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Abstract—Anomaly detection in visual data refers to the
problem of differentiating abnormal appearances from normal
cases. Supervised approaches have been successfully applied
to different domains, but require abundance of labeled data.
Due to the nature of how anomalies occur and their underly-
ing generating processes, it is hard to characterize and label
them. Recent advances in deep generative based models have
sparked interest towards applying such methods for unsupervised
anomaly detection and have shown promising results in medical
and industrial inspection domains.

Index Terms—anomaly detection, unsupervised, deep-learning,
autoencoders, generative adversarial networks

I. INTRODUCTION

Anomaly detection represents an important process of de-
termining instances that stand out from the rest of the data.
Detecting such occurrences in different data modalities is
widely applicable in different domains such as fraud detection,
cyber-intrusion, industrial inspection and medical imaging [1].
Detecting anomalies in high-dimensional data (e.g. images) is
a particularly challenging problem that has recently seen a
particular rise of interest, due to prevalence of deep-learning
based methods.

Success of current deep-learning based methods has mostly
relied on abundance of available data. Anomalies generally
occur rarely, in different shapes and forms and are thus
extremely hard or even impossible to label. Supervised deep-
learning approaches have seen great success in different do-
mains, including in anomaly detection [2]–[4]. Success of such
methods is the most evident in the domains with well known
characterization of the anomalies and abundance of labeled
data. Specific to the visual anomaly detection domain, we
usually also want to localize the actual anomalous region in
the image. Obtaining such detailed labels to learn supervised
models is a costly process and in many cases also impossi-
ble. Weakly-supervised approaches address such problems by
requiring only image-level labels and are thus able to infer
anomalous regions solely from weakly labeled data [5]–[7].
In an unsupervised setting, only normal samples are available,
which are usually available in abundance. Such methods repre-
sent the most general case and are the most widely applicable.
Deep generative methods have been recently applied to the
problem of unsupervised anomaly detection (UAD) and have

shown promising results [8], [9]. Current methods are usually
developed for a particular domain or on synthetic datasets
which limits their generality, as well applicability to real-world
applications. They are also not really unsupervised, requiring
only normal samples, with significant drops in performance
with the presence of small amount of contaminated training
data [10], [11].

In this work we focus on anomaly detection from images,
which was just briefly mentioned in one of the most significant
papers on general anomaly detection [1]. This clearly shows
the state of this domain before the era of deep-learning.
There have been a lot of advancements in recent years in the
visual anomaly detection domain, but there is no survey work
that clearly summarizes them. Most of the existing survey
papers are addressing the wider scope of anomaly detection
problem, lacking the focus on visual anomaly detection and
its recent advancements [1]. Some survey papers are address-
ing recently popular deep-learning based anomaly detection
approaches [2], but are describing applications to the broader
field of anomaly detection and are not focusing on particular
methods and application domains related to visual anomaly de-
tection. Similarly there are survey papers that are focusing on
a particular set of methods [12]. Our work is addressing some
of this limitations, by providing a general overview and at the
same time limiting the focus to a few application domains and
representative state-of-the-art methods. We also explore and
present open research problems, from methodological point
of view, as well as novel challenging application domains,
untapped by existing UAD methods.

II. TAXONOMY OF LEARNING APPROACHES

A. General Anomaly Detection

The general problem of anomaly detection, as well as
domain specific applications have been a topic of a number
of surveys and review articles [1], [2], [12]. In this work
we emphasize survey paper [1], which provides an extensive
overview, spanning multiple research areas and application
domains. This survey paper is particularly interesting as it
captures all the relevant research and application domains
before the era of deep-learning and clearly shows the state
of research interest towards visual anomaly detection.



Anomaly detection refers to the problem of differentiating
abnormal appearances from normal cases. These abnormal
appearances are in the literature known as anomalies, outliers,
discordant observations, exceptions, aberrations, surprises, pe-
culiarities or contaminants, depending on the application do-
main [1]. Applications of anomaly detection can be found
in fraud detection systems for credit cards and insurances,
intrusion detection systems for cyber-security, industrial in-
spection and medical imaging. According to [1], anomalies
can be categorized as point anomalies, contextual anomalies
and collective anomalies. Point anomaly represents an in-
dividual data instance, that deviates from the rest the data
and represents the simplest type of anomaly and is also the
focus of research on anomaly detection. Point anomaly can be
represented as a contextual anomaly, if it is not conforming
to the expected behavior in a specific context (e.g. a low
temperature in summer). Collective anomalies, on the other
hand, represent a set of data points, which together represent
a deviation from a normal behaviour.

