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Abstract
Coordinating multiple interacting agents to achieve a common
goal is a difficult task with huge applicability. This problem
remains hard to solve, even when limiting interactions to be
mediated via a static interaction-graph. We present a novel
approximate solution method for multi-agent Markov decision
problems on graphs, based on variational perturbation theory.
We adopt the strategy of planning via inference, which has
been explored in various prior works. We employ a non-trivial
extension of a novel high-order variational method that allows
for approximate inference in large networks and has been
shown to surpass the accuracy of existing variational methods.
To compare our method to two state-of-the-art methods for
multi-agent planning on graphs, we apply the method different
standard GMDP problems. We show that in cases, where the
goal is encoded as a non-local cost function, our method per-
forms well, while state-of-the-art methods approach the perfor-
mance of random guess. In a final experiment, we demonstrate
that our method brings significant improvement for synchro-
nization tasks.

Introduction
Understanding and designing the behavior of multiple agents
interacting through large networks in order to achieve a com-
mon goal is a task studied across many fields, such as ar-
tificial intelligence (Sigaud and Buffet 2013), electrical en-
gineering (Tousi, Hosseinian, and Menhaj 2010), but also
economics and biological sciences (Castellano, Fortunato,
and Loreto 2009) and epidemics (Venkatramanan et al. 2018).
Finding optimal policies, e.g., for the distribution of infor-
mation across a social or communication network, for effec-
tive intervention in molecular networks or for vaccinations
in order to prevent spreading of diseases are actively dis-
cussed problems. In many of these applications, there exists
no unique natural time-scale. In such cases, it is appropriate
to reason in continuous-time. The setting of multiple agents
on a graph in continuous-time has been previously explored
(Kan and Shelton 2008).

For a Markov decision process (MDP), an optimal policy
can be computed in time scaling polynomially in the size
of the state and action space using dynamic programming
(Puterman 2005). However, in many realistic scenarios, these
spaces are high dimensional, e.g., in multi-agent settings
(Boutilier, Dean, and Hanks 1996), where the size of the state
and action space of the underlying global MDP in general

scales exponentially in the number of agents. Solving such
problems exactly is infeasible for large-scale systems. For
this reason, various simplifying assumptions on the structure
of MDPs have been proposed. Assuming a factorized state
space, a local representation of the transition model and the
reward function, decomposing according to a graph-structure,
so-called factored MDPs (FMDPs) (Guestrin, Koller, and
Parr 2001; Boutilier 1996) have been defined. For this model,
various approximate solution schemes have been developed
(Guestrin, Koller, and Parr 2001; Guestrin et al. 2003).

Graph-based MDPs (GMDPs), as proposed in (Sabbadin,
Peyrard, and Forsell 2012), present a subclass of FMDPs,
where additionally, agent-wise policies are assumed. We note,
that this renders GMDPs equivalent to mMDPs (Boutilier,
Dean, and Hanks 1996), interacting and communicating over
a graph-structure. GMDPs can be solved approximately us-
ing approximate linear programming (Sabbadin, Peyrard,
and Forsell 2012), approximate policy iteration (Sabbadin,
Peyrard, and Forsell 2012) or approximate value iteration
using mean field or cluster variational methods (Cheng and
Chen 2013). Additional simplifying assumptions, such as
transition-independence of agents (TI-Dec-MDP) can be
made (Sigaud and Buffet 2013), however reducing the de-
scriptive power of the model. We will thus not compare to
such models.

In this work, we propose a novel method for approximate
inference and planning for GMDPs inspired by advances
in statistical physics. We emphasize that in planning prob-
lems (Fleming and Soner 2006), system dynamics are known,
given a policy. Thus, we do not encounter problems as in re-
inforcement learning, e.g., as the exploration-exploitation
dilemma (Puterman 2005). We employ a scheme based
on variational perturbation theory (Tanaka 1999; Paquet,
Winther, and Opper 2009; Opper, Paquet, and Winther 2013;
Linzner and Koeppl 2018), which was originally introduced
in (Plefka 1982).

The manuscript is organized as follows: In Section 2, we
briefly summarize the connection between variational in-
ference and planning. Here, the main result is that maxi-
mization of expected reward can be coined as maximization
of a variational lower bound (Toussaint and Storkey 2006;
Furmston and Barber 2010; Kappen, Gómez, and Opper
2012). In Section 3 and 4, we develop an expectation-
maximization algorithm to iteratively improve the policy for
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Figure 1: a) A minimal example of a GMDP. The state of
agent Y is modulated by its parent X . b) The same GMDP
unrolled in time as directed graphical model. AgentX affects
agent Y ’s state (blue) by influencing agent Y ’s choice over
actions (green) defined by Y ’s policy. The rewards (red)
of agent Y are determined by Y ’s and X’s state. It is also
possible to incorporate direct modulation of the transition
models by the states of adjacent agents (not displayed for
readability).

each agent individually. Lastly, we perform simulated experi-
ments on several standard planning task and show realistic
cases, where current state-of-the-art methods perform similar
to random guess, while our method performs well (Section
5). An implementation of our method is available via Git1.

Background
Continuous-time MDPs on Graphs. A MDP models an
agent picking actions according to a policy, depending on
its current state. Its objective is to minimize its reward,
while being subject to some, possibly hostile, environment.
Herein, we define a homogeneous continuous-time MDP by
a tupel (S,A,W, R). It defines a two-component Markov
process {S(t), A(t)} through a transition intensity matrix
W : S × S × A → R over a countable state space
S and a countable action space A together with a policy
π : A × S → [0, 1]. Each state-action pair is mapped to a
reward via the reward function R : S × A → R−. In this
work we only consider negative rewards, which poses no
restriction as any bounded reward function can be trivially
shifted into the negative half-space. For the sake of concise-
ness, we will often adopt shorthand notations of the type
pt−t′(s

′ | s, a) ≡ p(S(t) = s′ | S(t′) = s,A(t′) = a), with
s, s′ ∈ S, a ∈ A. Given a sequence of actions, the evolution
of the MDP can be understood as a usual continuous-time
Markov chain (CTMC) with the (infinitesimal) transition
probability

ph(s′ | s, a) = δs,s′ + hW(s′ | s, a) + o(h),

for some time-step h with limh→0 o(h)/h = 0, and δs,s′ the
indicator function. We note, that any intensity matrixW full-
fils W(s | s) = −∑s′ 6=sW(s′ | s). A multi-agent MDP

