 

designing a novel feature extraction pipeline that builds on the latest advances of data mining and ML/DL. 

Specifically, a fuzzy allocation scheme is initially applied to transform raw data to fuzzy class memberships. 

Then a data transformation mechanism converts feature vectors to images (Vec2im) and a dimensionality 

reduction module makes use of Siamese convolutional neural networks to reduce the input data dimensionality 

into a 1-d feature space. The performance of the proposed methodology was validated via a thorough 

comparative analysis that demonstrated its effectiveness over a number of well-known feature selection and 

extraction techniques. 

The rest of this article is structured as follows: The proposed feature extraction pipeline with architectural and 

implementation details is provided in Section 3. Experimental results are demonstrated in Section 4, with a 

comparative analysis with existing approaches. Conclusions are drawn in Section 5. 

2. Methodology  

The proposed methodology in this paper for feature extraction in the domain of intrusion detection includes four 

processing steps: (i) data pre-processing making use of a  fuzzy allocation scheme  to convert raw data into fuzzy 

values, (ii) a data transformation technique that generates images comprising of fuzzy memberships, (iii) a novel 

feature extraction algorithm employing Siamese convolutional neural networks and finally (iv) a learning 

process for training, and evaluation of the results, as illustrated in Fig. 1. The proposed methodology is 

thoroughly presented in the following sections. 

https://link.springer.com/article/10.1007/s42484-019-00008-3#Fig1
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Figure 1 The proposed Vec2im-Siam methodology  

2.1 Dataset description  

To validate the performance of the proposed feature extraction methodology, the NSL-KDD dataset was 

employed. NSL-KDD is actually a variant of the KDD99 dataset that is the most widespread IDS benchmark 

dataset at present. Overcoming the limitations of KDD99 (severely unbalanced data, many duplicated and 

redundant records), NSL-KDD represents a more balanced dataset with a moderate number of records that has 

allowed the application of various IDS in a large number of papers whose results are consistent as well as 

comparable. For the aforementioned reasons, we used it as a benchmark in our analysis.  

Our dataset consists of 41 features that are categorized in four subsets, i.e., basic features, content features, host-

based statistical features, and time-based statistical features. As far as the attack types in the NSL-KDD dataset, 

they are divided into four categories: 

1. Denial of service (DoS): exhausting the resources of the attacked object by savage means; thus, making 

it unable to provide normal services; paralysis. Subcategories: ping of Death, LAND, neptune, 

backscatter, smurf, teardrop 

2. R2L: unauthorized access to remote computers. Subcategories:  ftp-write, password guessing, imap, 

multi-hop, phf, spy, warezclient, warezmaster 

3. U2R: unauthorized access to local superuser privileges. Subcategories: buffer Overflow, loadmodule, 

perl, rootkit 

4. Probe: monitoring and other detection behavior. Subcategories: ipsweeping, nmap, portsweeping, 

satan 

Specifically, a 20% subset of the NSL-KDD training data (the NSL-KDD Train 20 variant) was used in our paper 

comprising of 25,192 data points, where the NSL-KDD Test+ data file (comprising of 22,544 data points) was 

utilized for testing.  Given that the focus of the paper is not on the recognition of the different attacks, the 

intrusion detection problem was considered as binary by merging all the anomalous records (categories 1-4) into 

one class. 

2.2 Fuzzification and image formulation (Vec2im) 
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First of all, the non-numeric attributes of the dataset were converted into numeric values. For the efficient 

training of machine learning algorithms, input data is typically transformed by a number of  pre-processing 

routines  with  data  normalization being the gold standard.  Different algorithms could be used to normalize 

the input data (such as min-max normalization or normalization with respect to standard deviation), however 

in this paper we employed a fuzzy allocation scheme as described below.  

