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Introduction 

This report concludes all the modelling activities in the ClairCity project. We developed a full 

envelope for the assessment of policy measures on local air quality, starting from activity 

data to generate air quality, health and carbon footprint impact. This report summarizes the 

work of several project partners: TML focussed on the transport side, PBL on land-use and 

citizen activity, DTU integrated the practices/behaviour elements of citizens in typical energy 

consumption temporal profiles, TECHNE developed the industrial emission as well as the 

carbon footprint calculations, UAVEIRO used all emission calculations from the previous 

partners as input to produce air quality estimates and NILU estimated health impact from 

these air quality estimates. 

All these steps require a different modelling approach, yet in a clear-cut sequential approach. 

In this report, we elaborate first on the general approach taken for each of these steps and 

secondly elaborate on the detailed results for each of the 6 cases, in separate chapters. 

Given the size of the document, we split D5.7 in several documents: 

1. General methodology of each module (this document): For all 6 cases and for the 

simplified approach in the generic model, we rely on a common methodology insofar 

possible for the cases. Some cases are data rich (e.g. Amsterdam, Bristol), others 

are data-poor (e.g. Aveiro, Sosnowiec). Also, not all data is available in the same 

format for all cases, so some specific adaptations are needed. In this first chapter, we 

elaborate on the common methodology applied for all cases. 

2. Document/Chapter per city case: As indicated, we made some changes to the 

general methodology for the cases when required. In separate documents, we 

elaborate for each case on: 

a. City specific particularities (e.g. method, data) 

b. Scenario description and implementation in the modelling 

c. Detailed results, for the baseline, the business as usual scenario (BAU) and 

for the scenario’s, including intermediate results after each step in the 

assessment procedure. 

The chapter per city case is available into the ClairCity community in Zenodo through the 

generic DOI https://doi.org/10.5281/zenodo.3690724. 

 

Air quality and health impact assessment follows a fairly standard sequential approach. 

Emission sources are estimated at sector level. Spatial and temporal detail is added. These 

detailed emission estimates serve as input for an air quality model which provides results in 

terms of air quality level to the health assessment. We thus come to the following steps: 

1. Integrated land-use for the assessment of energy consumption of the residential 

sector. 

2. Temporal distribution to derive intra-day and seasonal variation of residential 

emissions 

3. Estimating passenger and freight transport energy consumption and emissions. 

https://doi.org/10.5281/zenodo.3690724


7 

4. Adding Industrial, Residential, Commercial and Institutional emission estimates, from 

(detailed) energy consumption for the residential sector and available emission 

assessments for other sectors 

5. Carbon Footprint assessment to derive carbon footprint from emission inventories  

6. The air quality modelling, using the emission data the estimate detailed air quality 

maps 

7. Convert population exposure and air quality results to estimate exposure and health 

impacts 

In this chapter, we elaborate in detail on the general methodology of each of these steps 
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1 Integrated model 

The methodology for developing the integrated module for the city of Amsterdam and served 

as a template for subsequent cases, aiming to simulate households’ practice/activity 

behaviour, encompasses three steps: 

1) Creation of a synthetic population of the entire city 

2) Generation of activity chains including temporal dimensions 

3) Spatial allocation of trips, conditional on the activity chains from step 2 

1.1 Synthetic population 

Modelling phenomena at an individual, household and geographical scale simultaneously 

requires spatially explicit data of all individuals in the relevant geographical area. Such data is 

generally not available: individual-level activity data such as travel diaries, are typically 

collected through surveys, covering only a part of the population. In the best case, the sample 

is representative on a national level, meaning that it is not representative for smaller areas. 

Furthermore, individual-level data on income and expenditure are likely to be unavailable for 

the public for privacy reasons. Finally, individual-level data may not exist at all.  

In Clair-City all these challenges were present. Overcoming them has necessitated the 

creation of synthetic spatial micro data. This technique is sometimes referred to as spatial 

microsimulation and it involves the creation of a synthetic micro population for small 

administrative areas by combining a spatial microdata with geographically aggregated zone-

level data. The key elements of the approach can be summarized as follows:  

• Spatial microsimulation is inherently concerned with how things vary over space, not 

just between individuals, groups or periods of time.  

• Spatial microsimulation explores issues at the individual-level, as implied by the word 

micro.  

• Spatial microsimulation involves the creation of fictitious data for modelling purposes, 

captured by the word simulation.  

 

In general, the population synthesis entails distributing, or replicating, individual entries in 

national micro-level household survey such that the aggregate matches key figures in 

aggregate data on small areas. This requires specifying relevant variables which are available 

in both micro data as well as in the aggregate data. In addition to availability, the choice should 

obviously reflect the expected explanatory power of each variable for the problem at hand.  

 

For the synthesized population of Amsterdam, the data came from three sources.  

1.1.1 Dutch Mobility Survey (OVIN) 

The Dutch Mobility Survey (OVIN) is collected yearly by Statistics Netherlands (CBS). The goal 

of the survey is to provide adequate information on the daily mobility of the Dutch population. 

To this end, the movement behavior of the Dutch population is described by place of origin 

and destination, time of the carriage, means of transport used and reasons for travel. In 

addition, considerable attention is paid to the background variables for a particular movement 

pattern and choice of transport. 
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Each version of OVIN contains around 40,000 respondents, and CBS assumes that the survey 

covers 1.9% of total travelled kilometres in the Netherlands. Respondents are individual 

persons and not households, although the data set contains information about household-level 

variables for each respondent. 

We used 7 versions of OVIN (2010-1016) to generate a seed of individuals, ignoring the 

location of residence of each respondent. 

1.1.2 Netherlands’ Household Survey (WOON) 

The goal of the Netherlands’ Household Survey (WOON) is to gather information about the 

housing situation of the Dutch population and their living requirements and needs. The survey 

includes information about the composition of households, the dwelling and living environment, 

housing costs, living requirements and housing re-locations. Frequency is three-yearly. A 

minimum of 60,000 respondents have to be reached, as the survey should also provide reliable 

information on small geo- graphical areas.  We used two versions of WOON (2012 and 2015). 

WOON contains a large number of variables about households and dwellings, and we have to 

make choices on which household characteristics to include. Firstly, included variables should 

cover basic demographic information and they must be associated with the outcome(s) of 

interest (Burden & Steel, 2016). Secondly, the variables need to exist in both the survey data 

as well as in the aggre- gate geographical data. WOON contains additional information about 

the number of household members by age.  

1.1.3 The Neighbourhood and District maps (Buurt en wijk kaarten) 

The Neighbourhood and District maps from Statistics Netherlands contain digital geographical 

information as well as key figures for municipalities, neighbourhoods and districts (gemeente, 

buurt, wijk) in the Netherlands. Key figures include data on population and its composition; 

firms; housing stock; energy use; income and transport. For the microsimulation we used the 

2014 version of the data.  

Table 1 is a list of household- and dwelling variables. These are selected on the basis of the 

explanatory power in models for energy use, gas use and car ownership. Note that we use 

gender and ethnicity and labour market status of the household head as representative for the 

entire household. 

Table 1: Household variables and description 

Variable name Variable description/unit Note 

hh_id household ID  

bu_code neighbourhood code  

pc4 Postcode  

dw_type1 rental or owner-occupied the number of dwellings 

within a zone is equal to the 

number 

of households 

dw_type2 singlefamily or mulitstorey  

dw_byear building year (before or after 2000)  
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hh_type Composition  

hh_gender gender of household head  

hh_income lower 40 %, mid, upper 20%  

hh_ethn ethnicity of household head  

hh_age age of a randomly selected household 

member 

 

hh_lmstatus labour market status of household head  

elec electricity usage (kwh/year) Predicted 

gas gas usage (m3/year) Predicted 

car ownership Boolean Predicted 

long long coordinate Simulated 

lat lat coordinate Simulated 

 

Table 2 lists the individual-level variables. These are primarily chosen on the basis of their 

explanatory power in predicting time individuals spend on daily activities. One potentially 

serious problem here is that the predictive power of any statistical model drops when the 

number of things being predicted increases. To overcome this issue we followed common 

practice in the literature, distinguishing five categories of activities. Categories 1-5 encompass 

all outside-home activities, while category 6 captures all home activities. Time spent at home 

was simply calculated as 24 minus hours spent on other activities.  

1. Work  

2. Study  

3. Shopping and non-work related provision of services  

4. Recreational  

5. Discretionary (visits and other)  

6. Home  

 

Table 2: Individual variables 

Variable name Variable description/unit Note 

bu_code neighbourhood code  

ind_id individual ID  

hh_id household ID  

ind_gender gender  

int_ethn ethnicity  

ind_lmstatus labour market status  

ind_work time (h/year) spent on work Predicted 

ind_recreational time (h/year) spent on 
recreational activities 

Predicted 

ind_discretionary time (h/year) spent on 
discretionary activities 

Predicted 

ind_home time (h/year) spent at home Predicted 

 

The most commonly used method for spatial microsimulation is the reweighting method 

Iterative Proportional Fitting (IPF). Reweighting methods create a synthetic population by 

reweighting a current national micro-data file to small area benchmarks from another data 
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source. As such IPF entails calculating a weight for each individual observation: individuals 

which are highly representative of a zone receive a higher weight.  

In general, the main output of a spatial microsimulation exercise is a table representing the 

most probable configuration of the population of small areas. The table is generated using a 

‘seed’ of individuals or households from a survey and a number of constraints from 

geographically aggregated data. One of the most frequently used algorithms to generate the 

table is IPF. IPF is simple, computationally efficient, rigorously founded and it is in practice 

identical to maximum entropy (Thissen&Löfgren, 1998).  

The output of IPF, when used in spatial microsimulation, is a series of non-integer weight 

matrices of a survey sample. Each cell in the matrix indicates how representative one survey 

respondent is of the real population within each geographical area. The weight matrix thus 

gives the most probable configuration of individuals in these areas. 