Anomaly detection methods can also be used for novelty
detection, as they offer capabilities to detect unseen patterns
in data, that could translate to new actionable insights. The
difference is that the novel patterns are usually used alongside
the previously known patterns, after being detected.

B. Availability of Labeled Data

Availability of large scale datasets [13] with labeled data
and proliferation of deep-learning based methods has brought
tremendous improvements particularly to computer vision do-
main [14]. Obtaining labeled data is often very expensive, as
it is usually done manually by a human expert. Obtaining
labeled data for anomaly detection is even harder, or even
impossible, due to the nature of anomaly occurrences and
unknown underlying processes, that generate them. Important
factor is also the level of details, that are provided with
the labels. This is especially important for visual anomaly
detection, where labels can be on the image level (i.e. contains
anomaly or not) or at the pixel level, delineating location and
the extent of anomalies.

Anomaly detection methods are categorized to the bellow
presented modes, based on the extent, to which the labels are
available [1].

1) Supervised anomaly detection: Methods trained in a
supervised fashion require labeled data for normal, as well as
anomalous cases. There is usually much more labeled data for
normal instances, which makes this an extremely imbalanced
classification problem. Generalization performance of such
methods is usually worse, due to limited availability and fixed
vocabulary of representative labels and can also vary by the
application domain.

2) Semi-supervised anomaly detection: According to [1],
semi-supervised anomaly detection methods require labeled
data only for normal instances and are as such more widely ap-
plicable. Such classification is often interchangeably also used
for current unsupervised anomaly detection approaches, where
normal instances are usually implicitly labeled as normal. A

more common and widely used semi-supervised setting is
when there is a combination of large set of unlabeled samples
and a small pool of labeled ones [15].

3) Weakly-supervised anomaly detection: Weakly-
supervised anomaly detection has not been considered in [1],
mostly due to recent advancements and applications of such
methods in the domain of visual anomaly detection [5]–[7].
In the context of industrial inspection or anomaly detection
in medical imagery, we want to detect the anomaly, as well
as localize it. Detailed ground-truth localized annotations
are expensive or impossible to obtain in many cases.
Weakly-supervised anomaly detection approaches utilize only
image-level labels (i.e. contains anomaly or not) and are able
to localize anomalous regions, without pixel-level annotations
in the case of visual anomaly detection.

4) Unsupervised anomaly detection: Unsupervised meth-
ods do not require any labeled data and are as such the
most widely applicable. They are usually trained with normal
samples only in order to learn the distribution and are later on
capable of capturing out-of-distribution samples. This methods
run on the assumption that normal samples are far more
frequent than anomalous ones. With recently presented deep
generative based methods, accurate detection and localization
of anomalous regions is possible, without any supervision [8],
[16]. In the literature most of these methods are treated as
unsupervised, despite weak implicit supervision, which is in-
troduced by selecting only normal samples for training. In real-
life scenarios one should expect that there will be some small
percentage of contaminated data in training samples [10], [11].

III. VISUAL ANOMALY DETECTION

Visual anomaly detection is dealing with detecting and
localizing anomalous regions in imagery data. We have seen
great success in computer vision domain since the introduc-
tion of deep-learning based methods and consequently, visual
anomaly detection has also seen increasing interest and suc-
cess [2]. The primary benefit of deep-learning based methods
is the data driven approach, which eliminates the need for the
expert-level feature engineering, which has shown sub-optimal
performance [14], [17]. Despite the proliferation of deep-
learning based methods, there is relatively small amount of
methods that are truly addressing anomaly detection problem,
especially in a real-world setting.

In the next sections we discuss this recent improvements in
the context of industrial inspection and medical domain. We
first briefly present a few application domains and associated
data, with the focus on two recently presented large-scale
datasets. Later on we categorize the methods based on the
availability of data and present the main representatives.