Fuzzification: To normalize as well as evaluate the classification capabilities of each feature, we applied a simple 

fuzzy allocation scheme that assigs varying degrees of patterns to every class. For feature j, the fuzzy 

membership 𝑢𝑖(𝑥𝑘,𝑗) ∈ [0,1] indicating the degree to which  𝑥𝑘,𝑗 belongs to class i is determined by: 

𝑢𝑖(𝑥𝑘,𝑗) =
1

∑ [
(𝑥𝑘,𝑗−𝑢𝑖,𝑗)2

(𝑥𝑘,𝑗−𝑢𝑚,𝑗)2]

1 (𝑏−1)⁄
𝑐
𝑚=1

                                                                      (1) 

where  𝑢𝑖,𝑗 = ∑ 𝑥𝑘,𝑗 𝑁𝑖⁄𝑘∈𝐴𝑖
 is the class i mean along the 𝑥𝑘,𝑗 component, 𝐴𝑖 is the set of indexes of the training 

examples belonging to class i , 𝑁𝑖 is the number of class i patterns and b is a fuzzification factor (b = 2 in our 

experiments). In our paper, every feature component of 𝑥𝑘,𝑗, was converted to 𝑢1(𝑥𝑘,𝑗) that denotes its fuzzy 

membership to class 1 (normal / non intrusion class). High values of 𝑢1(𝑥𝑘,𝑗)  close to 1 indicate a strong 

membership to the non-intrusion class whereas low 𝑢1(𝑥𝑘,𝑗) values close to 0 are representative of examples 

belonging to the malicious class.  

Vec2im: At the second phase of processing, the generated memberships were re-placed in a matrix format 

resulting to one grey-scale image per example. Specifically, the 41 features 𝑥𝑘,𝑗 , 𝑗 = 1, … ,41 were transformed to 

41 fuzzy memberships  𝑢𝑖(𝑥𝑘,𝑗), 𝑗 = 1, … ,41 and finally a 7×7 image was created per sample by placing the fuzzy 

memberships in a matrix as presented in Figure 2. Zero values were also included in the matrix in random cells 

to fill the eight gaps (given that the dimensionality of the initial feature set was 41 with a total of 49 cells to be 

filled in the matrix). Fuzzy memberships and zero values were ordered randomly since it was concluded that 

their order has not any significant impact on the final performance of the proposed methodology.     

 

Figure 2. Converting feature vectors to images (Vec2im)  

2.3 Dimensionality Reduction with Siamese deep learning networks  

Deep Siamese Convolutional Neural Networks (SCNN) architecture is a variant of neural networks that was 

originally designed to solve signature verification problem of image matching (Bromley et al. 1993). It has also 

been used for one-shot image classification (Koch 2015), face verification where the categories are not known in 

advance (Chopra et al. 2005) as well as for dimensionality reduction (Hadsell et al. 2006). SCNN consist of two 

identical symmetric CNN subnetworks that share the same weights. In our experiment, each identical CNN was 

built using one convolutional layer followed by three fully connected layers. The rectified linear units (ReLU) 

nonlinearity was applied as the activation function for all layers, and adaptive moment estimation (ADAM) 

optimizer was utilized to control learning rate (Kingma and Ba 2014). The similarity between images was 

calculated by Euclidean distance, and the contrastive loss (Chopra et al. 2005) was calculated to define the loss 

function as follows: 
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                                (2) 

where 𝐷 = ‖𝑓(𝐼1) − 𝑓(𝐼2)‖2,                                                                            (3) 

𝐼1and 𝐼2 are a pair of the generated images fed into each of two identical CNNs. 1(·) is an indicator function to 

show that whether two images have the same label, where L = 0 represents the images have the same label and 

L = 1 represents the opposite. W is the shared parameter vector comprising of the weights that both neural 

networks share each other. 𝑓(𝐼1) and 𝑓(𝐼2) are the latent representation vectors of input 𝐼1 and 𝐼2, respectively 

and D is the Euclidean distance between them. The selected SCNN architecture (as depicted in Figure 3) reduces 

the dimensionality of the 41-dimensional feature space to a single 1-d space.  

 

Figure 3 Selected Siamese network architecture for dimensionality reduction 

2.4 Decision making on the reduced feature space  

To evaluate the discrimination capacity of the extracted features, we employed various machine learning models 

trained to implement the binary classification task on the resulted 1-d space. We tested linear discriminant 

analysis (LDA) and Naïve Bayes (Duda et al. 2000) to provide a baseline for comparisons with more advanced 

models. We also evaluated decision trees (Belson 1959, Witten et al. 2011), driven by Gini’s diversity index, KNN 

(Atekson et al. 1997), as well as non-linear support vector machines (SVM) algorithms (Cortes and Vapnik 1995, 

Scholkopf 1997) with Gaussian kernel, which can deal with the overfitting problems that appear in high-

dimensional spaces. The ensemble techniques AdaBoost (Freund and Schapire 1997) and Random Forest 

(Breiman 2001) were also evaluated using DT models as weak learners.  