The standard population synthesis using IPF involves two steps: the first step is to generate a 

joint multiway distribution of all relevant attributes of households or individuals. Next, persons 

or households are drawn from a seed of individual records in order to satisfy the distribution of 

attributes. The last step involves creating a list representing the synthetic population of 

individuals or households, using the weights generated by the IPF procedure. Since the 

weights are fractional, this step also involves integration of the weight matrix (Lovelace & 

Ballas, 2013). 

 

Due to the popularity of IPF, there are several accessible and ready-to-use implementations 

of IPF in software programs such as R (Lovelace & Dumont, 2016). For the project’s needs, 

the synthetic population of individuals has been generated in R using the IPF procedure from 

the IPF package (Blocker, 2016).  

As input for the synthetic population of individuals we used the respondent from the OVIN data 

set to generate the seed. The output of IPF in this case is a respondent-neighbourhood weight 

matrix consistent with the individual-level constraints for each neighbourhood. Constraints are 

the labour market status (ind_lmstatus), ethnicity (ind_ethnicity), gender (ind_gender) and age 

(ind_age) of each individual. The Buurt en Wijk Kaarten contains data for all these variables in 

percentages. To obtain the actual number we simply multiplied the percentage with the number 

of individuals in the neighbourhood. 

1.1.4 Allocating individuals to a household  

As indicated above, the spatial micro data in Clair-City needed to capture individuals and 

households simultaneously. This is, however, far from straight forward. Reweighting algorithms 

such as IPF generally break down when trying to match individual and household marginals at 

the same time. Our solution is to generate household- and individual-level data simultaneously 

and combining them afterwards. The combination can be conceptualized as a sorting problem, 

where individuals are allocated to a household where they are ‘likely to belong’. 

Our spatial micro data consists of both individuals and the household to which they belong. In 

travel diaries, individuals are usually the respondents, while housing demand surveys are 

generally filled in by a respondent acting on behalf of the household. As such, our spatial micro 

data consists of both household-level and individual-level data. In a final step these two are 

combined such that individuals are allocated to a household. This means we chose both 

individual-level constraints as well as household/dwelling-constraints. 



12 

In our case, the individual  and household-level data come from independent sources, 

potentially causing inconsistency: the number of individuals allocated to a household may be 

much higher than the actual number of members in that household, or some individuals are 

not allocated to a household at all.  

To overcome these challenges, we chose the following strategy:  

1. Reweighted the number of household members for each household in a particular zone with 

the number of individuals within that zone.  

2. Used the updated number of household members as well as the share of household 

members by type within a household to predict the number of household members by type.  

3. Solved the individual-household allocation problem as an entropy-maximization problem, 

with the number of household members by type as prior.  

1.1.5 Adding geographical coordinates to each dwelling  

A spatial micro data is ‘spatial’ in the sense that individuals and households are allocated to a 

small geographical area. For air pollution source apportionment, a dwelling is considered a 

point-source. We therefore needed to allocate households to a more fine-grained level, i.e., 

we wanted to find unique geographical coordinates of each dwelling (note that the number of 

households are equal to the number of dwellings).  

Here we implemented the following strategy:  

1. Carried out the IPF procedure, obtaining a spatial micro population of each neighbourhood.  

2. Found the coordinates of each neighbourhood-polygon.  

3. Using data on within-city land use, we found the subset of land within each neighbourhood 

which is currently residential.  

4. Sampled a number of spatial points, equal to the number of households within the 

neighbourhood, within the subset of residential land.  

 

Figure 1 shows a small subset of households as well as their predicted coordinates from the 

case-study of Amsterdam. As the figure clearly suggests, the algorithm works fairly well: most 

households are allocated to residential areas, however some households are allocated within 

a park. Small discrepancies between the land-use data and spatial data sets on 

neighbourhoods are likely to have caused the few errors. 
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Figure 1: An example of geolocated households in Amsterdam 

 

1.2 Generation of activity chains including temporal dimensions  

Activity chains were generated using a fairly simple probabilistic sampling approach. For each 

individual-type we collected unique activity chains from the mobility survey data. We gathered 

these possible chains for each individual type in two different lists: one for weekdays and one 

for weekends. Each possible chain was then weighted with its frequency in the survey data. 

Sampling was then carried out using the normalised weights as probabilities. 

Time spent on different activities varies between days and time of the day. The Mobility Survey 

Netherlands offers estimates of how time is spent per activity. In this survey one observation 

represents one unique trip, possibly part of a larger trip chain, for one respondent Figure 2 

shows the average time in minutes per activity. It shows that the relative amount of time spent 

on studying and working tends to diminish if the departure time is later than 08 and it starts 

increasing when the departure time is around 16. We also see that the distribution of time over 

activities does not differ significantly between weekdays and weekends, i.e. the average 

amount of time spent on working or studying for those respondents who did study or work is 

relatively stable across days. 
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Figure 2: Activity time across day for different activities 

However, Figure 2 only shows time use among respondents who actually participated in the 

activity. Figure 3 shows participation in activities among respondents. This does indeed 

suggest that there are large differences between both time of day and between weekday and 

weekend in terms of participation. For example, it is readily seen that hardly any activities were 

initiated between 0 and 4, suggesting that the average time spent on activities in Figure 2 might 

be affected by outliers. We also see that studying and working are less frequent in the 

weekends and for departure times before 9 or after 16 on weekdays. 
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Figure 3: Participation in activities by respondents 

A key element of the analysis is to predict the participation in activities by individuals. This 

means that, in addition to day and time of day, we would like to know how characteristics of 

individuals affect the choice. In order to guide the model development, we formulated a 

classification tree for each activity. The classification tree on the following pages was estimated 

using a package for recursive partitioning (rpart) in the software R. A recursive partitioning 

model that strives to correctly classify members of the population by splitting it into sub-

populations based on several dichotomous independent variables. For example Figure 4 

shows how the likelihood of participating in discretionary activities are determined primarily by 

day, time of day and mode. The lowest probability (18%) is obtained with observation on 

weekdays. The highest probability (63%) is found on weekends (the highest level), not during 

midday or morning (level 2), not by bike, other, public transport, scooter or walking (i.e., car) 

and not in the afternoon (i.e. evening). As such, the highest probability is obtained in the 

weekend, in the evening when a car is used. 
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Figure 4: Decision tree for participation in activities 

Similarly, a slightly more interesting picture can be found in Figure 5, which illustrates the 

likelihood of studying. We see immediately that the lowest probability (2%) is observations 

where the role of the respondent is either household head or partner/other. The highest 

probability occurs for observations where respondent is child, where the time of day is morning, 

where labour market status is non-active and when day of the week is weekday. 
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Figure 5: Decision tree for likelihood of studying 

A last example, Figure 6, shows a decision-tree for work. Obviously non-active on the labour 

market have non-zero probability of working while the highest probability of work is in 

observations where departure time was in the morning, the respondent is active on the labour 

market and was not walking. Interestingly enough, we also see that observations with a woman 

as a respondent (conditional on time of day is afternoon, midday, night and day is weekday) 

results in lower probability of working. We furthermore see that an area variable matter, namely 

the WM (Dutch WoonMilieu). This is a categorical variable where small areas are categorised 

on a scale from 1 -5 based on density of residential addresses and services (1 represents the 

highest level of density). WM_VERTPC represents the WM at the origin of the trip while 

WM_HOME represents the WM at the location of the respondent. 
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Figure 6: Decision tree for working 

1.3 Spatial allocation of activities 

The problem of spatial allocation of activities is formulated as a hidden Markov model and 

solved using a stochastic forward-backward algorithm. Hidden Markov models are used in 

situations where the actual sequence of states (the destination of a trip) is not directly 

observed. Rather, we can only observe some output generated by each state (the purpose for 

the trip, or the activity).  

As an example of how an activity chain is constructed, consider the following example: we 

have the travel diary of three respondents who have reported three types of activities - 

namely home, work, and shopping - across two zones. To facilitate we can write this in the 

following manner: 

 

𝑎 = ℎ, 𝑤, 𝑠 

𝑧  = 1,2 
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Possible states in this setting are 𝑆 = ℎ1, ℎ2, 𝑤1, 𝑤2, 𝑠1, 𝑠2, namely home in Zone 1 or 2, 
work in Zone 1 or 2, shopping in Zone 1 or 2. 
Assume that a mobility survey gives us the following observations from respondents r1 
through r3 

𝑂 = ℎ1𝑤1𝑟1, 𝑤1𝑠2𝑟1, 𝑠2ℎ1𝑟1, ℎ2𝑠2𝑟2, 𝑠2𝑤2𝑟2, 𝑤2ℎ2𝑟2, ℎ2𝑤2𝑟3, 𝑤2𝑠1𝑟3, 𝑠1ℎ2𝑟3 

 
For example, we know that respondent r1 lives in Zone 1, travelled to work in Zone 1, 

went shopping in Zone 2 and travelled back to his home in Zone 1. These observations 

can help us determine the sequence of activities: for example, the likelihood that an 

individual leaving home is going to work, or the transition probability 𝑃(𝑤 ∣ ℎ), is 2/3 (all 

respondents leave their home, but only one leaves directly for shopping before he/she 

goes to work). We can write the transition probabilities on a compact form as follows: 

 
𝑃(𝑎𝑖 ∣ 𝑎𝑗) ℎ 𝑤 𝑠 

ℎ 0 2/3 1/3 
𝑤 1/3 0 2/3 
𝑠 2/3 1/3 0 

 
Furthermore, for each activity we also have the location of the destination, and we can 

determine the likelihood of each location. For example, only one respondent started a 

home- bound journey from Zone 1 and this respondent lives in zone two. Consequently, 

P(1 1, h) = 0 and 𝑃(2 ∣ 2, ℎ) = 1.  

 

From respondents starting a home-bound journey in Zone 2, one lived in zone 1 and 

another in Zone 2. As such, 𝑃(1 ∣ 2, ℎ) = 1/2 and 𝑃(2 ∣ 2, ℎ) = 1/2. 