A. Datasets

Large-scale labeled datasets have been one of the main
contributing factors to the recent success of deep-learning
based methods [13], [14]. Due to the nature and frequency
of anomaly occurrence in real-world application domains, it



is difficult to obtain such large-scale datasets for anomaly
detection.

Most of the initial work on visual anomaly detection has
been performed on existing classification datasets [13], [18],
[19], by considering a subset of the existing classes as
anomalous samples and the rest of them as normal. With this
approach one gets access to large-scale datasets to develop
anomaly detection methods, but the anomalous samples dif-
fer significantly from the normal ones and are as such not
representing real-world conditions. Manufacturing defects in
industrial inspection domain or lesions in medical imagery are
usually hard to detect and do not alter the resultant image, to
differ significantly from normal samples. Equally important in
visual anomaly detection domain is also the ability to segment
anomalous regions, which is especially vital for industrial
inspection and medical domain.

Real-world datasets for anomaly detection are rare, due
to difficulties to create them, as well as due to confidential
and privacy concerns. Industrial inspection is performed with
industrial grade cameras [4] and specialized devices, such as
X-Ray CT scans [20], which can reveal the details of the
manufacturing process. Similarly, medical imagery can contain
personal information and needs to be reviewed by medical
boards and in some cases, patients consents are needed [3].
Despite confidential and privacy concerns, there are some
datasets, that have been made publicly available and two
representative datasets, that will be used in our research work
are presented next.

1) MVTec AD - A Comprehensive Real-World Dataset
for Unsupervised Anomaly Detection: The dataset presented
in [21] represents the first comprehensive, multi-object, multi-
defect dataset for anomaly detection in a real world sce-
nario of an industrial inspection. In comparison with other
works [22]–[24], that evaluate anomaly detection methods
on existing classification datasets, this represents a much
more realistic scenario, with anomalies manifesting in less
significant differences from the training data. MVTec Anomaly
Detection dataset consists out of 15 categories of different
objects and textures. 3629 images are provided for training and
validation and another 1725 for testing. The training data does
not contain defects. Altogether, 73 different types of defects
are encountered, with provided pixel-wise annotations for all
the test examples. Example data, together with anomalies
and pixel-wise annotations are presented in figure 1. The
captured dataset represents close-to real-world conditions, with
some of the objects being rigid, while others deformable or
with natural variations. Some of the objects are captured in
aligned poses and some in random rotations. All images were
acquired using 2048 x 2048 industrial grade RGB camera and
resultant images were cropped to different resolutions between
700 x 700 and 1024 x 1024 pixels. Some of the images
were intentionally provided in gray-scale and under different
(uncontrolled) illumination conditions, to increase variability.

A thorough evaluation of multiple state-of-the-art un-
supervised anomaly detection methods was performed.
AnoGAN [16] method, based on generative adversarial net-

works (GANs), as well as a method based on auto-encoders
and structural similarity [25] were evaluated. Both of the
methods are described in section IV-C. Additionally, they
evaluate a classical Convolutional Neural Network (CNN)
feature extraction approach [26], as well as traditional non
deep-learning methods based on Gaussian Mixture Model
(GMM) [27] and a simple variational model approach [28].

Results were reported based on the classification, as well
as anomaly segmentation performance, across different ob-
ject and texture categories. None of the evaluated methods
performed consistently across different object and texture
classes. Object categories were best classified using autoen-
coders [25], with L2 loss. Similarly this method performed
the best on the segmentation task, but with the structured
similarity (SSIM) [25] as the reconstruction loss. This bench-
mark also nicely represents the level of the generalization
performance, especially with the AnoGAN method [16] and its
non-competitive results in comparison with the state-of-the-art
results in medical domain.

2) Detection of Lymph Node Metastases in Women with
Breast Cancer: Advances in tissue digitalization and in
slide scanning technology have opened the possibilities for
computer-aided diagnostics to detect cancerous metastases in
stained tissue sections. Digital pathology is a new emerging
field, utilizing computerized analysis of histopathological im-
ages. Breast cancer is just one of the many cancers, where
the extent of it is measured by histopathological analysis.
Detecting metastases in such gigapixel imagery is prone to
error and a time consuming process, where pathologists would
benefit greatly by recent advances in computer vision domain.