1https://git.rwth-aachen.de/bcs/vpt-planning

(mMDP) can be understood as an N -component MDP over
state- and action-spaces S = ×Nn=1 Xn, A = ×Nn=1An,
with×denoting the Cartesian product, evolving jointly as
an MDP. We state explicitly that single component states and
actions are entries of the states and actions of the global
MDP, i.e. s = (x1, . . . , xN ) for s ∈ S with xn ∈ Xn
and a = (a1, . . . , aN ) for a ∈ A with an ∈ An for all
n ∈ {1, . . . , N}. In this multi-agent setting, each component,
referred to as an individual agent, has no direct access to the
global state of the system, but can only observe the states of
a subset of agents, which we will call its parent-set. In the
following analysis, we want to restrict ourselves to mMDPs
on graphs (GMDPs).

For GMDPs, the parent configuration can be summa-
rized via a directed graph structure G = (V, E) encoding
the relationship among the agents V ≡ {V1, . . . , VN}, in
this context also referred to as nodes. These are connected
via an edge set E ⊆ V × V . The parent-set is then de-
fined as pa(n) ≡ {m | (m,n) ∈ E}. Conversely, we de-
fine the child-set ch(n) ≡ {m | (n,m) ∈ E}. The n’th
agents process {Sn(t), An(t)} then depend only on its cur-
rent state xn ∈ Xn, its action an ∈ An and of all his parents
Un(t) = un taking values in Un ≡×m∈pa(n) Xm. We dis-
play a sketch of a GMDP in Fig. 1. We note, that cycles in
a graphical model as in Fig. 1(a) are unproblematic, as the
corresponding temporally unrolled model, as displayed in
Fig. 1(b), would be acyclic. For a GMDP, the global marginal
transition matrix ph(s′ | s, a) then factorizes over agents

ph(s′ | s, a) =

N∏
n=1

ph(yn | xn, un, an),

into local conditional transition probabilities. We de-
fine local transition rates wun : Xn × Xn × An →
R and policies πun : An × Xn → [0, 1] for
each parent configuration u ∈ Un. In the following
we write compactly wun(y | x, a) ≡ wun(yn | xn, an) and
πun(a | x) ≡ πun(an | xn). Subsequently, we can express the
local conditional transition probabilities as

ph(yn | xn, un, an) = δx,y + hwun(yn | xn, a) + o(h).
(1)

We consider the problem of planning in continuous time over
a countable state space.

Definition 1. Consider a MDP (S,A,W, R) with initial
state s0 ∈ S and a policy π. Then, we can define the (dis-
counted) infinite horizon value function in continuous time
as

V πp (s0) = Ep

[∫ ∞
0

dt γtR(S(t), A(t)) | S(0) = s0, π

]
,

with Ep being the expectation with respect to the MDPs path
measure p.

We can now cast the planning problem as: for a given
initial state s0, find a policy π∗, such that

π∗ = arg max
π
{V πp (s0)}. (2)



A common solution strategy for these kinds of prob-
lems is to solve the Bellman equation (Puterman 2005).
Instead of trying to optimize a Bellman equation,
we want to take advantage of the close relationship
of planning and inference (Dayan and Hinton 1997;
Furmston and Barber 2010; Toussaint and Storkey 2006;
Kappen, Gómez, and Opper 2012; Levine and Koltun 2013).
In the following, we restrict ourselves to finite horizon
MDPs, for which the process evolution terminates at time T ,
and later extend to the infinite horizon problem.

Finite Horizon Planning via Inference. In order to
establish the connection between inference and plan-
ning we can, following (Dayan and Hinton 1997;
Toussaint and Storkey 2006; Levine and Koltun
2013) or similarly (Kappen, Gómez, and Opper 2012;
Furmston and Barber 2010), define a boolean auxil-
iary process Z(t) taking values in {0, 1}, with emis-
sion probability p(Z(t) = 1 | S(t) = s,A(t) =
a) = exp{R(s, a)}. We define the finite hori-
zon trajectories S[0,T ] ≡ {S(ξ) | 0 ≤ ξ ≤ T} and
A[0,T ] ≡ {A(ξ) | 0 ≤ ξ ≤ T}, we can express the reward-
optimal posterior process for a given policy π according to
Definition 1 as p(S[0,T ], A[0,T ] | Z[0,T ] = 1, π, s0), with
Z[0,T ] = 1 meaning that Z(ξ) = 1 for 0 ≤ ξ ≤ T . We
consider the Kullback–Leibler (KL) divergence between
the posterior p(S[0,T ], A[0,T ] | Z[0,T ] = 1, π, s0) and a
variational measure q(S[0,T ], A[0,T ] | π, s0) induced by a
time-inhomogeneous MDP with the same policy as p (in
supplementary B, we show that the KL-divergences between
two continuous-time MDPs with different policies diverges).
We arrive at a lower bound for the marginal log-likelihood in
the finite horizon case

ln p(Z[0,T ] = 1 | π, s0) ≥ F [q, π] + V πq (s0), (3)

F [q, π] ≡
−DKL[q(S[0,T ], A[0,T ] | π, s0)||p(S[0,T ], A[0,T ] | π, s0)],

with the variational lower bound F [q, π]. The full deriva-
tion and structure of (3) can be found in supplementary
A and B. When performing exact inference, meaning that
q(S[0,T ], A[0,T ] | π, s0) = p(S[0,T ], A[0,T ] | π, s0), lower
bound and log-likelihood coincide and the maximization of
the value function as in Definition 1 corresponds to a maxi-
mization of the log-likelihood w.r.t the policy

arg max
π
{V πq (s0)} = arg

π
max{ln p(Z[0,T ] = 1 | π, s0)},

establishing the connection between planning and infer-
ence. When performing approximate inference, we can
iteratively maximize the lower bound with respect to q
and thereby approximate the log-likelihood, following a
maximization with respect to π. This is the expectation-
maximization algorithm, which has been previously applied
to policy optimization (Toussaint and Storkey 2006;
Levine and Koltun 2013).