 

𝑃(𝑧𝑖 ∣ 𝑧𝑗, ℎ) 1 2 
1 0 1 
2 1/2 1/2 

 

Similarly, we can write the destination choices for work and shopping as 

 

 
 

The transition probability and the destination choice matrices contain the key parameters 

used to estimate the travel-activity behaviour of the synthetic population. Using knowledge 

of the transition probabilities between states and the probability of observing output in a 

certain state, we have generated a full origin-destination trip sequence conditional on the 

activity chain from step 1. 

 

𝑃(𝑧𝑖 ∣ 𝑧𝑗, 𝑤) 1 2 
1 1 0 
2 0 1 

𝑃(𝑧𝑖 ∣ 𝑧𝑗, 𝑠)       1 2 
1                          0 1 

 1/2 1/2 
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2 Temporal dimension of emissions 

The Integrated module in the previous step, estimates energy demand annually. For air quality 
estimates, the seasonal and the intraday profile of the emissions are important to understand 
hotspots. 

The proposed method consists of four phases: data collection, data pre-processing, data modelling and 
data clustering. 

 

Figure 7: Block diagram for modelling emission load profiles 

The nature of the datasets in the data-collection process may vary. For reasons of efficiency, we 
evaluate the input data with the aim of identifying the data that have a significant influence on our 
goal of generating emission load profiles for regions and cities. Our collected data are in the form of a 
panel dataset, that is, a cross-sectional data sample at a specific point in time. Therefore, in 
synthesizing the emission load profiles, we need related datasets dealing with temperature, a national 
gas supply, a national electricity supply and an emissions area. Figure 9 shows the generic block 
diagram, where the data input are:  

a. Monthly gas pattern  
b. Hourly local temperature 
c. Hourly national electricity load  
d. Share of fuel resources (%), especially wood emissions. 

 

2.1 Data Pre-processing 

Data pre-processing is a required step to support various data sources and formats that suitable to be 
used in the modelling phase. Depending on the existing data collection, a pre-processing process that 
consists of some tasks may require. It is due to the incompleteness, noise, ambiguity and inconsistency 
data in collection. Data corruption, missing values and outliers are the commonest problems in data 
processing [1].   

In general, there four tasks of data pre-processing: Cleaning, transformation, integration and reduction 
[2–4]. It is depending on what input data we have, the requirement data format of the tool(s) we will 
use and the expected output. Cleaning task will fill in the missing values, smooth noise data, identify 
or remove outliers and resolve inconsistencies [3]. The data will be corrected by filling in the missing 
values into a data warehouse or correct the dataset by using specific a technique, for instance: 
interpolation [5]. While, transformation task covers normalisation and aggregation. It translates, 
converts and/or scales the data into the desired formats or units. Furthermore, integration task is 
utilising multiple databases, data cubes, or files. It also includes combining the various raw dataset into 
a single dataset [3,6].  Moreover, reduction task will reduce the volume and keep the same analytical 
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results. It includes removal the redundant records and variables [2,3,7]. The following table summarise 
the common problems and their solutions: 
 
Table 3: Data pre-processing: problems and solutions [3,4] 

Task Problem/issue Solution/Technique 

Cleaning Missing data Ignore the record 
Determine and filling the missing value manually 
Use an expected value 

Noisy data Binning methods 
Clustering 
Machine learning 

Inconsistent data External reference 
Knowledge engineering tools 

Transformation Different format, scale or 
unit 

Normalisation 

Aggregation 

Generalisation 

Integration Different standards among 
data sources 

Combine data into a consistent database 

Reduction 
 
 
 

Complex analysis or 
infeasible 

Reduce un-necessary observations, variables or 
values 

 

We always start with the identification and description of the raw data we already have, which is the 
initial data. Then, we identify or define the desired data output. We can then make decisions regarding 
which data pre-processing technique, task or method will be applied. We call this approach the 
“Indepth” approach, covering successively initial data (raw or input data), desired data (the required 
output data) and process (technique, task or method). 

 

 

Figure 8: The Indepth approach, which starts by identifying the characteristics of the initial 

raw data, then defines the desired output. Based on these start and end points, the process 

can be computed by means of the selected technique, task or method. 
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2.2 Temporal Load profiles 

In general, the regional emissions temporal load profile method is the same for all case cities. 

 

Figure 9: Block diagram for modelling emission load profiles 

 

The steps of the generic method in the diagram in Figure 8 are the following: 

1. Data collection of all required inputs: monthly gas pattern (Gas), hourly local temperature 
(Temp), hourly national electricity load (El) and share of fuel resources (%), especially wood 
heaters. 

Objective: to identify all related national or regional patterns. 
2. Synthesize the monthly emissions load according to the monthly gas pattern. 

Objective: to produce a monthly synthetic emissions load that has a similar monthly 
variation pattern to the real monthly gas pattern. 

a. Residential: identify the residential wood emissions 
Objective: to identify the share of residential wood emissions. 

b. Commercial and residential: synthesize the daily emissions load according to the daily 
average temperature pattern. 

3. The synthetic daily emissions are distributed from the synthetic total monthly emissions, the 
wood emissions only being considered for the winter period. 

Objective: to produce the daily synthetic emissions load. 
4. Synthesize the hourly emissions load according to the hourly electricity load. The synthetic 

hourly emissions are distributed from the synthetic total daily emissions.  
Objective: to produce the hourly synthetic emissions load. 
 

2.2.1 Residential model 

We proposed a residential load profiles model by using the weighting proportion of some local 
parameters to reflect the local characteristic. We combined our model with the Pflugradt’s model in 
Figure 10, which is applied in his tool, namely, the Load Profile Generator (LPG). Pflugrandt’s has 
developed the model with a strong focus on the behavioural aspect.  The basic element to model a 
single household is the desire and expresses the need to do something. The model has specified: 
weight, threshold and decay time as desire properties [8]. Hence, our model is the determination of 
selecting some household profiles that are fitted with the weighting proportion. 
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Figure 10: The framework for modelling residential’s emission load profiles 

 

2.2.2 Weighting proportion (Wepro) method 

The Wepro model is an approach to model the residential load profile at the city level by emphasising 

on the weighting proportion of some main local parameters. First, it is required to identify the city’s 

age groups (AG), gender (GD) information, and labour force (LF) information. In this case, the total of 

annual energy consumption is not required, since we only focus on providing the share of hourly 

energy load profiles. Second, we coupled the share of age groups and labour force, and apply this 

weighting proportion to the total population, as the main characteristics, which represent the city’s 

profile. In more detail, each age group has gender information. Although, we can also identify the 
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gender information at the higher level of the age groups, which is the total of each gender in the city. 

In this model, the more detail of gender information of each age group is required.  

As mentioned, our model also employed Pflugradt’s model and tool, where the early step is to select 

the household profiles to be modelled by LPG. The fundamental consideration is the selected 

household profiles in LPG should represent the city characteristic in term of age groups and labour 

force, as the focus of our study. Therefore, the weighting proportion of the age groups share and 

employment share are the fundamental input of the modelling. Consequently, the household load 

profiles is the combination proportion of age groups share and employment share. The weighting 

proportion of age groups, gender and labour force is depicted in the picture below. 

City s 
population

Age group 1
Age group 2 

share
Age group 3 

share

Unemployment Employment

Male MaleMale MaleFemale FemaleFemale Female

Age group

Labour force

Gender

Figure 11: The Weighting proportion structure of residential sector at the city level 

2.3 Implementation 

2.3.1 Temperature 

As an example, we elaborate on the procedure for Bristol. For this example we obtained a temperature 
dataset from the UK’s Meteorological Office, a national public weather service that provides weather 
information, including severe weather warnings. The dataset is available from the Filton station in 
hourly resolutions as an .xlsx file. The dataset has three variables: “date”, “hour” and “hourly 
temperature”. The dates are those for 2015, covering the 365 days from 1 January 2015 to 31 
December 2015. The hourly variable shows the hour of each date from 0 to 23, representing the 24 
hours in a day. Finally, the hourly temperature variable provides the value of hourly temperatures in 
Celsius to one decimal place. In this dataset, we only transformed the data from hourly values into 
daily average values in Python. The hourly data within the same day is determined in order to find the 
daily average. 

The rest of the datasets applied the same procedure to all case cities: national gas consumption 
patterns, national electricity load and emission areas. Therefore, the results of the data pre-
processing of these datasets of other case cities can refer to the following description: 

2.3.2 National gas consumption patterns 

Many resources are available providing national gas consumption patterns, especially annual gas 
consumption data. In this case, we need the higher resolution data: the higher the resolution the 
better, since we want to synthesize the emission load profiles that reflect local characteristics. Thus, it 
is essential to determine the desired output of these data. In line with the emission load profiles, we 
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then decided to collect data on the monthly national pattern by type of gas unit and each unit’s 
monthly share as a percentage for 2015, both to be shown in a spreadsheet. 

In all six cases, we retrieved the national gas consumption pattern from the Eurostat energy database 
[45]. The files are available with tab-delimited (.tsv) file extensions. We then extracted the file and 
open it in a spreadsheet. To visualize the monthly gas consumption profile for the selected year, it is 
more efficient to do filtering than reduction since the file contains all EU member states’ datasets for 
the ten years from 2008 to 2018. In total the file has 129 variables and 815 columns. The variables 
consist of “unit,product,indic_nrg,geo”, while the rest use the time in monthly periods from 
“2018M08” back to “2008M01”. Since we have selected 2015 as the reference year, we selected 
“2015M01” to “2015M12”. For each country selected, we choose all the observations marked with the 
country’s ID, given that each country’s ID is unique. For instance in the case of Poland we selected all 
the observations marked “PL”, and similarly IT for Italy, NL for the Netherlands, etc. 

In the following we will present just one example, Portugal, as the other selected cases follow the same 
procedure. After choosing an example in the selected monthly period, we then categorized the 
selection based on the type of gas unit, of which there are two: “MIO_M3” in million cubic metres 
(Figure 12); and “TJ_GCV” in Terajoules on the basis of gross calorific value.  

 

Figure 12: Portugal’s monthly gas pattern, limited by unit: million cubic metres in 2015 

(authors’ calculation from [45]) 

Beside visualizing the monthly gas consumption pattern, we also identified gas consumption as a 
monthly share, with each month being a percentage of the annual consumption.  This is the final step 
before synthesizing the emission load profile. 