A competition was organized in 2015 [3] in order to evaluate
the machine learning based methods against pathologists.
In the challenge setting, some deep-learning based methods
achieved better results than a panel of 11 pathologists. 399
whole-slide images were collected from 399 patients at 2
hospitals in the Netherlands. All metastases in the slides where
annotated by trained pathologists on the slide level (contains
metastases or not - for the slide level classification), as well
as separate metastases (for segmentation purposes). The set
of images was randomly divided into train (n = 270) and
test set (n = 129). All the data is publicly available on
the competition websites12. The first task was designed to
evaluate the detection of separate metastases and evaluate the
performance against the reference annotations, provided by the
pathologists. Free-response Receiver Operator Characteristics
curve (FROC) was used to evaluate the performance, at 6
predefined false positive rates. FROC curve shows the true-
positive fraction vs. the mean number of false-positive detec-
tions in metastasis-free slides only. The goal of the second task
was to evaluate the discrimination performance on the whole-
slide level. Area Under Curve (AUC) was used for evaluation
against pathologists, with and without any time-constraint.

1https://camelyon16.grand-challenge.org/https://camelyon16.grand-
challenge.org/

2https://camelyon17.grand-challenge.org/https://camelyon17.grand-
challenge.org/



Fig. 1: Samples from MVTec AD dataset [21]. First row represents normal samples from the training set (bottle, cable, capsule,
carpet, hazelnut, metal nut), second row the same objects with various defects and the third row presents pixel-wise annotations
for defective samples. Image adapted from [21].

Out of 32 submitted methods, 25 used deep convolutional
neural networks (CNNs) and overall performed significantly
better compared to traditional approaches. However, prepro-
cessing (e.g. standardizing stain variations, different sampling
strategies - class imbalance problem) and augmentation pro-
cedures proved to play an important role, compared to the
selection of the CNN architecture. After the competition,
another approach was presented [29], which improves the
competition results significantly and is presented in detail in
the next section. All the solutions approached the problem
in a supervised fashion, as a patch classification problem. We
will approach this problem as an unsupervised visual anomaly
detection problem instead. Same data was already utilized in
a weakly-supervised fashion using Multiple Instance Learning
(MIL) approach [6], utilizing only whole-slide level annota-
tions, presented in section IV-B.

IV. METHODS

In this section we review representative methods for
anomaly detection, based on availability of the data. We focus
on the medical domain, specifically on metastases detection
from histopathological images. This particular domain repre-
sents a challenging task, that has not been considered directly
as an anomaly detection problem. This particular problem has
been considered in a supervised setting, as well as recently in a
weakly-supervised fashion. Unsupervised approaches have not
been considered yet. We present these existing approaches,
as well as describe current state-of-the-art UAD approaches
and present initial results, that demonstrate feasibility to apply

them to the domain of metastases detection. The same methods
are also applicable to other domains, especially industrial
domain, which was presented in this paper; and representative
methods for UAD described in this section have also been
applied to that domain.

A. Supervised Anomaly Detection Methods

Winners of the Camelyon Grand Challenge 2016 [3] on
detection of lymph node metastases presented their winning
supervised based approach in a technical report [30]. Majority
of digitized Whole Slide Image (WSI) consists of background
white space, which needs to be segmented, to reduce compu-
tational time. Winners first utilized Otsu’s algorithm [31] in
HSV color space in order to generate segmentation masks. A
simple filtering based on the green channel value can also be
used, due to the purple and pink tones, resulting from H&E
staining. Morphological operators are also applied to remove
small objects and artifacts. Results of tissue filtering and patch
extraction are presented in figure 2. We color-coded extracted
patches based on the tissue percentage, in order to extract
only the patches with sufficient amount of tissue. Metastasis
detection framework was then proposed, consisting of patch-
based classification part, which produces heatmaps, that are
later on processed to obtain WSI-level and lesion-level labels.