Infinite Horizon Planning via Inference. The same

framework as above can be used in order to solve (dis-
counted) infinite horizon problems. Following (Toussaint
and Storkey 2006), this can be achieved by introducing a
prior over horizons p(T ). As a derivation in continuous-time
is missing in literature, we provide it in supplementary C.
By choosing p(T ) = ln(γ)γT , one recovers exponential
discounting with discount factor γ.

Variational Perturbation Theory for GMDPs
Calculating a variational lower bound exactly is in gen-
eral intractable for interacting systems. This is often
circumvented by assuming a factorized proposal distribu-
tion q(x) =

∏
i qi(xi), which corresponds to the naive

mean-field approximation. Variational perturbation theory
(VPT) offers a different approach. Here, the similarity
measure (the KL-divergence) itself is approximated via
a series expansion (Tanaka 1999). A prominent example
of this approach is Plefka’s expansion (Plefka 1982;
Bachschmid et al. 2016). The central assumption is that
variables are only weakly coupled, i.e. the interaction of
variables is scaled in some small perturbation parameter
ε. In this case, the objective is to find an expansion of the
KL-divergence in orders of the interaction parameter ε:
F [q, π] = F (0)[q, π] + εF (1)[q, π] + . . . . This approximate
variational lower bound is then maximized with respect to q.
We note that F [q, π], like in the case of cluster variational
methods (Yedidia, Freeman, and Weiss 2000) (CVMs), no
longer provides a lower bound but only an approximation.
However, in contrast to CVMs (which can be used construct
similar approximate KL–divergences (Vázquez, Ferraro,
and Ricci-Tersenghi 2017)), variational perturbation theory
yields a controlled approximation in the perturbation
parameter ε.

Weak Coupling Expansion. In the following, we want to
briefly recapitulate and extend the weak coupling expansion
for the lower bound in (3), as derived in (Linzner and Koeppl
2018) in the context of factorized CTMCs, to (discounted)
infinite horizon GMDPs. For this we notice, that the lower
bound F [q, π] decomposes over time

F [q, π] = lim
h→0

1

h

∫ ∞
0

dt fht [q, π],

fht [q, π] =
∑
s,s′,a

π(a | s)q(s; t)qh(s′ | s, a) ln
ph(s′ | s, a)

qh(s′ | s, a)
,

where we introduced the shorthands for the marginals
q(s; t) ≡ q(S(t) = s) and the infinitesimal transition matrix
qh(s′ | s, a) ≡ q(S(t+ h) = s′ | S(t) = s,A(t) = a) of
the variational process q, for notational convenience.

For a weak coupling expansion, we decompose the node-
wise transition probability into an uncoupled part, given
by averaging over parents ph(yn | xn, an) = E[ph(yn |
xn, un, an) | xn] and a deviation around it, defined as
g(yn, xn, un, an) ≡ ph(yn | xn, un, an)− ph(yn | xn, an).
Following standard mean-field procedure, we extract a scale
parameter g(yn, xn, un, an) = εg̃(yn, xn, un, an), with
g̃(yn, xn, un, an) having the same magnitude as the uncou-



pled part. This allows to rewrite the transition matrix

ph(yn | xn, un, an) = ph(yn | xn, an) + εg̃(yn, xn, un, an).
(4)

We emphasize, that this procedure is generic and can be
performed for any transition probability. This motivates
the weak-coupling expansion on which the results in this
manuscript are build upon, for which we define the short-
hand q(yn, xn, un, an; t) ≡ q(Sn(t + h) = yn, Sn(t) =
xn, Un(t) = un, An(t) = an).

Theorem 1 (Weak coupling expansion for GMDPs). The
time point wise lower bound fht [q, π] admits an expansion in
ε, as given in (4), into node-wise terms ft,n[q, π]

fht [q, π] =

N∑
n=1

fht,n[q, πn] + o(ε),

fht,n[q, πn] =
∑

xn,yn,un,an

πunn (an | xn)qt(yn, xn, un)

× ln
ph(yn | xn, un, an)

qh(yn | xn, un, an)
.

The proof of this theorem is along the same lines as in
(Linzner and Koeppl 2018).

Weak Coupling Expansion for GMDPs in Continu-
ous Time. In order to derive the approximate variational
lower bound in continuous time for a GMDP, we define
variational marginal rates

τunn (xn, yn, an; t) ≡ lim
h→0

q(yn, xn, an, un; t)

h
for xn 6= yn

and τunn (xn, xn, an; t) = −∑y 6=x τ
un
n (xn, yn, an; t)

but will from now on use the redefinition
x ≡ xn, y ≡ yn,a ≡ an, u ≡ un for these objects, in
order to avoid clutter. We further make use a mean-field as-
sumption q(yn, xn, un; t) = qh(yn | xn, un; t)qn(x; t)qun(t),
with the shorthand qun(t) ≡ ∏j∈par(n) qn(uj , t), assuming
factorization of the marginals. We emphasize, that in
contrast to naive mean-field (Opper and Sanguinetti 2008;
Cohn et al. 2010), we only have to assume a factorization
of these marginals, but keep the dependency on the parents
in the rates τun (x, y, a; t). Together with the normalization
constraint, this defines an expansion of the proposal transi-
tion probability in time-steps of h: q(yn, xn, un, an; t) =
δx,yqn(x; t)qun(t)πun(a | x) + hτun (x, y, a; t) + o(h). The
proposal transition probability defines an inhomogeneous
master equation

q̇n(x; t) =
∑

y 6=x,u,a

[τun (y, x, a; t)− τun (x, y, a; t)]. (5)

In order for q to describe a probability distribution, this con-
straint has to be enforced at all times.

Proposition 1. The variational lower bound of a GMDP
has an expansion into agent-wise terms in the perturbation

Algorithm 1 Stationary points of Euler–Lagrange equation
1: Input: Initial trajectories qn(x; t)∀t ∈ [0, T ] obeying

normalization, boundary conditions q(x; 0) and ρ(x;T ),
reward function R(s, a).