Table 2: Portugal’s monthly gas pattern and share (%) in 2015 (authors’ calculation from 

[45]). 

Month in 2015 Unit (MIO_M3) Gas monthly share (%) 

January 2286 8.1 

February 1796 6.4 
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March 2012 7.1 

April 2205 7.8 

May 2372 8.4 

June 2523 8.9 

July 2759 9.8 

August 2524 8.9 

September 2371 8.4 

October 2346 8.3 

November 2372 8.4 

December 2652 9.4 

Benchmarking to other sources that provide monthly gas patterns, such as data from the Joint 
Organisation Data Initiative (JODI) gas database [46] and a related gas study [47], is required to achieve 
a better synthesized result. 

2.3.3 National electricity consumption load 

The national electricity load datasets for all six case studies are available as .csv files from open power 
system data [48]. These were used as the load patterns for the commercial and industrial sectors. The 
dataset has four variables (Table 3). Here the desired output is the share of the hourly load resolution 
in percentages, to be entered in a spreadsheet. 

Table 3: National power loads: various names and descriptions [48].  

Field name Type (format) Description 

utc_timestamp Datetime Start of time period in Coordinated 
Universal Time. 
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cet_cest_timestamp Datetime Start of time period in Central European 
(Summer) Time. 

Interpolated_values String Marker for missing data column in source 
data, which has been interpolated. 

United Kingdom: UK_load 

The Netherlands: NL_load 

Poland: PL_load 

Slovenia: SI_load 

Portugal: PT_load 

Italy: IT_load 

Number Total load in United Kingdom in MW 

Total load in The Netherlands in MW 

Total load in Poland in MW 

Total load in Slovenia in MW 

Total load in Portugal in MW 

Total load in Italy in MW 

The source for load values was retrieved from the ENTSO-E data portal and power statistics. The 
European Network of Transmission System Operators (ENTSO-E) represents 43 electricity Transmission 
System Operators (TSOs) from 36 countries across Europe [49]. The desired output of this dataset is 
the share of hourly resolutions per country in percentages. This provides us with 8760 observations, 
which have values in percentages. In these datasets, the missing data have been solved by means of 
the interpolation technique from the data source.  

Reduction must be performed by reducing the Coordinated Universal Time variable and keeping the 
time stamp of the Central European Time (CET) variable. We also reduced the interpolated_values field 
for reasons of efficiency. Therefore, the new dataset consists of two fields: CET time stamp and total 
load in MW; and 8760 records representing the hourly resolutions. Finally, we performed the 
transformation by scaling the share of the hourly resolution in percentages.  

2.3.4 Residential emissions area 

The emission area datasets for all six case studies are available as .csv files supplied by our ClairCity 
partner. The dataset for each selected example consists of eight variables: “year”, “city”, “zone”, 
“codvariable”, “namevariable”, “pollutant”, “emissions” and “unit”, together with hundreds of 
observations. Here the desired output identifies the total of emission values by sector and their share 
by percentage, per pollutant category, to be entered in a spreadsheet. First, we can reduce some 
unnecessary variables: 

1. “year” is unnecessary because we have already defined the reference year as 2015. 
2.  “city” is unnecessary because we have also defined Sosnowiec as the sample city.  
3. “zone” and “codvariable” are unnecessary at this moment, but will return when we want to make 

further spatial analyses. 
4. “unit” is unnecessary because we have agreed to used Mg as the emissions unit, and we only need 

to scale the values of emissions in percentages. 
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The reduction phase is optional here. If we reduce the unnecessary variables, we can keep the 
“namevariable”, “pollutant”, and “emissions” variables. “namevariable” indicates whether the sector 
is residential or commercial, as well as the combustion plant and its fuel type. Nonetheless reduction 
is recommended for reasons of file size or storage efficiency. In fact we did not reduce the unnecessary 
variables in this case, since we can select the data directly in Python. 

The “pollutant” variable consists of two categories: PM10 and NOX. The “emissions” variable gives the 
value of each pollutant in the energy sector area. Furthermore, we selected the observations based on 
the energy-sector categories in “namevariable”: residential or commercial. Lastly, we quantified the 
total emissions values in the residential and commercial sectors by category of pollutant: NOX or 
PM10. The code is executed in Python, where we determine the emission value per pollutant in each 
sector (Figure below). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: The selection coding of the emission values by pollutant: PM10 or NOX, and by 

sector: residential or commercial, in Python 

 

 

 

 

 

 

## Select residential 

query = 'SELECT zone, codvariable, sum(emission) FROM {} WHERE namevariable 
LIKE"Residential%"'.format(ptable) 

c.execute(query)  

pm10 = c.fetchall() 

dfp = pd.DataFrame(pm10) 

dfp.head() 

 

## Select commercial 

query = 'SELECT zone, codvariable, sum(emission) FROM {} WHERE namevariable 
LIKE”Commercial%"'.format(ptable) 

c.execute(query)  

nox = c.fetchall() 

dfn = pd.DataFrame(nox) 

dfn.head() 
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Furthermore, we ran a program in Python to determine the emissions per pollutant of residential 
fireplaces (Figure below). This is important in order to specify the local characteristics to be considered 
when modelling the emission load profiles.  

 

 

 

 

 

 

 

 

 

 

 

Figure 14: The selection coding of residential fireplace values per pollutant: PM10 or NOX, 

in the residential sector 

 

Table 4: Summary of regional emission values by sector (authors’ calculations from 

emission area dataset) 

Sector PM 10 NOX 

 

 

Residential 

 

Residential 
fireplaces 

Emissions 

(Mg) 
% 

Emissions 

(Mg) 
% 

1802,610 100,000 2511,290 100,000 

0,526 0,029 0,031 0,001 

Commercial 279,326 100,000 608,955 100,000 

## Select residential fireplaces of PM10 

query = 'SELECT zone, codvariable, sum(emission) FROM {} WHERE pollutant LIKE"pm10" and namevariable 
LIKE"Residential Fireplaces%"'.format(ptable) 

c.execute(query)  

pm10 = c.fetchall() 

dfp = pd.DataFrame(pm10) 

dfp.head() 

 

## Select residential fireplaces of NOX 

query = 'SELECT zone, codvariable, sum(emission) FROM {} WHERE pollutant LIKE"nox" and namevariable 
LIKE"Residential Fireplaces%"'.format(ptable) 

c.execute(query)  

nox = c.fetchall() 

dfn = pd.DataFrame(nox) 

dfn.head() 
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The descriptions of the emissions data of the residential and commercial sectors were presented and 
scaled in percentages based on each pollutant. In modelling our emissions load profiles, we assumed 
that residential fireplaces are used according to the local energy consumption characteristics. 

Table below summarizes all the pre-processing techniques that we applied to each of our datasets by 
case study. 

Table 5: Summary of data pre-processing techniques applied to each dataset by case 

study 

Data 
collection 
per city or 
region 

Property of 
Nature of 
data 
collected 

Pre-processing 
techniques 

Tool or 
computer 
application 

Temperature     

Bristol 
Met Office UK 

https://www.metoffice.gov.uk/ 

Hourly 
resolutions Transformation Programming 

language: 
Python 

Amsterdam 
Meteorology office: KNMI 

https://data.knmi.nl/datasets 
Daily 
resolutions 

Reduction 

Transformation 

Spreadsheet 

Spreadsheet 

 

Ljubljana and 
Sosnowiec Commercial weather services 

https://www.wunderground.com/ 
by IBM 

Thirty-
minute 
resolutions 

Reduction 
Integration 
 
Transformation 
 
 
Cleaning 

Spreadsheet 
Command 
prompt 
Programming 
language: 
Python 
Programming 
language: 
Python 
 

Aveiro ClairCity partner, shared by UAVR, 
Portugal 

Ten-
minute 
resolutions 

Transformation 
Programming 
language: 
Python 

Liguria Local link shared by ClairCity 
partner, Techne, Italy 

Hourly 
resolutions 

Reduction 
Transformation 

Spreadsheet 
Programming 
language: 
Python 

Gas     

Bristol Eurostat database Monthly  
resolutions 

Extraction  
Filtering 
Selection 

Spreadsheet 
Spreadsheet 
Spreadsheet 

Amsterdam 

Ljubljana 

https://www.metoffice.gov.uk/
https://data.knmi.nl/datasets
https://www.wunderground.com/
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Sosnowiec Transformation Spreadsheet 

Aveiro 

Liguaria 

Electricity     

Bristol European open data platform 
ENTSO-E 

Hourly 
resolutions 

Reduction 
Transformation 

Spreadsheet 
Spreadsheet Amsterdam 

Ljubljana 

Sosnowiec 

Aveiro 

Liguaria 

Emission 
area 

    

Bristol ClairCity partner: Techne Area 
dataset 

Selection 
 
 
Transformation 

Programming 
language: 
Python 
Spreadsheet 

Amsterdam 

Ljubljana 

Sosnowiec 

Aveiro 

Liguaria 
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3 Transport 

The objective of the transport module, is to estimate the emission of transport, primarily road 

transport at link level and enable the assessment of policy measures. 

3.1 Transport demand 

We use a distinct different approach for Bristol & Amsterdam vs. Aveiro, Ljubljana and 

Liguria. In the case of the former, we had access to results of a traffic model, generating 

transport demand on a network as a starting point to estimate traffic emissions.  

For the latter 3, such a model was missing. we developed a simplified approach to estimate 

road transport emissions at link level for a selected area, including smaller cities. We use 

OpenStreetMap (OSM) data for road network topology and production/attraction to generate 

transport demand and assignment to a network. The approach includes a method to calibrate 

and rescale resulting transport volumes with a limited amount of traffic counting data points. 

Post-processing includes an intra-day temporal allocation. 