Authors utilized GoogLeNet [32] as their best performing
CNN architecture. Positive and negative 256 x 256 pixel
patches were extracted, according to the provided lesion level
labels and used to train the binary classification model. An ad-
ditional model was learned on hard-negative examples, based



(a) Original WSI (b) Filtered WSI (c) Patches from WSI

Fig. 2: Preprocessing of original WSI presented in a) consists out of filtering tissue sections b) and extracting patches c), based
on tissue percentage (green ≥ 90%, red ≤ 10% and yellow in-between). Best viewed in digital version with zoom.

on the initial model. The best results were obtained with the
highest 40x WSI magnification. Learned models were applied
in a sliding window fashion (overlapping patches), to obtain
tumour probability maps. For lesion based detection, con-
nected components were identified using the first model, which
results were later averaged with the model learned on hard
negative examples. For slide-level classification, 28 different
geometrical and morphological features were extracted from
heatmaps (e.g. percentage of tumour region over whole tissue
region). Random Forest classifier was used to discriminate
the WSIs with metastases from negative examples. Authors
obtained an AUC score of 0.925 for WSI classification and an
average FROC score of 0.705. These results showed that close
to pathologist-level performance (AUC of 0.966 and FROC of
0.733) can be achieved with supervised deep-learning based
models.

Above presented winning solution of the Camelyon 2016
challenge was later further improved by Google [29], by
utilizing newer Inception architecture [33], careful image patch
sampling and extensive image augmentations. They improved
FROC sensitivity score for lesion based detection to 0.885 and
AUC score for slide level classification to 0.986, though the
evaluation protocol seems not to be exactly the same. They
also show that statistically the same slide level classification
performance can be achieved solely by using maximum value
from the heatmap, instead of handcrafted features and Random
Forest classifier.

B. Weakly-supervised Anomaly Detection Methods

Supervised approaches require abundance of labeled data,
which is particularly severe in digital pathology, where dig-
itization of glass slides is expensive, and pixel-level man-
ual labels are time-consuming to obtain, due to gigapixel
large pathology imagery. In [6] the authors present a weakly
supervised approach, that only utilizes image level reported

diagnosis as labels for training, omitting the need for expert
pixel-wise annotations. Such a procedure can capture a much
wider variance of clinical samples that is not captured in
small supervised datasets. They collect large-scale pathology
imagery (WSIs) from 1) prostate cancer (prostatic carcinoma),
2) skin cancer (basal cell carcinoma) and 3) breast cancer
(axillary lymph nodes), together with slide-level diagnosis,
obtained from electronic health records.

With negative slide-level diagnosis, one can be sure, that all
the tiles within a negative WSI are negative, not containing
the metastases or tumor. On the other hand, with a positive
slide-level diagnosis, we know, that at least one tile is positive.
This kind of classification problem is a classical formulation
of Multiple Instance Learning (MIL), where training instances
are arranged in sets, called bags, and a label is provided for
the entire bag [34]. Solving MIL task induces the learning
of a tile-level representation that can linearly separate the
discriminative tiles in positive slides from all other tiles [6].
This is implemented on a tile-level using standard CNN based
architectures (e.g. Resnet34) and probability is obtained for
each of the tiles of being positive. The top ranked tile (or K
top ranked) are selected and compared with slide-level ground
truth labels, used in cross-entropy loss. In this way, weakly
supervised tile-level classifier is learned, that is applied in
a similar fashion as in [3]. They used handcrafted features
from the obtained heatmaps and learned a Random Forest
classifier for slide-level classification, similarly as in [30].
Additionally, they noticed the drawback of such handcrafted
aggregation methods for slide-level classification and proposed
a new Recurrent Neural Network (RNN) based model that uses
features, learned during tile-level classification training.

The performance of the proposed weakly supervised method
was evaluated on in-house data, that is not publicly avail-
able. They also compared the method with fully supervised
approach on Camelyon 2016 challenge data [3]. They imple-



(a) AnoGAN GAN training (b) AnoGAN anomaly detection

Fig. 3: AnoGAN method [16] consisting of DCGAN training a) and iterative optimization procedure b) to find an optimal
latent vector for anomaly detection. Image adapted from [16] for digital pathology.

mented a modified supervised winning approach from [30],
trained on Camelyon data and evaluated the approach on
their in-house data, to evaluate the generalization performance.
They noticed a 20% drop in AUC score (from test results on
Camelyon data). In comparison, they evaluated their proposed
weakly supervised MIL-RCNN method, trained on large-scale
in-house data, on Camelyon test set and noticed only 7%
drop in AUC score (from test results on in-house data).
Unfortunately they do not report the results of their proposed
method, when trained only on Camelyon data.