2: repeat
3: for all n ∈ {1, . . . , N} do
4: Update ρn(x; t) by backward propagation (9).
5: Update qn(x; t) by forward propagation using (8)

given ρn(x; t).
6: end for
7: until Convergence (6)
8: Output: Set of qn(x; t) and ρn(x; t).

parameter ε

F [q, π] = FVPT[q, π] + o(ε)

FVPT[q, π] =

N∑
n=1

∫ ∞
0

dt dγ(t) {Hn(t) + En(t)} , (6)

Hn(t) =
∑

y,x6=y,u,a

τun (y, x, a; t) ln

{
τun (y, x, a; t)

qn(x; t)qun(t)
− 1

}
,

En(t) =
∑

y,x6=y,u,a

{qn(x; t)qun(t)πun(a | x)wun(y, x|a)

+τun (y, x, a; t) ln [wun(y, x|a)πun(a | x)]} ,

with the discounting function dγ(t) ≡ 1−
∫ t
0

dT p(T ).

Proof. We proof our proposition by inserting the marginals
into the expansion of Theorem 1. We insert the expression
of the conditional transition matrix (1). Subsequently, we
perform h → 0. We arrive at the approximate lower bound
of a GMDP. The discounting function follows from Fubini’s
theorem. For a detailed derivation, see supplementary D.

By minimizing this functional, while fulfilling continuity,
we can derive approximate dynamic equations corresponding
to the stationary solutions of the Lagrangian

L[q, π, η] = FVPT[q, π] + C[q, η] + V πq (s0), (7)

with C[q, η] being the constrain enforcing (5) (see supplemen-
tary E) and Lagrange multipliers ηn(t).

Approximate Inference
We finally derive approximate dynamics of the GMDP

as stationary points of the Lagrangian, satisfying the Euler–
Lagrange equation. These are the key equations that enable us
to perform scalable approximate inference for large GMDPs.

Proposition 2. We define the agent-wise expectation
Eπn[f(x)] ≡ ∑u,a π

u
n(a | x)qun(t)f(a, u, x). The stationary

points of the Lagrangian (7) are given by the set of ordinary
differential equations for every component n ∈ {1, . . . , N}

q̇n(t) = qn(t)Ωn(t) (8)

ρ̇n(t) = {Ωn(t) + Θn(t) + Ψn(t)} ρn(t) (9)



with

Ωn(x, y; t) ≡ Eπn[wun(x, y | a)]
ρn(y; t)

ρn(x; t)

Θn(x, y; t) ≡ δx,y
(
Eπn[Run(x, a)] + ln ρn(x; t)

∂tdγ(t)

dγ(t)

)
with Ψn(t) as given in the supplementary and
R(s, a) =

∑N
n=1R

u
n(x, a). We note, that for exponen-

tial discounting ∂tdγ(t)
dγ(t)

= ln γ.

Proof. Differentiating L with respect to qn(x; t), its time-
derivative q̇n(x; t), τun (x, y, a; t) and the Lagrange multiplier
ηn(x; t) yield a closed set of coupled ODEs for the posterior
process of the marginal distributions qn(x; t) and transformed
Lagrange multipliers ρn(x; t) ≡ exp(ηn(x; t)/dγ(t)), elimi-
nating τun (x, y, a; t). For more details, we refer the reader to
supplementary E.

Although, the restriction on the reward function to decom-
pose into local terms is not necessary, we will assume it for
readability. The coupled set of ODEs can be solved iteratively
as a fixed-point procedure in the same manner as in previous
works (Opper and Sanguinetti 2008) in a forward-backward
procedure (see Algorithm 1). Because we only need to solve
2N ODEs to approximate the dynamics of an N -agent sys-
tem, we recover a linear complexity in the number of agents,
rendering our method scalable.

We require boundary conditions for the evolution interval
in order to determine a unique solution to the set of equations
in Proposition 2. We thus set qn(x; 0) = δx,x0 to the
desired initial state x0 and ρn(x; t) = 1 for free evolution
of the system. We note that while we do not consider
time-dependent reward in general, our method is capable of
doing so. We use this in the following control setting: in
control scenarios, a deterministic goal state of the system
is often desired (Kappen, Gómez, and Opper 2012). In this
case, we can put infinite reward on the goal state xT at
the boundary T . We then recover the terminal condition
ρn(x; t) = δx,xT . By setting the reward-dependent terms in
Proposition 2 to zero, we can evaluate the prior dynamics
of the system given a policy. We will use this to evaluate
Definition 1 approximately.

Expectation-Maximization for GMDPs. By examin-
ing the approximate lower bound of the value function,
one notices that it decomposes over local agent-wise value
functions, conditioned on its parents.
Remark. The marginal log-likelihood of a GMDP has an
approximate agent-wise decomposition

ln p(Z[0,T ] = 1 | π) ≥
N∑
n=1

FnVPT[q, π] + V πq (s0) + o(ε),

(10)

where the FnVPT[q, π] are given by Proposition 1.
Because of this, the global marginal log-likelihood can

be maximized by locally maximizing local lower bounds
of the individual agents with respect to local policies πn.

Algorithm 2 Expectation-Maximization for Planning
1: Input: Initial trajectories qn(x; t)∀t ∈ [0, T ] obeying

normalization, boundary conditions q(x; 0) and ρ(x;T ),
reward function R(s, a), initial policy π(0).

2: Set i = 0
3: repeat
4: Solve Euler-Lagrange equations given π(i) using Al-

gorithm 1.
5: for all n ∈ {1, . . . , N} do
6: Maximize (10) with respect to πn’s.
7: Set maximizer π(i+1)

n = π∗n.
8: end for
9: i→ i+ 1

10: until Convergence of (10)
11: Output: Optimal policy π∗.

Given the dynamic equations from Proposition 2, we now
devise a strategy for scalable planning for GMDPs. For this
we notice, that the solutions of these equations maximize
the lower bound, thereby providing an approximation to the
marginal log-likelihood. Because of (10), we can maximize
this object as well with respect to the policies πn for each
agent individually. Thus the complexity of our optimization
scales linearly in the number of components. Given this max-
imizer, we again evaluate the dynamic equations. We do
this repeatedly until convergence, thereby implementing an
expectation-maximization (EM) algorithm. This strategy is
summarized in Algorithm 2. We note that the resulting pol-
icy is probabilistic, but a MAP-deterministic policy can be
constructed.