The approach involves the following steps:  

1. Based on OpenStreetMaps (OSM) we generate a connected graph that represents the 

transportation network. OSM allows all roads, including tertiary roads, to be included in 

a directed graph. The level of detail can be adjusted to the needs of the air quality 

model. The technique we used for ClairCity went up to tertiary road level. This is 

certainly possible at the level of a city, but it is possibly a challenge for a large territory 

(Flanders/Belgium), which can be met with zoning/segmentation.  

2. Next, based on land-use data from OSM, we estimate the demand for transport (HB 

matrix) - we can also take the demand generation of the dynamic traffic model for 

Antwerp (of secondary importance). In this project, we used the OD-matrix from the 

Flemish strategical transport model V4.  

3. a simple routing algorithm assigns the transport demand to the network 

4. We fine-tune the traffic volumes by calibration with a (limited) number of 

measurement points, if available. 

3.1.1 Step 1: Network generation with OSM 

OSMnx is a Python package that lets you download spatial geometries and model, project, 

visualize, and analyze street networks from OpenStreetMap's APIs 

(https://github.com/gboeing/osmnx). 

The procedure to extract road network and construct a connected graph for the road network 

is presented below. After running the program, the network is ready for calculating routes 

between locations. 

OSMnx allows to export data for two shapefiles. One with road data & one with node data. 

QGIS an open-source GIS visualization platform is used to first import the shapefiles and next 

to export 2 .csv files called “edges.csv” and “nodes.csv” (EPSG:4326).  

https://github.com/gboeing/osmnx
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The result is a noded network, example for Ljubljana is shown below: 

 

Figure 13: Example of resulting road network for Ljubljana 

 

3.1.2 Step 2: Generation of transport demand - production/attraction 

Classical transport models are composed of 4 connected and integrated stages: 

 Production & Attraction  

 Distribution 

 Mode choice 

 Assignment 

Only the first two stages are important for demand generation.  

Production factors define the generation of demand for a zone. The factors feed into a function 

that describes the total amount of trips being generated in a zone. In most cases the trip 

generation function is a multi-variable regression model based on socio-economic variables 

such as population density, age distribution, income levels, etc... 

The attractiveness of a zone as a trip end is mostly defined by infrastructural/spatial 

characteristics. The total amount of trips that dissipate in a zone is also described by a multi-

variable regression model. It is based on number of available workplaces, schools, quantity 

and quality of shopping locations, availability of leisure activities, etc…  

In the second stage total amount of trips generated and dissipated for all zones are combined 

into a trip matrix connecting each production zones with attraction zones. The relation between 

zones described in function of the distance or travel times between zones. A gravitational 

weight function is used to describe decreasing attractiveness of distant zones. 
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The first two stages lead to a very rough estimation of the number of trips in a network. Further 

calibration of the trip matrix is required to match the trip matrix with actual demand patterns. 

This typically based on observations such as link volumes or aggregated trip statistics. 

The traditional approach introduces artificial links called connectors to link the demand of a 

zone to the network.  Each zone is represented by a centroid at the center of its shape and a 

handful of connectors are drawn between this center point and the import roads of the zone. 

 

figure 14: zone centroid connection approach 

 

3.1.3 Step 3: Assignment 

The main idea of assigning demand to the network is based on equilibrium principles. These 

state that drivers will keep on looking for shorter routes until all drivers unilateral perceive the 

least resistance. 

Resistance is defined as a generalized cost which is the sum of link specific cost functions. 

The cost function used is a BPR-curve (described by the US Bureau of Public Roads) that is 

defined in function of free flow travel time, capacity and link flow. 

𝐶𝑜𝑠𝑡 = 𝑡0 (1 + 𝛼 (
𝐹𝑙𝑜𝑤

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
)

𝛽

) 

Algorithmically the equilibrium process translates into an iterative process where drivers are 

repeatedly loaded onto the network until no driver unilaterally can switches routes towards a 

less costly path. For efficiency reasons drivers originating from the same source are loaded 

according to similar routes. This allows for an implicit formulation of the route tree rooted in 

each origin. At every node in the network only the set of efficient outbound links per origin are 

required. These are the links for which the starting point is topologically closer to the origin 

than the end point. The efficient links are computed based on a Dijkstra shortest path tree 

evaluated in free flow conditions. 

The distribution of traffic flows over the different routes is performed with Dail’s procedure. 

The procedure assigns demand stochastically to different routes such that it coincides with a 

logit process. The algorithm avoids explicit path enumeration to save memory. 



35 

The assignment is for a full average day and capacities for the roads are adjusted accordingly. 

It is assumed that the maximum hourly road capacity is increased to a full day and that this 

factor is a parameter to control for responsiveness of drivers with respect to busy roads. The 

factor is set to 10 which introduces mild responsiveness and a quick convergence of the 

algorithm. The implications are that for most OD-pairs only a small set of paths is considered 

centered around the shortest path. 

The stochastic distribution of flows over the different route alternatives is determined by a 

parameter which coincides with the mu-parameter of logit models. Mu is set to 20 in this case. 

The response amounts to a reduction of almost 70% on a route if 5 additional minutes are 

experienced. 

The demand is distributed per zone according to the following rules: 

 200 nodes are selected within a zone that is part of the case-study area 

 Zones that are close to the case-study are mapped to the nearest road of the lowest 

OSM class (residential, road, living_street or unclassified) that cuts the cordon 

around the case-study area 

 Zones that are further away from the case-study are mapped to the nearest road of 

all higher OSM classes that cut the cordon around the case-study area 

Zones that are very far away from the case-study are mapped to the nearest road of the 

highest OSM classes (trunk, trunk_link, motorway, motorway_link) that cut the cordon around 

the case-study area 

3.1.4 Step 4: Refinement 

The resulting initial assignment to the network, ignore any network specific characteristics 

insofar these are not captured in the assignment algorithm. For example, disutility for specific 

links due to road characteristics are not accounted for and will lead to an overly optimistic 

attraction of a road. This may lead to serious deviation of modeled and real-world traffic 

volumes.  

We assume the initial loading will not lead to results of sufficient quality and therefore perform 

corrections to the OD-matrix using counting data on key highway’s. 

This differs case by case, depending on data availability. An estimated selected link 

assignment is performed based on the shortest path trees emitted upstream and downstream 

for a selection of key roads (typically 10-20 highway location per case). These trees are 

combined with the observed splitting rate at diverge/merge points to adjust redistribution 

weights of the deviation with the counts. 

The results of these steps, is an estimation of daily traffic volumes on the road network. We 

tested the approach for Genoa and simulated, as a test case, how the assignment algorithm 

behaves after collapse of the Morandi bridge: 
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Figure 15:Typical outcome traffic estimation - Results of traffic assignment test for 

Genoa, in case without (top) and with (below) the Morandi bridge available. 
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As volumes are estimated for daily totals, a final step is needed to distribute intensity by time 

of day. This is fairly trivial and can be done using various data that is specific for the local 

situation. In table and figure below, the estimates we’ve used, based on observed highway 

traffic intensity (a good proxy for all roads), making a distinction between weekday and 

weekend. Note that the sum over all hours is 1 for weekday, but lower for weekend, as traffic 

generation an assignment is assumed for a weekday with typical peak-profiles. 

 

Figure 16: percentage of daily traffic by time of day (h), weekend (WE) vs. weekday (WD) 

Finally, estimated traffic is split into modes, using city-specific information on modal split. 

3.2 Emission factors 

We use COPERT V1 emission factors, a general methodology to estimate emission factors of 

all road transport modes. COPERT includes distinction between emission factors by vehicle 

type, fuel type, age, size,… 

Table below summarizes the emission factors, linked to the year of built (YOB) of the car, 

fuel and size (H = engine size >2l) 

                                                

1 https://www.emisia.com/utilities/copert/documentation/ 
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Figure 17: COPERT V NOx and PM emission factor of selected cars (diesel/petrol/LPG) 

Non-exhaust emissions are assumed to remain constant over time. Emission standards for 

exhaust emissions don’t apply to non-exhaust emissions. Table below summarizes the 

assumption on the non-exhaust particulate emissions. 

Table 4: non-exhaust emission factor (in g/km) for road transport modes 

 PM10 PM2.5 PM2.5/PM10 ratio 

Car 0.0211983 0.01113141 52.51% 

Motorcycle 0.00989182 0.00509529 51.51% 

Van 0.03324282 0.01748643 52.60% 

Medium truck 0.072334743 0.034446514 47.62% 

Heavy truck 0.081704733 0.041005507 50.19% 
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Bus 0.072334743 0.034446514 47.62% 

Energy consumption is also linked to year of built and in line with a the progressive reduction 

in CO2 emission a standers tighten. We introduced the concept of biofuels explicitly in the 

emission model. Their share within a given energy carrier a given region is set by a time 

dependent parameter, meaning that we can set for each fuel type, year, and region what part 

of the fuel mixture is bio (while the rest is of fossil origin). The carbon content of the biofuels 

is assumed to be zero. This entail some specific changes to the existing emission model: 

1. The energy content of biofuels was added separately, and the total energy content of 

the fuel mixture is calculated as a weighted average of fossil- and biofuels according 

to their shares. 

2. Cars running on biofuel have a higher consumption (since the energy content of 

biodiesel and ethanol is less than of their fossil counterparts), this is taken into 

account by assuming that the total energy demand should still be the same, therefore 

cars running on fuel with lower energy content will have proportionally higher fuel 

consumption values assigned. 

We separated tailpipe and well-to-tank CO2 emissions, which are now calculated separately. 

The emission factors are dependent on the year of built. For emission per year and 

understanding evolution of emissions over time, we use a model that includes fleet 

dynamics. 

3.3 Fleet dynamics 

We opt for a fully quantitative assessment of a variety of city specific scenarios in the 

passenger car sub-sector, to assess the impact of various technology uptake rates and 

scrappage schemes in the fleet on the overall emissions. 

To this end, we use the fleet module of the TML-owned model MOVEET, including an 

extensive update of the fleet-data and some modifications on the fleet dynamics side. 

MOVEET is an updated version of the TREMOVE model, developed by TML in the period 

2015-2017 and has been aligned with the latest PRIMES-TREMOVE scenarios in terms of 

future transport demand, vehicle efficiency and biofuel uptake. 

