
#shareEGU20 4 - 8 May 2020

Refactoring the memory access pattern to improve
computational performance in NEMO

I.Epicoco, F. Mele, S. Mocavero, M. Chiarelli, A. D'Anca, G. Aloisio

OS4.8 - Numerical modelling of the ocean: new scientific advances in ocean models to
foster exchanges within NEMO community and contribute to future developments

shareEGU20 - Refactoring the memory access pattern to improve computational performance in NEMO

Single core performance of the NEMO model is limited by memory access and poor
exploitation of vector processing units on modern HPC architectures

The analysis of the memory access pattern shows that many repeated accesses
occur for reading values not available in cache
-> high rate of cache miss!!!

NEMO Ocean Model

Goal of the work: enhance the exploitation of the cache
memory of the modern parallel architectures through the
loop fusion approach

• Loop fusion technique aims at better exploiting the cache memory by
fusing DO loops together

• advantages: reduction of cache misses and reduction of the memory footprint
• disadvantage: due to data dependencies redundant operations are needed

Single core performance - Loop fusion

shareEGU20 - Refactoring the memory access pattern to improve computational performance in NEMO

• Loop fusion approach has been applied on the NEMO MUSCL advection kernel
• Three different levels of fusion have been implemented

qprototype1: has the maximum level of fusion with redundant operations

qprototype2: introduces the buffers rotation1 in the outer loop

qprototype3: uses the buffers rotation in the outer and middle loop

Single core performance - Loop fusion

1buffers rotation technique avoid redundant
operations by adopting pointers to arrays and
implementing a rotation at each loop iteration as
shown in the figure

First approach – prototype1

shareEGU20 - Refactoring the memory access pattern to improve computational performance in NEMO

• The halo exchange is moved before all DO-loops (at the beginning of
the routine)
• The halo region needs to be extended up to two halo lines

• The advective trend is computed for each single (ji, jj, jk, jn) grid cell
within a single big DO-loop
• This approach implies also a duplication of the calculus up to a factor 3

shareEGU20 - Refactoring the memory access pattern to improve computational performance in NEMO

First approach – prototype1
BaseLine Prototype 1

Second approach – prototype2

shareEGU20 - Refactoring the memory access pattern to improve computational performance in NEMO

• Along the vertical direction:
• The advective flux at level jk=1 is computed before the loop over jk (we call

this flux Fjk-1)
• Inside the jk loop, the flux at level jk (which we call Fjk) is computed
• We use Fjk-1 and Fjk to calculate the advective trend at level jk and to update

the RHS variable at level jk
• Before incrementing the jk level, we update the flux at level jk-1: Fjk -> Fjk-1

• This approach reduces the number of redundant operations, but it
introduces a data dependencies in the jk loop, hence the jk loop can
not be vectorized, neither executed in parallel.

shareEGU20 - Refactoring the memory access pattern to improve computational performance in NEMO

Second approach – prototype2
Prototype 1 Prototype 2

Third approach – prototype3

shareEGU20 - Refactoring the memory access pattern to improve computational performance in NEMO

• Along the horizontal direction:
• In the jk loop, before updating the RHS variable with the advective trend, the

fluxes for the whole horizontal domain are computed
• The fluxes are hence used to compute the advective trend and to update the

RHS variable

• This approach further reduces the number of redundant operations.

shareEGU20 - Refactoring the memory access pattern to improve computational performance in NEMO

Third approach – prototype3
Prototype 2 Prototype 3

Preliminary Performance Analysis

shareEGU20 - Refactoring the memory access pattern to improve computational performance in NEMO

• Global domain: 2240 x 1500 x 31 points
• Smallest sub-domain (with 1024 cores): 74 x 51 x 31 points

0.01

0.1

1

10

100

1 4 16 64 256 1024

El
ap

se
d

tim
e

(s
ec

)

number of processes

Elapsed Time

Base Loop_Fusion Proto1 Loop_Fusion Proto2 Loop_Fusion Proto3

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64 128 256 512 1024

Sp
ee

du
p

number of processes

Prototypes Speedup

Loop_Fusion Proto1 Loop_Fusion Proto2 Loop_Fusion Proto3

Test executed on Intel
Xeon based Architecture
16 cores per node

Preliminary Performance Analysis

shareEGU20 - Refactoring the memory access pattern to improve computational performance in NEMO