Experiments

We evaluate the performance of our method on real-world
problem settings against two existing state-of-the-art meth-
ods for GMDPs on different network topologies. One method
is based on policy iteration in mean-field approximation
(API) (Sabbadin, Peyrard, and Forsell 2012), the other on
approximate linear programming (ALP) (Guestrin, Koller,
and Parr 2001). Both algorithms have been developed and im-
plemented in the GMDPtoolbox (Cros et al. 2017). For small
problems, we compare the performance of all algorithms to
the exact solution. To ensure a correct evaluation, we first
construct the GMDP problem and then transform it to the
corresponding MDP problem by a built-in function in the
GMDPtoolbox, in order to recover the exact solution. For
small problems, we finally perform exact policy evaluation
using this MDP.

As competing methods are implemented in discrete-time,
we have to pass them an equivalent discrete-time version of
the continuous-time problem via uniformization (Kan and
Shelton 2008). For this we generate transformed rewards and



Table 1: Results of disease control problem. We give the
relative deviation dr[%] of the values returned by different
methods from the exact optimal values.

(µ, ν) πVPT πALP πAPI πRND

(0.3, 0.3) 0 61 0 200
(0.6, 0.3) 0 60 0 292
(0.9, 0.3) 0 59 0 270
(0.3, 0.6) 0 61 0 281
(0.6, 0.6) 0 60 0 354
(0.9, 0.6) 0 59 0 399
(0.3, 0.9) 0 61 0 390
(0.6, 0.9) 0 60 0 344
(0.9, 0.9) 0 59 0 352

transition matrices

R̃un(x, a) ≡w
u
n(x | x, a)− ln γ

κ− ln γ
Run(x, a),

p1/κ(yn | an, un, xn) ≡
{

wun(y | x, a),

κ+ wun(x | x, a),

x 6= y

else

for some κ ≥ |wun(x | x, a)|.
GMDPs have previously been applied to a variety of

problems as in agriculture, forest management (Peyrard
et al. 2007; Sabbadin, Peyrard, and Forsell 2012),
socio-physics (Castellano, Fortunato, and Loreto 2009;
Yang et al. 2018) and caching networks (Rezaei,
Manoochehri, and Khalaj 2018), to name a few. In
the following we want to benchmark our method on those
problem sets. We want compare to the exact solution, thus
the network considered is a small regular 2 × 3 grid, with
nearest-neighbour bi-directional couplings, unless specified
otherwise. In the end, we demonstrate scalability on a larger
5× 5 grid in a synchronization task experiment. We denote
the policies returned by the different methods with πALP

for ALP, πAPI for API, πRND for a random policy and
πVPT for our method VPT. For all experiments, we set the
discount factor to γ = 0.9 and the atomic reward r = 1. As
a metric for performance, we calculate the relative deviation
dr(π) ≡ (V π

∗ −V π)/V π
∗

(with π∗ being the exact optimal
policy) in percent for the crop and forest planning problem,
and the 95% interval of total deviation for the opinion
dynamics model.

Disease Control. First, we apply our method to the
task of disease control, originally posed for crop fields
(Sabbadin, Peyrard, and Forsell 2012). Each crop is in either
of two states – susceptible or infected (X = {1, 2}). The
rate α(u) = 1 + 1

2 (1− (1− µ)|u|), with which a susceptible
crop is infected, is proportional to the number of its infected
neighbours, which we denote by |u|. The recovery rate is
assumed to be constant ν. The planner has to decide between
two local actions for each crop – either to harvest or to leave
it fallow and treat it (A = {1, 2}). Below, we summarize the

Table 2: Results of forest management problem. We give the
relative deviation dr[%] of the values returned by different
methods from the exact optimal values.

(µ, ν) πVPT πALP πAPI πRND

(0.3, 0.3) 0 1 1 12
(0.6, 0.3) 0 8 1 12
(0.9, 0.3) 0 12 1 11
(0.3, 0.6) 1 27 12 23
(0.6, 0.6) 1 26 11 22
(0.9, 0.6) 1 26 12 21
(0.3, 0.9) 9 58 25 48
(0.6, 0.9) 9 58 27 50
(0.9, 0.9) 10 58 38 52

transition model:

a = 1 a = 2
wun x = 1 = 2 x = 1 = 2
y = 1 −α(u) α(u) 0 0
y = 2 0 0 ν −ν

The reward model is:

Run x = 1 = 2
a = 1 0 0
a = 2 r r/2

In Table 1, we display the results of this experiment for
different parameters. We find that API and VPT perform
equally well in this problem.

Forest Management. We consider the forest manage-
ment problem as in (Sabbadin, Peyrard, and Forsell 2012).
Here, each node has multiple states dependent of each trees
age and whether it is damaged by wind or not. A tree can
either age or become damaged over time. In a simplified
scenario, we are going to assume, that a tree can either be
grown – or not – or damaged (X = {1, 2, 3}). As trees
can shield one-another against wind-damage, this rate
α(u) = 1 + 1

2 (1 − (1 − µ)−|u|) depends on the number of
grown trees |u|. The planner has, again, two actions – either
to harvest and cut down the tree or to leave it (A = {1, 2}).
The transition model is summarized below:

a = 1 a = 2
wun x = 1 = 2 = 3 x = 1 = 2 = 3
y = 1 −ν ν 0 0 0 0
y = 2 0 −α(u) α(u) 1 −1 0
y = 3 0 0 0 1 0 −1

As yield depends on having neighbours for various reasons,
the reward function in (Sabbadin, Peyrard, and Forsell 2012)
has a non-local form. We consider reward functions as:

Run x = 1 = 2 = 3
a = 1 0 0 0
a = 2 0 r − |u| r−|u|

2



Table 3: Results of voter model for an ensemble of 20 random
reward functions. We give the 95% interval of the deviation
of the achieved values returned by different methods from
the exact optimal value.