We use the fleet module of MOVEET exclusively for the scenarios and introduce an 

exogenous propulsion technology share as scenario input. This means we don’t model the 

expected uptake of technology (based on costs, consumer preference,…) but arbitrary sale 

shares. We model the scenarios in such a way that we create credible futures in terms of 

propulsion technology uptake and realistic policy specific scrappage schemes. 

In this chapter, we go in detail into the MOVEET model itself, the data-updates and 

modifications to the model functionality in this project. 
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3.3.1 The MOVEET model 

MOVEET is a System Dynamic based analytical tool that addresses the policy problems 

related to transport and environmental impact. The tool is capable of estimating transport 

demand and emissions, as well as forecasting the impacts of policy and technological 

measures in transport-related sectors, covering all transport modes from the different regions 

in the world up to 2050. The model divides the world into 57 regions, many of them 

representing single countries, i.e. all the European countries and other world major 

economies. In the model, we consider all transportation modes (road, air, rail, and maritime) 

that interact through four interrelated modules: Transport Demand, Fleet, Environmental, and 

Welfare. 

The MOVEET model has been developed at Transport & Mobility Leuven. MOVEET is a 

System Dynamic based analytical tool that addresses the policy problems related to 

transport and climate change. The tool is capable of estimating transport demand and 

emissions, as well as forecasting the impacts of policy and technological measures in 

transport-related sectors, covering all transport modes from the different regions in the world 

up to 2050In the model, we consider all transportation modes (road, air, rail, and maritime) 

that interact through four interrelated modules: Transport Demand, Fleet, Environmental, and 

Welfare. 

It is the first transport model that: 

- generates and project demand endogenously for the whole world regions, 

- splits this demand into the different most intensive energy consuming modes of 

transport, 

- makes use of the existing fleet data and project the world fleet dynamic in high level 

of detail into the future, and 

- produces global impact assessment in term of emission and welfare. 

MOVEET’s four modules exchange information in order to provide a consistent picture of the 

different aspects modelled. Within the transport demand module, motorized transport 

demand is endogenously generated and segmented according to several dimensions (e.g. 

national/international, long or short distances, etc.). In addition, the choice of mode and road 

type for each specific context is carried out taking into account demand-supply interaction. 

Transport demand by mode is then used as input for calculating vehicle-kilometres by type 

and technology according to the fleet structure estimated in the fleet module. In the 

environmental module, fuel consumption and emissions are calculated on the basis of 

vehicle-kilometres (from the fleet module) as well as average speed of each transport mode 

(from the demand module). Finally, the welfare module takes its input from both the transport 

module and the environmental module in terms of consumer utility and, respectively, external 

costs. 

The fleet module receives the following inputs from the demand module: passengers-

kilometres (pkm) distinguished by zone, purpose, region, distance, urban level, time period, 

mode and network, tons-kilometres (tkm) distinguished by zone, car type, region, distance, 

urban level, time period, mode and network, and average load factor by demand segment.  
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The main goal of the fleet module is to convert aggregate estimations of transport demand, in 

terms of pkm, tkm and/or vkm, into a more detailed vehicle classification and generation 

(cohort) which directly relates to technology in terms of vehicle performance and 

characteristics, fuel use and emissions. 

  

figure 18: fleet capacity planning mechanism in MOVEET fleet module 

We have achieved alignment of MOVEET baseline projections on the common PRIMES-

TREMOVE 2015 baseline and added changes to fuel efficiency improvements in line with 

recent policy developments.  

In sections below we highlight the modifications done to the MOVEET model for this project. 

While globally we made these improvements only after simulating Bristol and Amsterdam 

with the original version, we have mimicked the effect of these changes in these two cases 

already by some specific modifications, leading to the same results (and motivating us to 

actually implement these modifications in a general way into our modelling tools).  

 

One of the most significant changes in the model concerns the fleet calculations, and it 

originates from three sources:  

A) In the original MOVEET model, the mileage gap created at the end of year t (as old cars 

are scrapped from the fleet) is filled with new (age = 0), and only new cars in year t+1. This is 

a standard assumption in fleet models, but to handle the particularities of the local markets 

more precisely, namely to include the effects of used-car import (which is many countries is a 

significant source of fleet-growth) and retrofitting of e.g. LPG cars (meaning that LPG cars 

might enter the market at an age that is not zero), it is worth moving for a more advanced 

description.  

Therefore in this model we assume that the fleet can also grow by imported used cars (cars 

of age > 0), and as such the demand gap is not filled only with new cars, but with a set of 

cars that are distributed over a vintage range that is specific to that region. In practice both 

the used car dynamics and retrofitting can be addressed by introducing a growth function 

that describes the age distribution of cars that enter the market in a given year to fill the 
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mileage gap. (It can be best thought of as the inverse logic of the scrappage/survival 

function2.) This growth function is region-specific and propulsion-type specific. 

It is region specific because in regions where second hand import is minimal, and in regions 

where second hand imports make up a significant percentage of sales, the age distribution of 

cars that are introduced to the market each year will be very different. For example, in a 

region where second hand import is minimal all cars that are sold will be new cars (so the 

growth function is ~1 for age = 0 and ~0 for ages > 0), while in regions where the second 

hand market dominates a large amount of cars sold each year will be older (so the growth 

function is a small number at age = 0, as it takes the shape of a Gaussian-distribution which 

is centred over the dominant used car age). We define the growth function so its integral over 

the whole age range is 1. 

The propulsion-type dependence of the growth function comes into play when we describe 

the dynamics, for example, of the LPG fleet, as the age distribution of LPG cars entering the 

fleet will most of the times different than the age distribution of other types. This originates 

from the fact that a large percentage of LPG cars are conversions, therefore they are born 

(introduced to the market) with a non-zero age, therefore it would actually be impossible to 

describe the evolution of the LPG fleet with the classical approach where only age = 0 cars 

can be sold. In theory, all propulsion types could or should have their specific growth 

functions (as for example the ratio of second hand electric car import at this point is definitely 

going to be lower than of second hand petrol car import), but due to a lack of real-world data 

that could be used for proper calibration, we only differentiate between growth functions for 

LPG cars and the rest. 

We note that due to the structure of the fleet dynamics calculations, we model conversions 

indirectly: in real life, when, e.g., an age = 3 petrol car is converted to LPG, an age = 3 LPG 

car is added to the fleet and an age = 3 petrol car is scrapped at the same time. In our model 

we assume an influx of LPG cars distributed over a range of ages (which is governed by the 

growth function), but we do not directly model the scrapped cars that are connected to this 

influx, instead, the excess scrappage is included in the general scrappage rate of petrol cars. 

Both the growth and survival functions that were used in our model were built and calibrated 

post fleet reconstruction by fitting the age distribution of the fleet observed in 2016 (taking 

into account the observed fleet growth rate of 2005-2016). This means that assuming that 

the reconstructed regional fleets are true-to-reality, both the survival rates and the growth 

rates are quite well constrained. We note that there are some regions where we found that 

the average age of the reconstructed fleet is younger compared to literature values, but due 

to a lack of observational data we are unable to achieve a better fit. Both of these functions 

are used as time-independent parameters. 

                                                

2 In our nomenclature, the survival function works as follows: survival from age = 0 to age = 1 is calculated using the survival 
value at age = 1, meaning that the surviving number of cars of age_{n} in t to age_{n+1} in t+1 = cars(age_{n})*surv_{n+1}. 



43 

A small but notable change is that for better precision we extended the vintage range from 

age 0-29 to age 0-49, even though this is not so relevant for European countries. (There is 

no computational limit anymore that would necessitate the trimming of the age range.) 

 

B) For the scenarios discussed in this study we use the technology share of car-sales as a 

model input parameter. This in return means that we can remove uncertainty from the model. 

The most important consequence is that  

1. The mileage gap can be filled precisely each year, and  

2. there is no need for the logit calculation that governed the sale shares in the 

original MOVEET model.3 

The calculation of the number of vehicles that are about to enter the regional market in year 

t+1 to fill the mileage gap is done by calculating the mileage supply of one virtual car 

distributed over the different technologies according to the know sale shares of year t+1 and 

over the different vintages following the known growth rates, and then simply dividing the 

demand gap with this unit car supply.  

This means that the price calculations (fixed and variable costs per vehicle kilometre) in the 

original MOVEET model do not influence the fleet calculations in this modified model in any 

way. It is important to stress, that these adaptations mean that this version of the model does 

not make forecasts, but it simulates various scenarios based on the provided input. 

 

C) As the fleet database of the original MOVEET model became dated since its last update, 

we decided to build the regional fleets from scratch. This way we could construct a 

homogeneous vehicle stock for each region, making sure that vehicles of all propulsion types 

are well represented, and various data sources are brought together in a consistent way. 

We constructed new stocks for each region using various data sources and techniques that 

were calibrated to match available literature values as well as possible. As a result fleet 

numbers in 2016 match the observed totals, and the observed technology distributions, and 

only the validity of the age distribution varies within regions. We detail the fleet reconstruction 

process later on.  

                                                

3 For the first two cities (Bristol and Amsterdam) we still used the original model with the logit calculations, but to reach the 
aimed technology market shares that were defined during the scenario definitions (instead of lettign the prices in our model 
drive the future sales), we employed extra alternative specific (but time-variable) constants labelled as the preference parameter 
for each propulsion techology, therefore in practice fixing the yearly sale shares in an artifical way. (While this is admittedly 
artificial, it is actually a reasonable way to model the changing acceptance of various technologies, which is not only connected 
to parameters that such as price and range.) The end result is the same in the modified model, but without the use of the 
artificial alternative specific constants. Since we are not trying to predict the future, but we aim to simulate possible future 
scenarios, there is no need to emply a logit choice model at al.  
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During the modelling process when we had no exact fleet numbers for the modelled cities or 

regions, we scaled the country-level fleet according to the population if the city/region in 

question. 