C. Unsupervised Anomaly Detection Methods

In comparison with supervised and weakly-supervised ap-
proaches, unsupervised approaches omit the need for expertly
labeled data. UAD is a relatively new domain and has seen
particular improvements and rise of interest with the introduc-
tion of deep generative methods. In this section we introduce
two main approaches, one based on GANs [36] and the other
one based on autoencoders [37]. None of the approaches has
been applied to challenging digital pathology imagery. Besides
introduction to the methods, we also present preliminary
results, that demonstrate feasibility to apply presented methods
for detection of cancerous regions in histology imagery.

1) GAN based UAD methods: AnoGAN method [16], pre-
sented in figure 3, represents the first work, where GANs
are used for anomaly detection in medical domain. A rich
generative model is constructed on healthy examples of optical
coherence tomography images of the retina and a methodology
is presented for image mapping into the latent space, to
generate the closest example to the presented query image, to
be able to detect and segment the anomalies in an unsupervised
fashion. Given a set o healthy images, smaller patches were
extracted and used to train a generative model, based on the
DCGAN [35] architecture, in order to learn the manifold
of healthy examples. In this way, the model captures the
variability of the training examples in an unsupervised fashion.
Labels are only given during the testing, to evaluate the
detection performance.

GANs consists of generator (G) and discriminator part (D).
The generator G learns a mapping G(z), where z represents
a sampled 1D vector from the uniformly distributed input
noise, sampled from the latent space - consisting of healthy
examples. Discriminator on the other hand, maps an input 2D
image to a scalar value, representing the probability of the
input being a real image, sampled from the training data, or
a generated one - produced by G(z). G and D are trained
in an alternating fashion, using a two-player minimax game.
The discriminator D is trained to maximize the probability to
discriminate the real image, from the generated one. Generator
(G) is on the other hand trained to fool the discriminator. After
the adversarial training is completed, the generator learns how
to generate realistically looking healthy examples, captured
in the training set. When query image x is presented, to
detect the anomaly, the goal is to find the closest point z
in the latent manifold of healthy examples. This is done in
an iterative fashion from a randomly sampled initial latent
vector z1, which is updated back using backpropagation in
i = 1, 2, ...n steps, via residual (LR) and discrimination
loss (LD), to obtain the optimal latent vector zn (only the
coefficients of z are modified, G and D parameters are kept
fixed). Residual loss captures similarity of the query image
to the generated one G(zi), while discrimination loss ensures
that the generated image G(zi) lies on the learned manifold
of healthy training examples. The mapping and corresponding
losses are inspired by the work of semantic image inpainting
using GANs [38], which poses a similar problem setup. The
combined residual and discrimination loss for zn can be
directly used as an anomaly score A(x) and the resultant
residual image between G(zn) and query image, for pixel-wise
anomalous region segmentation. The whole process of training
AnoGAN method [16] is visually presented in figure 3

Iterative optimization approach to find the optimal latent
vector is time-consuming and not applicable for real-time
anomaly detection. Recently presented f-AnoGAN method [8]
greatly improves inference times, at a similar performance rate,
by replacing iterative optimization approach with a trained



(a) Original samples (b) Generated samples

Fig. 4: a) Original patches, extracted from histology image and b) generated artificial patches from DCGAN [35] based GAN
network, as used in AnoGAN method [16].

encoder mapping from images to corresponding location in
the learned latent space. Besides, training GANs can be a
very unstable process and mostly smaller resolution images are
used. AnoGAN and f-AnoGAN methods utilize baseline DC-
GAN [35] and Wasserstein GAN (WGAN) [39] architectures
and do not consider recent works, that are able to generate
higher resolution images in a more stable way [40], [41].
Capability to generate realistically looking histology imagery
is crucial, in order to generate accurate cellular structure. We
present baseline results of the DCGAN [35] architecture in
figure 4. These initial results with a baseline method, that was
also used in AnoGAN method, demonstrate the applicability
of such methods to digital pathology domain.