(µ, ν) πVPT πALP πAPI πRND

(0.1, 0.0) 0.0 0.0 0.0 1.9
(0.2, 0.0) 0.4 0.4 0.4 5.6
(0.0, 0.1) 0.8 5.5 5.2 4.7
(0.1, 0.1) 1.8 5.6 5.7 6.4
(0.2, 0.1) 0.4 1.2 1.8 5.6
(0.0, 0.2) 0.0 3.5 4.2 4.7
(0.1, 0.2) 0.1 4.4 8.8 9.1
(0.2, 0.2) 0.0 3.0 4.7 10.4

The results of this experiment are displayed in Table 2, where
we give the relative deviation in percent between the optimal
and the policies returned from the different methods. We find
that for all parameters, our method performs significantly
better than other methods.

Opinion Dynamics. In this experiment we test the
performance of our method on the seminal Ising model,
which has, among others, applications in socio-physics
(Castellano, Fortunato, and Loreto 2009) to model opinion
dynamics, swarming (Šošic et al. 2017), or as a benchmark
for multi-agent reinforcement learning (Yang et al. 2018).
In the Ising model, each node is in either of two states
X = {−1, 1} and the reward function takes the form

R(s, a) =

N∑
n=1

xn

Jn +
∑

k∈par(n)

Jn,kxk

 . (11)

In the following, we want to consider random reward
functions, where couplings are drawn from gaussians
Jn ∼ N (0, µ) and Jn,k ∼ N (0, ν). Further, we model
the transition rates according to opinion dynamics (voter
model) (Castellano, Fortunato, and Loreto 2009) α(u) =
1
2 [1 + tanh (|u|)] and β(u) = 1

2 [1− tanh (|u|)], with |u|,
being the sum of the sequence u, see below:

a = 1 a = 2
wun x = −1 = 1 x = −1 = 1

y = −1 −α(u) α(u) −β(u) β(u)
y = 1 β(u) −β(u) α(u) −α(u)

The results for an ensemble 20 random reward functions
displayed in Table 3. Again, we find that our method
performs best in all tested parameter regimes, while in some
cases RND achieves a higher value than API and ALP.

Synchronization of Agents. In a final experiment, we
want to compare the performance of methods in a syn-
chronization task. We consider a regular grid of 5 × 5
agents. We encode a synchronization goal by reward
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Figure 2: Results of the synchronization task. We track the
mean order parameter over time under the VPT (red) and MF
(blue-dashed) policy. Areas denote 90% percent of variance.

function as in (11) with Jn = 0 and Jn,k = −1. The
reward function takes the from of an order parameter
R(s) =

∑
i,j∈par(i) δxi 6=xj , which measures anti-parallel

alignment between neighbouring agents. Each agents
transition model is local:

a = 1 a = 2
wun x = −1 = 1 x = −1 = 1

y = −1 −0.9 0.9 −0.1 0.1
y = 1 0.1 −0.1 0.9 −0.9

We display R(s) over time for different methods in Figure
2 (LP returned the same policy as MF). For evaluation, we
simulated each trained model using Gillespie sampling.

Conclusion
We proposed a new method to conduct planning on large
scale GMDPs based on variational perturbation theory. We
compare our method to state-of-the-art methods for planning
in GMDPs and show, that for non-local reward functions
state-of-the-art methods approach the performance of random
guess, while our method performs well. In the future, we
want to use this planning method as the basis for a new
reinforcement algorithm for multiple agents on a graph.
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Appendix A – KL-Divergence between two MDPs
For any time-discretization, the KL-divergence takes the form

KL(q||p) =
∑

X1,...XN ,A1,...AN−1

q(A1, . . . AN−1, X1, . . . XN ) ln

[
q(A1, . . . AN−1, X1, . . . XN )

p(A1, . . . AN−1, X1, . . . XN )

]
.

Making use of the Markov property of both distributions

p/q((A1, X1), . . . (AN , XN )) = p/q(A0, X0)

N∏
k=1

p/q((Ak+1, Xk+1) | (Ak, Xk)),

we arrive after some basic algebraic manipulations at

KL(q||p) =

N∑
k=1

∑
XkAkXk+1

q(Xk+1, Ak, Xk) ln

[
q(Ak | Xk)q(Xk+1 | Ak, Xk)

p(Ak | Xk)p(Xk+1 | Ak, Xk)

]
,

– or in the notation of the main-paper

KL(q||p) =

N∑
t=1

∑
y,x,a

q(y, x | a; t)πq(a | x) ln

(
q(y | x, a; t)πq(a | x)

p(y | x, a; t)πp(a | x)

)
,

where we identified the stationary policies πp(a | x) ≡ p(Ak | Xk) and πq(a | x) ≡ q(Ak | Xk).

Appendix B – KL-Divergence between two continuous-time MDPs
In order to perform the continuous-time limit, we have to define an expansion of the variational distribution q in some infinitesimal
time-step h.

q(y, x, a; t) ≡ δx,yq(x; t)πq(a | x) + h
τ(x, y, a; t)

q(x; t)πq(a | x)
+ o(h),

and τ(x, x, a; t) = −∑y 6=x τ(x, y, a; t). Plugging in this definition and the expansion p(y | x, a) = δx,y + hw(y | x, a), we
can write

KL(q||p) =
∑
t

∑
y,x,a

[
δx,yq(x; t) + h

w(x, y, a)

πq(a | x)

]
πq(a | x) ln

δx,y + h τ(x,y,a;t)
q(x;t)πq(a|x)

δx,y + hw(y | x, a)

πq(a | x)

πp(a | x)

 .

Finally, after some algebraic manipulations, using limh→0 ln(1 + hx) = hx and limh→0 h
∑T
t=1 =

∫ T
0

dt

KL(q||p) =

∫ T

0

dt
∑

x,y 6=x,a

{q(x; t)πq(a | x)w(y | x, a)− τ(x, y, a; t) ln (w(y | x, a)πp(a | x))}

+

∫ T

0

dt
∑

x,y 6=x,a

τ(x, y, a)

{
ln (τ(x, y, a; t))− ln q(x; t)− ln

(
πq(a | x)

πp(a | x)

)
− 1

}

+
1

h

∫ T

0

dt
∑

x,y 6=x,a

q(x; t)πq(a | x) ln

(
πq(a | x)

πp(a | x)

)
.