To achieve a fair comparison between the different approaches, hyperparameter selection was performed for 

each one of the investigated machine algorithms. A validation subset was held out from the training set (a 

randomly selected 10%) as a criterion for: (i) selecting the optimum hyperparameters by means of a grid search 

process as well as (ii) deciding the termination of the SCNN learning.   

3. Results  

3.1 Data visualization  

Figure 4 depicts indicative images generated by the proposed Vec2im for both intrusion and non-intrusion 

(normal) classes. White areas correspond to features in which a strong membership to the normal class is 

observed and vice versa for the black areas. Observing the generated images, there is a clear visual distinction 

between the two classes, with the normal class (Fig. 3a) being represented by whiter images. Some of the pixels 

receive high values (close to 1) in images from both classes, however there are some areas on the images that are 

solely activated in one of the two classes creating distinct color patterns. The objective of the Siamese neural 
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network that follows is to capture these patterns via their convolutional layer and further convert this 

information into a more compressed representation (reduced feature space).  

 

  
(a) (b) 

Figure 4 Indicative images generated by Vec2im for the normal (a) and intrusion class (b) 

 

3.2 Siamese network learning  

Figure 5a shows the progression of contrastive loss of the SCNN with respect to the number of iterations. One 

critical aspect of SCNN training is the termination of the learning process. A validation subset was held out from 

the training set (a randomly selected 10%) and a linear classifier (LDA in our paper), trained on the 90% of the 

training set, was utilized to act as a termination criterion. Specifically, the learning process terminates on the 

iteration where the validation performance of the trained LDA models reaches its maximum value (at iteration 

441 in our example).  Figures 5b and 5c depict the histogram of the extracted feature values on the reduced 1-d 

space (that is actually the SCNN output) at iterations 1 and 441 iterations, respectively. The histogram at the first 

iteration shows that there is a significant overlap between the data distribution of the two classes. On the 

contrary, the resulted space at iteration 441 is more informative with a small overlap between the per-class 

distributions (Figure 5c) and with most of data points concentrated at the distribution edges.   
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Figure 5a) Training contrastive loss with respect to number of iterations, b) histogram of the reduced feature 

space (SCNN output) at iteration 1 and c) histogram of the reduced feature space (SCNN output) at iteration 

441 

 

3.3 Comparative analysis  

a. Identifying the optimum ML performer on the reduced feature space 

Seven ML models were investigated for their suitability on discriminating intrusion from non-intrusion data. 

Specifically, we tested: (i) Naïve Bayes, (ii) AdaBoost, (iii) Random Forest, (iv) Support Vector Machines (SVM), 

(v) nearest neighbor classifier (kNN), (vi) decision trees (DT) and (vii) discriminant analysis trained on the 

reduced 1-d feature space as have been generated by Vec2im-Siam.   

Figure 6 shows the progression of the testing accuracy in relation to the number of iterations for the 

aforementioned ML models. To implement this, we stored the extracted feature values for both training and 

testing after the end of each iteration of the SCNN learning process. This led to the creation of 500 1-d training 

and testing sets in which the seven ML were trained and validated, respectively.  

 

Figure 6 Testing accuracy with respect to number of iteration of different ML models trained on the resulted 1-

d feature space   

Table 1 cites the best performances (training and testing) as accomplished by the seven competing ML models. 

AdaBoost achieved the overall best testing accuracy (86.64%) whereas slightly reduced testing accuracies (more 

than 86%) were received by RF, Naïve Bayes and SVM.  LDA, DT and kNN were 1% - 2% less effective in our 

data classification task. Overall, all competing models had similar learning curves (as shown in Figure 6) and 

they achieved similar testing accuracies within a range of approximately 2%. This finding verifies the 

effectiveness of the proposed feature extraction methodology that leads to a very informative 1-d feature space 

in which all ML models (either linear or non-linear) perform well. The confusion matrixes of the four best 

performing ML models (as shown in Table 2) demonstrate that all four perform similarly exhibiting non 

important differences in the achieved class accuracies. 
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Table 1 Comparative analysis with respect to optimal choice of the machine learning model  