2) AE based UAD methods: Above presented UAD meth-
ods are modelling normal samples with GANs. Autoencoder
(AE) based methods are one of the simplest and first ap-
proaches, that are also used for visual anomaly detection, by
learning how to reconstruct the input image through a bottle-
neck, via encoder (E) and decoder (D) networks. Generative
AEs (i.e. variational autoencoders [37]) were also introduced
and used in a recent UAD work for lesion detection in brain
MR images [9]. AE based method are trained in a self-
supervised way, such that they learn how to reconstruct input
training images. This is achieved by mapping an input to a
bottleneck, which can in fact be a distribution or a direct
mapping. When introduced with normal samples only, they
learn how to reconstruct such normal samples and in the case
of VAE, they are also able to generate them, similarly to
GANs. When we introduce anomalous sample, the method is
able to reconstruct it, the way that the normal sample should
look like. We are then able to threshold the reconstruction

error, in order to detect the anomaly, as well to segment
them, by computing a residual image. This process is visually
presented in figure 5, the way, that the method would be used
in digital pathology setting.

GANs are known to produce very sharp images, due to
adversarial training, but are having issues with stable training
and mode collapses, which results in learning to generate just
a few examples [35]. GAN and VAE concepts have been
recently combined into VAEGAN framework [42], combining
the best of the two approaches. Adding an adversarial loss and
discriminator to the AE/VAE framework forces the decoder to
generate a better reconstructions, that will fool a discriminator.
In [9] they also used spatial VAEs, replacing the mapping to
dense 1D bottleneck z with a fully convolutional encoder-
decoder network, resulting in a higher dimensional spatial
bottleneck z, omitting the loss of the spatial information in
the bottleneck encoder function. The presented AnoVAEGAN
UAD method was compared against AnoGAN [16] method
and variations of AE/VAE arhitectures with different types
of bottlenecks (i.e. dense vs. spatial) and their dimensions.
Similar to GAN approaches, no AE based approach has been
utilized for anomaly detection in gigapixel histology imagery.

V. CONCLUSION

Visual anomaly detection is an important process in many
domains and recent advancements in deep generative based
methods have shown promising results towards applying them
in an unsupervised fashion. This has sparked research in many
domains, that did not benefit much from traditional supervised
deep-learning based approaches.



(a) AE based UAD method training

(b) AE based anomaly detection

Fig. 5: Basic architecture of AE based method for anomaly detection, consisting of AE training a) and AE inference b),
resulting to residual image, used for anomaly detection and segmentation. Image adapted from [9] for digital pathology.

Most of the existing methods are applied to medical domain,
where vast amount of imagery data is available, but without
any detailed labels to learn state-of-the-art supervised models.
All the appearances of anomalies in real-world applications are
usually also not known in advance and are as such impossible
to label. Benefits of such methods have recently also been
recognized in industrial inspection domain, where the need for
rapid product development is making the existing supervised
approaches inappropriate to use, due to time constraints to
collect anomalous samples, as well as wide-range of potential
anomalies that can occur and are unknown in advance. The
presented UAD methods have been developed and evaluated
on particular limited real-world domains or even on existing
classification datasets and significant performance drops are
visible when applied to other domains. This has been seen
through several presented works, that evaluated the existing
UAD methods, along with the newly presented ones, on new
application domains. Another important issue is the robustness
of existing UAD methods to contaminated training data. Ex-
isting UAD methods are not really unsupervised due to the
requirement that completely anomaly-free data is available for
training the methods, therefore implicitly implying the need
for weak labelling.

UAD in visual data is a relatively new domain, that has seen
particular improvements with the introduction of generative
based methods. Unprecedented amount of visual data that is
captured every day in different domains represents an untapped
potential for unsupervised based methods, that will be able to
leverage this data as it is. Addressing the issues of current
UAD approaches will enable their wider usage, especially in
data-heavy domains. Dual-use of UAD approaches that enables
novelty detection can also represent a major diagnostic tool for
early cancer detection and rare disease detection, thereby sup-
port the development and evaluation of personalized medicine,
and thus address a much wider societal challenge.
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