3.3.2 Update of the vehicle fleet data in MOVEET 

We rebuilt the European car-stock from scratch, as it was easier to do this self-consistently, 

than trying to update the existing stock numbers. While ClairCity covers only six countries, 

this work was done for the whole of Europe so the resulting fleet could be used for future 

scenario simulations for other cities/countries too. 

For this, we started from the fleet data of the TRACCS project4. This contains homogeneous 

and detailed fleet data for the 2005-2010 period, that we used as the initial age and 

propulsion type distribution backbone for our reconstruction process. We note here that it is 

clear that the TRACCS data is not perfect, and we had to treat it carefully to avoid amplifying 

any of its shortcomings, but it is still far the best and most complete data set available for this 

purpose. 

We derived survival curves from the TRACCS data for each country and propulsion 

technology, and we let these survival rates go above unity, which – already foreshadowing 

the idea of the growth function – enabled us to describe the excess growth of specific 

vintages caused by the influx of used vehicles. 

From year t to year t+1 these survival curves produce the complete fleet structure except for 

the age = 0 (in year t+1) cars. We filled up this vintage, the new cars for years 2010-2016, 

from the Monitoring of CO2 emissions from passenger cars5 database of the European 

Environment Agency (EEA CO2 database from hereafter), which contains a more-or-less 

complete record of all car registrations within Europe for the given period. We made sure that 

the yearly data tables are homogenised (meaning that the propulsion and weight categories 

had are matched with the categories in our MOVEET model), and scaled when necessary to 

match the total registration numbers (in a few countries the propulsion type data was not 

complete, here we had to scale the number of cars in a given category to match the grand 

total of all registrations in the country and year in question). We did not take the LPG 

registration numbers from this database, as the reported numbers in this category are not 

consistent with other data sources we consider more reliable (e.g., data from Liquid Gas 

Europe and EAFO). 

Other data sources that we have used during the reconstruction and calibration process that 

is discussed below are the following: the 2017 edition of ACEA’s ‘Vehicles in use’ report6, 

EUROSTAT tables, the European Commission’s Mobility and Transport statistical 

Pocketbook7, the International Transport Forum’s Key Transport Statistics documents8, 

                                                

4 https://traccs.emisia.com/index.php  
5 https://www.eea.europa.eu/data-and-maps/data/co2-cars-emission-14 
6 https://www.acea.be/statistics/article/vehicles-in-use-europe-2017  
7 https://ec.europa.eu/transport/facts-fundings/statistics/pocketbook-2018_en (and previous years) 
8 https://www.itf-oecd.org/key-transport-statistics-2018-2017-data (and previous years) 

https://traccs.emisia.com/index.php
https://www.eea.europa.eu/data-and-maps/data/co2-cars-emission-14
https://www.acea.be/statistics/article/vehicles-in-use-europe-2017
https://ec.europa.eu/transport/facts-fundings/statistics/pocketbook-2018_en
https://www.itf-oecd.org/key-transport-statistics-2018-2017-data
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Statistics Norway9, the Swiss Federal Statistical Office10, and the European Alternative Fuels 

Observatory11. Most of these data sources were used to derive trustworthy total fleet 

numbers, the number of yearly total registrations, and the number of new-technology 

vehicles in countries where they are already significant. LPG vehicle counts were taken from 

Liquid Gas Europe and EAFO (and for a few regions estimates were made based on articles 

found mostly on gazeo.com). Global fleet values where necessary were taken from the 

International Organization of Motor Vehicle Manufacturers12. 

These are the steps in the (historic) fleet reconstruction and calibration process: 

1. We derive survival rates (SR) from the TRACCS data. For some countries (mainly 

smaller and/or Eastern European markets) we use only the last two or three years 

from the 2005-2010 period, as the first years show clear signs of being incomplete or 

inaccurate (an artefact from the fleet construction within the TRACCS project). 

2. We use these SR curves to populate the age structure (age > 0) for 2011-2016, using 

the EEA CO2 data for new cars (age = 0) each year.  

3. We construct an initial estimate for the fleet using the yearly fleet totals per country, 

combined with an assumed survival rate (having a similar average scrappage age to 

the other propulsion types of the county) and growth curve (that was deemed a 

reasonable estimate given the market properties of the county in question). At this 

stage the age distribution of the fleet did not have to be very precise, only the yearly 

total numbers had to match with the numbers from EAFO and Liquid Gas Europe, as 

later we recalculated the fleet using more detailed and better constrained market 

properties. 

4. To calibrate the number of vehicles in the fleet, the fleet’s age distribution, and the 

share of different propulsion technologies to the numbers from ACEA, we adjusted 

the SR curves derived from the TRACCS data, influencing the import and scrappage 

rates (as these are not expected to stay constant in real life). At the end we scaled 

the fleet (excluding the LPG cars, as this part of the fleet was reconstructed in the 

previous step already making sure that the annual totals match the observed 

numbers) each year with a constant (always very close to one, typically between 0.95 

and 1.05) to be fully consistent with the yearly ACEA fleet totals.  

5. The SR curves derived from TRACCS were acceptable on the short term, but they 

were not suited to be use them for long term predictions, therefore for each 

county/region we calibrated a generalised survival curve and a generalised growth 

function from the age distribution of the 2016 fleet, based on the observed historical 

fleet growth percentage and an assumption (based on market data) describing the 

ratio of new versus used import cars entering the market each year. 

                                                

9 https://www.ssb.no/en  
10 https://www.bfs.admin.ch/bfs/en/home.html  
11 https://www.eafo.eu/  
12 http://www.oica.net/category/vehicles-in-use/  

https://www.ssb.no/en
https://www.bfs.admin.ch/bfs/en/home.html
https://www.eafo.eu/
http://www.oica.net/category/vehicles-in-use/


46 

6. In the next step we reconstructed the (whole historical) fleet for each country/region 

using the corresponding general SR curve derived in the previous step, and an 

specific growth curve that we have constructed based on market-specific input 

received from Liquid Gas Europe. The main ideas behind the reconstruction process 

were filling the fleet-gap (from t to t+1) with a sum of vehicles distributed over 

vintages according to the growth curve, or when there was a sudden drop observed 

in the yearly totals (that could not be explained by simply assuming no car 

registrations/conversions) we temporarily strengthened the scrappage by applying an 

exponent to the survival rate (causing more, and even younger cars being removed 

from the fleet in a given year). 

7. We iterated steps 5)-6) until there was no significant change in the derived survival 

curve (typically one iteration). 

At the end of the fleet reconstruction process, we have the fleet, the survival rate, and the 

two growth rates (LPG and other) for each country/region (see example below for Poland). 
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figure 19: (top two tables) Model validation for Poland by comparing the modelled and 

observed age distributions, and the technology shares to the 2015 ACEA values. (lower 

two tables) Some statistics about the yearly evolution of fleet shares and new car sales. 

 

figure 20: Age structure of our reconstructed car fleet model of Poland. The scales for 

conventional and non-conventional fuel types are different for better visibility. 

 

figure 21: The growth curve, the survival curve, and the cumulative survival curve for 
Polish non-LPG cars. It is clear, that a dominant percentage of cars are arriving to the 

Polish fleet as used cars. 

Note for the case of Bristol and Amsterdam: the process detailed above was only carried out 

after we finished the modelling of Bristol and Amsterdam. Therefore for these cities we 

simply updated the existing MOVEET fleet using new registration numbers from the EEA 

CO2 database, which – by keeping the original scrappage curves of MOVEET – was 

sufficient to reconstruct the changes in the fleets that have occurred in the past few years 

(and introduce for example electric and hybrid vehicles to these fleets). 



48 

3.3.3 Effect of policies on the fleet in the scenarios 

Later on we will discuss the various policies and their effects, but here we would like to give a 

general impression how policy scenarios affect the vehicle fleet itself. In a lot of scenarios 

cities wanted to get rid of the most polluting vehicles, which resulted in policies ranging from 

banning the most polluting vehicles (old Euro standard diesels) in low emission zones to 

completely banning cars with an internal combustion engine. These kind of measures were 

all modelled by changing the survival rates and the growth rates in the fleet models.  

For example if a city decides to introduce a stepwise ban on diesel cars, so that, e.g., by 

2030 only Euro 6 diesel cars are allowed on the roads, then we model this by making sure 

that all Euro 5 or worse diesels are scrapped out of the fleet by the end of 2029 (for example 

scrapping all Euro 3 by end 2025 and Euro 4 by end 2027 as a lead up to put smaller 

pressure on the new sales that still need to fill the suddenly larger demand-gap). Such 

scrapping schemes are very easy to model by setting the survival rates for all to be fully 

scrapped vintages to 0. 

There are a few possible complications with these kind of measures: 

1. Let’s assume a full ban on diesel by 2030. This means that for example it is 

unrealistic to assume that the market share13 of diesel would stay unchanged up until 

2030 when it suddenly drops to zero, so along with (step-by-step) scrapping newer 

and newer vintages of diesels leading up to the ban, we also need to revise 

downwards the sale shares of diesel vehicles to reflect the fact that users are 

(hopefully) aware that a diesel car purchased in, e.g., 2025 would only stay on the 

road for 5 years, which is well below the expected life of a diesel car, historically. 

Since the expected utility of a new car gets less and less, we need to reflect this 

change in the sale shares. In these cases, after dropping the diesel sale shares, 

either all other technology shares need to be pumped up to fill the created temporary 

mileage gap, or potential diesel buyers might go for petrol vehicles. Since most 

policies were pushing people towards clean technologies, we went for the earlier 

solution in most cases. When only old (Euro 5 and worse) diesel cars are banned 

then these changes are not necessary, as the sales of modern diesel vehicles are not 

limited. 

2. Bans in countries with used car influx (so where growth rates for age > 0 are not 

zero): assuming that we implement a ban on, e.g., age 5 and older diesel cars in by 

2025, besides scrapping all cars up to age 4 at the end of 2024, we also need to stop 

sales of cars of age 5 and older in 2025. We do this by setting the growth rates to 

zero for these vintages in 2025, and for the corresponding vintages in the following 

years. Now we need to make sure for each year that the remaining growth rates add 

up to 1, otherwise we create and artificial lack of sales in this propulsion technology, 

and – due to the specifications of our model – the mileage gap will not be filled fully. 