Exp. Feature Extraction Classification model Training (%) Testing (%) 

1. Fuzz-Vec2im -Siam1 Naïve Bayes 98.52 86.17 

2. Fuzz-Vec2im -Siam1 AdaBoost 98.43 86.64 

3. Fuzz-Vec2im -Siam1 Random Forest  98.48 86.40 

4. Fuzz-Vec2im -Siam1 SVM 98.53 86.01 

5. Fuzz-Vec2im -Siam1 kNN - 1 100 84.29 

6. Fuzz-Vec2im -Siam1 Decision Trees 99.5 84.31 

7. Fuzz-Vec2im -Siam1 Linear Discriminant 98.69 85.38 

 

 

Table 2 Confusion Matrixes of the best four performing ML models (LDA and AdaBoost) trained on the 

reduced feature space 

   
 A

B
  

 Class 1 Class 2 Per class accuracy 

Class 1  9323 388 96.00% 

Class 2 2624 10209 79.55% 

 Overall accuracy  86.64% 

  

R
F

 

 Class 1 Class 2 Per class accuracy 

Class 1  9336 375 96.14% 

Class 2 2692 10141 79.02 

 Overall accuracy  86.40% 

 

N
B

 

 

 Class 1 Class 2 Per class accuracy 

Class 1  9393 318 96.73% 

Class 2 2800 10033 78.18% 

 Overall accuracy  86.17% 

 

S
V

M
 

 

 Class 1 Class 2 Per class accuracy 

Class 1  9400 311 96.80% 

Class 2 2842 9991 77.85% 

 Overall accuracy  86.01% 

 

b. Comparison with other feature selection / feature extraction techniques  

A thorough comparative analysis between the proposed methodology and other well-known competing 

feature extraction / selection techniques is presented below.  

• Experiments 8 – 9: Evaluating the effect of fuzzification on the proposed feature extraction methodology  

In experiments 8 – 9, we evaluated the effect of fuzzification on the performance of the proposed methodology. 

To accomplish this, we replaced the proposed fuzzification technique with a standard data normalization into 

the range [0, 1]. Both pre-processing techniques scale the data into the same range, however they have different 

characteristics: 

- data normalization applies a linear transformation on the data rescaling all features to the same range, 

whereas 
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-  the proposed fuzzification technique transforms raw data into class memberships (the generated 

fuzzy values declare at what extend a sample belongs to class 1).  

The application of the fuzzy allocation scheme prior to feature extraction had a positive effect on both training 

and testing accuracies. Specifically, replacing the proposed fuzzification scheme with a standard data 

normalization technique lowered the testing accuracy by 6% (refer to experiment 9 in Table 3).  

• Experiments 10 – 17: Comparing the proposed feature extraction approach with other FS techniques 

For comparison purposes, a wrapper FS technique was also employed to reduce the feature dimensionality of 

the initial 41-d space. This technique employs a search strategy to look through the space of possible feature 

subsets, evaluating each subset based on the quality of the performance of a given algorithm. A sequential 

forward selection strategy was implemented that starts with no feature and progressively adds one feature at a 

time. The same classifier was utilized in both the wrapper FS and the proposed vec2im+Siam methodology in 

order to set a fair comparison ground. The wrapper FS technique was implemented four times setting different 

termination criteria as follows:  

- in the experiment 10, the wrapper FS was implemented to identify the most important feature from the 

entire feature space. The obtained 1-d space was compared with the 1-d space as it has been generated 

by the proposed in this paper methodology.  A much lower testing accuracy was observed in 

experiment 10 (77.91%) indicating that the selected feature is less informative compared to the extracted 

feature from Vec2im-Siam. 

-  In experiments 12, 14 and 16, different termination criteria were set in the Wrapper FS technique 

leading to feature spaces of higher dimensionality (2-d, 3-d and 10-d, respectively). The discrimination 

capability of the resulted spaces was also compared with the 1-d space of the proposed methodology 

using the same classifier. The results verify that the extracted 1-d feature space of Vec2im-Siam is more 

descriptive than the resulted spaces of the Wrapper FS technique. This is even valid in the case of the 

10-d feature space, in which the application of the same classifier led to an testing accuracy of 84.06 

(exp.16) that is 2.6% lower than the testing performance of the proposed methodology implemented on 

a 1-d space.  