If now the policies πq 6= πp, then the last term in the KL-divergence becomes infinite in the limit h → 0. Thus we have to
enforce π = πq = πp and arrive at

KL(q||p) =

∫ T

0

dt
∑

x,y 6=x,a

{q(x; t)π(a | x)w(x, y | a)− τ(x, y, a; t) ln (w(x, y | a)π(a | x))}︸ ︷︷ ︸
≡E(t)

+

∫ T

0

dt
∑

x,y 6=x,a

τ(x, y, a; t)

{
ln
τ(x, y, a; t)

q(x; t)
− 1

}
︸ ︷︷ ︸

≡H(t)



Appendix C – Discounting
In order to incorporate discounting into the framework of planning via inference, one can introduce a prior over horizons
T ∼ p(T | γ). In this case the KL-divergence between q and the reward optimal posterior (see main-text) p(X[0,∞], A[0,∞] |
π, Z[0,∞] = 1) becomes

KL(q(X[0,T ], A[0,T ] | π)p(T | γ)||p(T | γ)p(X[0,T ], A[0,T ] | π, Z[0,T ] = 1)) =

KL(q(X[0,T ], A[0,T ] | π)p(T | γ)||p(T | γ)p(X[0,T ], A[0,T ] | π))

+

∫ ∞
0

dT p(T | γ)

∫ T

0

dt
∑
s,a

q(s; t)π(a | s)R(s, a)− ln p(Z[0,∞] = 1 | π).

By using Fubinis theorem, we can exchange the integration order
∫∞
0

dT p(T | γ)
∫ T
0

dt =
∫∞
0

dt
∫∞
t

dT p(T | γ) and further
noticing that

∫∞
t

dT p(T | γ) = 1−
∫ t
0

dT p(T | γ), we arrive at the discount factor from the main text dγ(t) ≡ 1−
∫ t
0

dT p(T |
γ). We notice that for an exponential prior p(T | γ) = ln γγT , we get dγ(t) = γt – the standart exponential discount factor. We
note, that the planning via inference framework allows naturally for non-exponential discounting, where in general a Bellmann
equation can not be issued. Observing that KL(q(X[0,T ], A[0,T ] | π)p(T | γ)||p(T | γ)p(X[0,T ], A[0,T ] | π, Z[0,T ] = 1)) ≥ 0
we arrive at a variational lower bound to the marginal likelihood in the discounted case

ln p(Z[0,∞] = 1 | π) ≥F [q, π] + V πq (s0),

where we inserted the definition

V πq (s0) =
∑
s,a

∫ ∞
0

dt γtq(s; t)π(a | s)R(s, a)

= Eq

[∫ ∞
0

dtγtR(X(t), A(t)) | X(0) = s0, π

]
and

F [q, π] ≡ −KL(q(X[0,T ], A[0,T ] | π)p(T | γ)||p(T | γ)p(X[0,T ], A[0,T ] | π)).

In a derivation, analogous to Appendix B above, we recover

F [q, π] = −
∫ ∞
0

dt dγ(t) {E(t) +H(t)} .

Appendix D – Continuous-time variational lower-bound
In order to perform the continuous-time limit, we represent q by an expansion in h in set of marginals

q(yn, xn, un, an; t) = δx,yqn(x; t)qun(t)πun(a | x) + h
τun (x, y, a; t)

qn(x; t)qun(t)πun(a | x)
+ o(h),

with τun (x, x, a, t) = −∑y 6=x τ
u
n (x, y, a; t). By inserting q′s representation into FV PT [q, π] we get

FV PT [q, π] =
1

h

∫ ∞
0

dtdγ(t)
∑

y 6=x,x,u,a

hτun (x, y, a; t)

[
lnh

τun (x, y, a; t)

qn(x; t)qun(t)πun(a | x)
− lnhπun(a | x)wun(x, y | a)

]

+
∑
x,u

qn(x; t)qun(t)πun(a | x)− h
∑
y 6=x

τun (x, y, a; t)


×

ln

{
1− h

∑
y 6=x τ

u
n (x, y, a; t)

qn(x; t)qun(t)πun(a | x)

}
− ln

1− h
∑
y 6=x,a

πun(a | x)wun(y | x, a)






where we also inserted P (Xn(t) = yn | Xn(t) = xn, Un(t) = un, An(t) = an) = δx,y + wun(x, y | a)πun(a | x)h. With the
asymptotic identity ln(1 + hx) = hx we can simplify

FV PT [q, π] =
1

h

∫ ∞
0

dtdγ(t)
∑

y 6=x,x,u,a

hτun (x, y, a; t)

[
ln

τun (x, y, a; t)

qn(x; t)qun(t)πun(a | x)
− lnπun(a | x)wun(x, y | a)

]

+
∑
a,u,x

qn(x; t)qun(t)πun(a | x)− h
∑
y 6=x

τun (x, y, a; t)


×

h∑
y 6=x

πun(a | x)wun(x, y | a)− h
∑
y 6=x τ

u
n (x, y, a; t)

qn(x; t)qun(t)πun(a | x)


which becomes in the continuous-time limit h→ 0

FV PT [q, π] =
∑
n

∫ ∞
0

dtdγ(t)
∑

x,y 6=x,u

τun (x, y, a; t)[1− ln τun (x, y, a; t) + ln(qun(t)qn(x; t))]︸ ︷︷ ︸
≡Hn(t)

+
∑
n

∫ ∞
0

dtdγ(t)
∑

y 6=x,x,a,u

[qn(x; t)qun(t)wun(x, y | a)πun(a | x) + τun (x, y, a; t) lnwun(x, y | a)πun(a | x)]︸ ︷︷ ︸
≡En(t)

.

The contribution of the likelihood term can be derived to be

E[R(s, a)] =
∑
n

∫ ∞
0

dt dγ(t)
∑
x,u

qn(x; t)qun(t)Run(x, a)

Appendix E – Approximate GMDP dynamics
We are now going to derive the dynamics of GMDPs, defined by fulfilling the Euler–Lagrange equations

∂xL[t, x, ẋ]− ∂t[∂ẋL[t, x, ẋ]] = 0.