• Global domain: 2240 x 1500 x 31 points
• Smallest sub-domain (with 1024 cores): 74 x 51 x 31 points

1

4

16

64

256

1024

1 4 16 64 256 1024

Sp
ee

du
p

number of processes

Parallel Speedup

Base Loop_Fusion Proto1 Loop_Fusion Proto2
Loop_Fusion Proto3 Ideal

0

0.2
0.4

0.6

0.8

1
1.2

1.4

1.6

1 4 16 64 256 1024

Ef
fic

ie
nc

y

number of processes

Parallel Efficiency

Base Loop_Fusion Proto1 Loop_Fusion Proto2 Loop_Fusion Proto3

70%

Preliminary Performance Analysis

shareEGU20 - Refactoring the memory access pattern to improve computational performance in NEMO

• Global domain: 2240 x 1500 x 31 points
• Smallest sub-domain (with 1024 cores): 74 x 51 x 31 points

0

0.5

1

1.5

2

2.5

3

1 4 16 64 256 1024

To
ta

l C
ac

he
 M

iss
es Bi

lli
on

s

Number of processes

L3 Total Cache Misses

Base Loop Fusion Proto1 Loop Fusion Proto2 Loop Fusion Proto3

0

5

10

15

20

25

30

1 4 16 64 256 1024

Ar
ith

m
et

ic
In

te
ns

ity

Number of processes

Arithmetic Instensity

Base Loop Fusion Proto1 Loop Fusion Proto2 Loop Fusion Proto3

Preliminary Performance Analysis

shareEGU20 - Refactoring the memory access pattern to improve computational performance in NEMO

• Global domain: 70 x 46 x 19 points
• Sub-domain with 64 cores: 13 x 10 x 19 points

0.001

0.01

1 4 16 64 256 1024

El
ap

se
d

tim
e

(s
ec

)

number of processes

Elapsed Time

Base Loop_Fusion Proto1 Loop_Fusion Proto2 Loop_Fusion Proto3

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1 2 4 8 16 32 64 128 256 512 1024

Sp
ee

du
p

number of processes

Prototypes Speedup

Loop_Fusion Proto1 Loop_Fusion Proto2 Loop_Fusion Proto3

Preliminary Performance Analysis

shareEGU20 - Refactoring the memory access pattern to improve computational performance in NEMO

• Global domain: 70 x 46 x 19 points
• Sub-domain with 64 cores: 13 x 10 x 19 points

1

2

4

8

16

1 4 16 64 256 1024

Sp
ee

du
p

number of processes

Parallel Speedup

Base Loop_Fusion Proto1 Loop_Fusion Proto2
Loop_Fusion Proto3 Ideal

0

0.2

0.4

0.6

0.8

1

1.2

1 4 16 64 256 1024

Ef
fic

ie
nc

y

number of processes

Parallel Efficiency

Base Loop_Fusion Proto1 Loop_Fusion Proto2 Loop_Fusion Proto3

Preliminary Performance Analysis

shareEGU20 - Refactoring the memory access pattern to improve computational performance in NEMO

• Prototypes 1 and 2 provide a good improvement up to 256 cores then
the redundant operations lead to a loss of performance
• Prototypes 3 improves parallel efficiency by ~30% on 1024 cores
• This approach enhanced the vectorization level and the cache reuse,

reducing L3 Total Cache Misses by ~80% on 1024 cores
• Loop-fusion is strictly linked to the computing architecture –> A fully

portable performance improvement can be ensured by the adoption
of a DSL.

The IS-ENES3 project has received funding from the
European Union’s Horizon 2020 research and innovation
programme under grant agreement N°824084

https://is.enes.org

shareEGU20 - Refactoring the memory access pattern to improve computational performance in NEMO

https://is.enes.org/