To further evaluate the usefulness of the proposed fuzzification routine, we applied it as a pre-processing tool 

prior to the application of the Wrapper FS technique (refer to experiments 11, 13, 15 and 17) and finally compared 

the classification accuracy obtained with the one obtained in experiments 10, 12, 14 and 16 (where a standard 

data normalization is employed). Equal accuracies were obtained in experiments 10 and 11 (77.91 % in testing 

for both) and in experiments 12 and 13 (82.04% in testing for both). A slight increase was observed in the testing 

accuracy of experiments 15 and 17 (85.81% and 85.93%, respectively) compared to the accuracies achieved in 

experiments 14 and 16 (82.98% and 84.06%, respectively) indicating that the proposed fuzzification algorithm 

might also have a positive effect on a variety of other machine learning pipelines.  

• Experiments 18 – 20: Comparing the proposed feature extraction approach with PCA 

The proposed Vec2im-Siam feature extraction methodology was finally compared with Principal Component 

Analysis (PCA) that is a well common feature dimensionality reduction approach. Three different feature spaces 

of varying dimensionality were generated via PCA as follows: 

- A 1-d feature space using only the first extracted principal component (experiment 18) 

- A 2-d feature space using the first two extracted principal components (experiment 19) 

- A 3-d feature space using the first three extracted principal components (experiment 20). 

The results highlighted the superiority of the Vec2im-Siam given that it outperformed PCA by more than 10% 

in testing even in the case in which higher dimensional spaces were used (e.g. in experiments 19 and 20).  

 

Table 3 Comparative analysis with respect to competing feature  
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selection / extraction techniques using the same classifier (LDA)  

Exp. Preprocessing  Feature Extraction Dimensionality of the 

resulted feature space 

Training 

(%) 

Testing 

(%) 

8. Fuzzification Vec2im – Siam1 1 98.69 86.64 

9. Normalization  Vec2im – Siam1 1 90.20 80.64 

10. Normalization  FS (best feature) 1 82.84 77.91 

11. Fuzzification FS (best feature) 1 82.84 77.91 

12. Normalization FS (2 first features) 2 90.79 82.04 

13. Fuzzification FS (2 first features) 2 90.79 82.04 

14. Normalization FS (3 first features) 3 92.20 82.98 

15 Fuzzification FS (3 first features) 3 91.24 85.81 

16. Normalization FS (10 first features) 10 92.33 84.06 

17. Fuzzification FS (10 first features) 10 92.03 85.93 

18. Normalization PCA (1 principal component) 1 89.69 75.64 

19. Normalization PCA (2 principal components) 2 89.47 76.30 

20. Normalization PCA (3 principal components) 3 89.48 76.32 

 

4. Conclusions  

A novel feature extraction pipeline is proposed in this paper that consists of the following components: (i) a 

fuzzy allocation scheme that transforms raw data to fuzzy class memberships, (ii) a mechanism for converting 

feature vectors to image (Vec2im) and (iii) a dimensionality reduction module that makes use of Siamese 

convolutional neural networks that finally reduces the input data dimensionality into a 1-d feature space. The 

proposed methodology was successfully applied on the NSL-KDD intrusion detection dataset. A thorough 

comparative analysis was performed that demonstrated the effectiveness of the different components of the 

methodology (e.g. the fuzzification, Vec2im including also visual interpretation) and also compared its 

performance with other well-known feature selection and extraction techniques. The proposed feature extraction 

methodology was assessed by applying a variety of ML models on the resulted 1-d feature space and evaluating 

their performances on the testing dataset. The increased discrimination capability of the resulted reduced feature 

space was verified by the fact that all competing models that were trained on it (either linear or not) had similar 

learning curves achieving similar testing accuracies within a small range of approximately 2%. The outcome of 

the proposed pipeline (Fuzz-Vec2im-Siam1) could be potentially used as a risk indicator for identifying cyber 

attacks, whereas the generated Vec2im images could be further utilized and/or integrated as a visual analytics 

tool in IDS. Future plans include the application of the proposed methodology in other sectors (such as in 

healthcare) where decisions should be taken based on complex and heterogenous data.  
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