First lets consider the derivative with respect to qn(x; t):

∂qn(x;t)Hn = dγ(t)
∑
u

∑
y 6=x

τun (x, y; t)

qn(x; t)
, ∂qn(x;t)Ej = dγ(t)En[

∑
a

wun(x, x | a)πun(a | x)],

Further if node n has a child j

∂qn(x;t)Hj = dγ(t)
∑

x,u|Xn(t)=xn=x

∑
y 6=x

τuj (x, y, t)

qn(x; t)
,

∂qn(x;t)Ej = dγ(t)
∑
x

qj(x; t)En[
∑
a

wun(x, x | a)πun(a | x) | Xn(t) = x].

With respect to the derivative q̇n(x; t) we get

∂q̇n(x;t)L = −wn(x; t).

We derive with respect to the transitions

∂τun (x,y,a;t)Hn = dγ(t) ln[qn(x; t)qun(t)]− ln τun (x, y, a; t), ∂τun (x,y,a;t)En = dγ(t) lnwun(x, y | a)πun(a | x).

thus

∂τun (x,y,a;t)L = dγ(t) ln[qn(x; t)qun(t)]− dγ(t) ln τun (x, y; t) + dγ(t) lnwun(x, y | a)πun(a | x)− ηn(x; t) + ηn(y; t).

The derivative with respect to the Lagrange-multipliers yields:

∂ηn(x;t)L = −

q̇n(x; t)−

 ∑
y 6=x,u

τun (y, x; t)− τun (x, y; t)





And lastly derivatives of E[R(s, a)]]

∂qn(x;t)E[R(s, a)] = dγ(t)
∑
u,a

qun(t)πn(a | x)Run(x, a) + dγ(t)
∑

j∈child(n)

∑
u,a

qj(x; t)q
u/n
j (t)πn(a | x)Ruj (x, a)

These can then be combined as the following Euler-Lagrange equations:

(I) 0 = dγ(t)
∑
u

∑
y 6=x

τun (x, y, a; t)

qn(x; t)
+ dγ(t)En[wun(x, y | a)πun(a | x)] + η̇n(x; t) + dγ(t)En[Run(x, a)]

+ dγ(t)
∑

j∈child(n)

∑
x,u|Xn(t)=x

∑
y 6=x

τun (x, y, a; t)

qn(x; t)

+ dγ(t)
∑
x

qj(x; t)
{
Ej [w

u
j (x, x | a) | Xn(t) = x] + Ej [R

u
j (x, a) | xi = x]

}
(II) 0 = ln[qn(x; t)qun(t)]− ln τun (x, y, a; t) + lnwun(x, y | a)πun(a | x)− ηn(x; t)/dγ(t) + ηn(y; t)/dγ(t)

(III) q̇n(x; t) =
∑

y 6=x,u,a

{τun (y, x, a; t)− τun (x, y, a; t)} .

Exponentiating (II) gives

(II∗) τun (x, y, a; t) = qn(x; t)qun(t)wun(x, y, a | a)πun(a | x)ρn(y; t)/ρn(x; t),

where ρn(x; t) ≡ exp(ηn(x; t)/dγ(t)). Assuming that w is irreducible, ρn(x; t) and qn(x; t) are non-zero in (0, T ) and we can
thus eliminate τun (x, y, a; t) in (I) and (II). Thus

(I∗) ρ̇n(x, t) =
∑
y 6=x,a

En[wun(x, y | a)πun(a | x)]ρn(y; t)

+

{
En[wun(x, x | a)πun(a | x)] + ψn(x; t) + ln ρn(x; t)

∂tdγ(t)

dγ(t)

}
ρn(x; t)

(III∗) q̇n(x; t) =
∑
y 6=x,a

{mn(y)En[wun(y, x | a)πun(a | y)]ρn(x; t)/ρn(y; t)

− qn(x; t)En[wun(x, y | a)πun(a | x)]ρn(y; t)/ρn(x; t)} ,
where we used that

∂tηi(x)

dγ(t)
=

1

ρi(x; t)
∂tρi(x; t) + ln (ρi(x; t))

∂tdγ(t)

dγ(t)

. We further summarized

ψn(x; t) =
∑

j∈child(n)

∑
x

qj(x; t)

 ∑
y 6=x,a

ρj(y; t)

ρj(x; t)
Ej [w

u
j (x, y | a)πuj (a | x) | Xn(t) = x]

+ Ej [w
u
j (x, x | a)πuj (a | x) | Xn(t) = x] + Ej [Cj(x, u) | xi = x]

}
.

Appendix F – Policy evaluation
We want to test how accurately we can approximate the true lower bound using Prop. 2. We define local state and action spaces
X = {0, 1} and A = {0, 1}. To test the performance under different types of policies, we consider policies

πui (a | x) =
1

2
+ tanh

βxi ∑
j∈par(i)

uj

 , (12)

that become increasingly deterministic with increasing β. In order to keep this experiment simple, we assume a deterministic
transition model wun(y | x, a) = δx,(−1)a for y 6= x, independent on the parent configuration. Because in this experiment, the
agents are coupled by their policies, a more deterministic policy corresponds to a stronger coupling between the agents, thus
increasing the perturbation parameter ε. We test our method on two different tree topologies and random reward functions
of type (10). We set the variances σα = σJ = 0.2. One is is a tree-network sketched in the inset of Fig. 3 a), the other a
bi-directional chain with periodic boundary conditions as sketched in Fig. 3 b). We find that for both networks, the accuracy of
the approximation lowers for increasing β, however the accuracy is worse for the bi-directional chain.
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Figure 3: Relative deviation of the approximate expected reward from the exact one for different policies parametrized by β. For
reference we plotted the scale of π ∝ 2 tanh(β) on the x-axis (colormap: white= 0 black= 1). The performance is evaluated
using 50 random reward functions of type (10) for two different graph topologies (inset). We plotted the 5% (red), 50% (black)
and 95% (blue) percentiles. We find that our method performs slightly better on trees a) than on bi-directed chains b).


