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Single core performance of the NEMO model is limited by memory access and poor
exploitation of vector processing units on modern HPC architectures

The analysis of the memory access pattern shows that many repeated accesses
occur for reading values not available in cache
-> high rate of cache miss!!!

NEMO Ocean Model

Goal of the work: enhance the exploitation of the cache
memory of the modern parallel architectures through the
loop fusion approach



• Loop fusion technique aims at better exploiting the cache memory by 
fusing DO loops together

• advantages: reduction of cache misses and reduction of the memory footprint
• disadvantage: due to data dependencies redundant operations are needed

Single core performance - Loop fusion
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• Loop fusion approach has been applied on the NEMO MUSCL advection kernel
• Three different levels of fusion have been implemented

qprototype1: has the maximum level of fusion with redundant operations

qprototype2: introduces the buffers rotation1 in the outer loop

qprototype3: uses the buffers rotation in the outer and middle loop

Single core performance - Loop fusion

1buffers rotation technique avoid redundant
operations by adopting pointers to arrays and
implementing a rotation at each loop iteration as
shown in the figure



First approach – prototype1
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• The halo exchange is moved before all DO-loops (at the beginning of 
the routine)
• The halo region needs to be extended up to two halo lines

• The advective trend is computed for each single (ji, jj, jk, jn) grid cell 
within a single big DO-loop
• This approach implies also a duplication of the calculus up to a factor 3
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First approach – prototype1
BaseLine Prototype 1



Second approach – prototype2
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• Along the vertical direction:
• The advective flux at level jk=1 is computed before the loop over jk (we call 

this flux Fjk-1)
• Inside the jk loop, the flux at level jk (which we call Fjk) is computed 
• We use Fjk-1 and Fjk to calculate the advective trend at level jk and to update 

the RHS variable at level jk
• Before incrementing the jk level, we update the flux at level jk-1: Fjk -> Fjk-1

• This approach reduces the number of redundant operations, but it 
introduces a data dependencies in the jk loop, hence the jk loop can 
not be vectorized, neither executed in parallel.
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Second approach – prototype2
Prototype 1 Prototype 2



Third approach – prototype3
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• Along the horizontal direction:
• In the jk loop, before updating the RHS variable with the advective trend, the 

fluxes for the whole horizontal domain are computed
• The fluxes are hence used to compute the advective trend and to update the 

RHS variable 

• This approach further reduces the number of redundant operations.
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Third approach – prototype3
Prototype 2 Prototype 3



Preliminary Performance Analysis
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• Global domain: 2240 x 1500 x 31 points
• Smallest sub-domain (with 1024 cores): 74 x 51 x 31 points
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Preliminary Performance Analysis
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• Global domain: 2240 x 1500 x 31 points
• Smallest sub-domain (with 1024 cores): 74 x 51 x 31 points
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Preliminary Performance Analysis
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• Global domain: 2240 x 1500 x 31 points
• Smallest sub-domain (with 1024 cores): 74 x 51 x 31 points
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Preliminary Performance Analysis
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• Global domain: 70 x 46 x 19 points
• Sub-domain with 64 cores: 13 x 10 x 19 points
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Preliminary Performance Analysis
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• Global domain: 70 x 46 x 19 points
• Sub-domain with 64 cores: 13 x 10 x 19 points
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Preliminary Performance Analysis
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• Prototypes 1 and 2 provide a good improvement up to 256 cores then
the redundant operations lead to a loss of performance 
• Prototypes 3 improves parallel efficiency by ~30% on 1024 cores
• This approach enhanced the vectorization level and the cache reuse, 

reducing L3 Total Cache Misses by ~80% on 1024 cores
• Loop-fusion is strictly linked to the computing architecture –> A fully 

portable performance improvement can be ensured by the adoption 
of a DSL.
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