This is easy, we simply multiply the remaining non zero growth rates up with a 

constant so that their sum adds up to 1. It is clear that when there are no used car 

                                                

13 By market share we always refer to the share in sales in a given year, a.k.a. sale share. 
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sales and only the age 0 growth rate is not zero (it is 1), then this problem never 

happens at we do not need to modify growth rates only the survival rates. 

We will discuss in more detail the city-specific, local policy-driven modelling assumptions that 

went into modelling the various sections later in the city-specific sections. 

3.4 Mode choice 

The aim of a mode choice model in the context of this project is to set up a tool that we can 

use to predict the modal shift (and the mileage change) caused by various policy decisions or 

scenario-targets. Typical measures/scenario goals are: 

- Changes in public transport pricing 

- Infrastructure changes causing a change in the typical speed of the vehicles, or even 

the distances travelled between points A and B. 

- Modal shift goals of a given percentage trip share of active modes or public transport. 

What a mode choice mode does is that it predicts for a given traveller who has some 

socioeconomic background (income, car ownership, age, gender, etc.), who wants to travel 

for a given reason (work, education, shopping, etc.), between points A and B that are a given 

distance apart, what the percentage chances are that this traveller chooses a given transport 

mode. So for example: a young middle class female who lives in a household without a car 

wants to travel from their home to work in the morning, then what is the percentage chance 

that she would take the car/public transport/bike/walk/etc. To build such a model, we need a 

lot of observational data from various trips and their properties (including distance, duration, 

and price), and then we can construct a model that predicts the observed choices of various 

users as best as possible. 

Then with such choice model in hand, we can examine how the predicted mode choices 

would be influenced if we assume, e.g., that the costs associated with one of the modes are 

changed (e.g., as a result of a policy). We might (and will) see that, e.g., if the prices of public 

transport are lowered, then more people will choose public transport compared to what we 

observed before. Moreover, since the distance distribution of trips over different modes is not 

the same (e.g., bike trips are on average shorter than car trips, and so on), a percentage shift 

in mode share (trip share) does not translate linearly to a change in the mileages covered by 

different modes. (This would only be the case if the trip length distributions over all modes 

would be identical.) By evaluating a derived mode choice model on the observed trip data 

using, e.g., a change in pricing, we can calculate the change not only in the percentage of 

trips over various modes, but also the change in total mileage per mode. This is important for 

energy and emission calculations that are directly related to the vehicle kilometres. 

In theory, in an optimal case, such a model should be built for each individual city or region. 

The reason for this is that the cities differ on many levels: e.g., population structure, 

socioeconomic parameters, geography (and therefore size), distribution of various activity 

centres, such as locations of housing, shopping, education, financial properties, differences 

in transport systems (composition, density, accessibility), etc. The most convenient way to 

get all the necessary observational data that could support a model that is specific to a given 

location, is to have access to the data of a travel diary style traffic survey. 
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In such a survey a carefully selected representative sample of the population is asked to 

journal their daily trips – from simple walks to airplane trips – over a given time period, which 

along with the personal and household level properties of the respondents can be translated 

to a complete picture about the various movements that happen within the surveyed region. 

One can use these trips – weighted usually with carefully derived weighting factors to make 

the sample fully representative of the studied region – as a starting point of building a mode 

choice model. 

There are challenges though: these surveys take a lot of time and effort to carry out, and the 

resulting database is in many cases not publicly available. Even if it is available, it is most of 

the time a survey of a full country, and not only of a city in question. We cannot just filter the 

dataset to respondents with an address (if this data is not excluded from the database for 

privacy reasons) that is within our region of interest, because a) we would likely exclude so 

many trips from the database that it would not be complete anymore (various types of trips 

would be significantly over or under represented), or would not provide a significantly high 

number of observations for a detailed model, b) we would exclude traffic generated by 

people that do not live inside the city/region. 

Considering all the data and methodological difficulties, it is – at the end – not such a bad 

option to assume that cities/regions of a typical ClairCity size within Europe are relatively 

similar, and try to gather the best available data from one given location, build a model using 

that dataset, and then use the resulting mode choice model in other regions too, after 

calibrating some parameters of that general model to some of the known properties of these 

other cities/regions. This is what we settled with after some initial trials. Given the often very 

arbitrarily defined policies or scenario-goals on the city level, we believe that the overall 

precision is not lowered by using such a general (but locally adjusted) mode choice model.  
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4 Industrial, Residential, Commercial and 

Institutional emissions (IRCI) 

The tool set module produces a specific emissions inventory for Industrial, Residential/ 

Commercial and & Other services sources. 

Emission sources are generally classified as point, area and line sources. Point sources are 

stationary sources whose emissions exceed some fixed thresholds, fixed depending on the 

aim of the inventory. In order to compile city/region inventory in ClairCity, stationary emission 

sources with total annual emissions with at least one pollutant emissions exceeding 100 

Mg/year, are considered as Large Point Sources (LPS).  

Emissions from LPS can be convoyed in stacks or fugitive. When emissions are emitted by 

stacks, emission characteristics (gas temperature and volume and stack height) are 

necessary for air quality modelling.  

4.1 Industrial sources 

For industrial sources emissions, a specific tool has been developed to include all the 

emissions from the European Pollutant Release and Transfer Register (E-PRTR)14 facilities 

and national and local Registers or emissions inventories (national, regional and local scale). 

Where specific facilities are individuated that don’t have known emissions data, ad hoc 

estimates are obtained using available information and emission factors from EMEP/EEA 

Guidebook15. The emissions have been geographically allocated by coordinate of emission 

source. When data on single facility are not know emissions are evaluated from statistical 

sources as area sources and allocated using land cover maps. 

Large Point Sources have been individuated and reported, source by source, with emissions 

and characteristics of emissions. Large Point Sources are defined as sources that emits 

more than 100 Mg of NOx or PM10. 

4.2 Residential, commercial and institutional sector 

The IRCI tool evaluates emissions at most detailed administrative territorial units’ level, uses 

emission factors from EMEP/EEA Guidebook and calculates emissions as:  

E = Aij Fij 

where:  

 Aij is the indicator of the activity i in the territorial unit j,  

 Fik is the emission factor of pollutant k for activity i (expressed in grams per unit of 
activity).  

                                                

14 European Pollutant Release and Transfer Register (E-PRTR) 
15 EMEP/EEA(2016), Air pollutant emission inventory guidebook 

http://prtr.ec.europa.eu/#/facilitylevels
https://www.eea.europa.eu/publications/emep-eea-guidebook-2016
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For small combustion in the residential, commercial and institutional sector, emissions have 

been evaluated using emission factors from EMEP/EEA Guidebook and specific activity level.  

4.2.1 Emission factors 

In Table 5 the fuel combustion air pollutants emission factors used are reported16. 

Table 5: Residential, Commercial & Institutional Air pollutant Emission Factors 

Fuel Nitrogen oxides  

[gNOx/GJ] 

Particle Matter with diameter less than 

10  

[gPM10/GJ] 

Boilers – Natural gas 42 0,2 

Boilers – LPG 40 2 

Boilers – Gas/Diesel Oil 69 1,5 

Boilers – Wood 80 480 

Fireplaces – Wood 50 840 

Stoves – Wood 50 760 

Energy Efficient Fireplaces – Wood 80 380 

Energy Efficient Stoves – Wood 80 380 

Advanced Fireplaces – Wood 95 95 

Advanced Stoves – Wood 95 95 

Pellets Stoves – Wood 80 29 

Boilers - Hard Coal 158 225 

District Heating Boilers - Natural gas 89 0.89 

District Heating Boilers – Wood 81 155 

District Heating Boilers – Hard Coal 209 7.7 

4.2.2 Territorial domains  

The Air Pollutant Emissions are evaluated in the city domains defined as follow for the territorial 

units’ classes reported in Table 6.  

                                                

16 EMEP/EEA(2016), Air pollutant emission inventory guidebook,1.A.4 Small combustion 

https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-4-small-combustion-2016/view
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Table 6: Territorial domains 

City/region partner Lower level subdivision 

Bristol LSOA 

Amsterdam  Buurt 

Ljubljana Naselje 

Sosnowiec Gminas 

Genoa Census Sections 

Aveiro Freguesia 

The Bristol modelling domain (red box) is reported in Figure 22, with boundary of LSOA 

belonging to the domain (yellow areas), Amsterdam modelling domain (red box) is reported 

in Figure 23, with boundary of Buurt belonging to the domain (yellow areas), Sosnowice 

modelling domain (red box) is reported in Figure 24 with boundary of Gminas belonging to 

the domain (yellow areas), Ljubljana modelling domain (red box) is reported in Figure 25 with 

boundary of Občine belonging to the domain (yellow areas), Região de Aveiro modelling 

domain (red box) is reported in Figure 26 with boundary of Freguesia subdivision belonging 

to the domain (yellow areas), and Liguria Region (Genoa area) modelling domain (red box) is 

reported in Figure 27 with boundary of Census Sections subdivision belonging to the domain 

(yellow areas). 

 

Figure 22: Bristol domain with LSOA subdivision 
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Figure 23: Amsterdam domain with Buurt subdivision 

 

Figure 24: Sosnowiec domain with Gminas subdivision 
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Figure 25: Ljubljana domain with Naselje subdivision 

 

Figure 26: Região de Aveiro domain (red box) with Freguesia subdivision 
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Figure 27: Liguria Region (Genoa area) domain with Census Sections subdivision 

 

4.3 Classification of activities and fuels for emission estimates 

The module needs, as an input, data on fuel consumptions in residential and commercial 

sectors, detailed by technologies (boilers, fireplaces, stoves, …) and fuels as in the following 

Table 7 

Table 7: Variable used to evaluate emissions in industrial, residential and commercial 

sector 

Code Name 

020131A0 Commercial Combustion plants (boilers) (2110 - Hard Coal) [Mg] 

020131F0 Commercial Combustion plants (boilers) (3220 - LPG) [Mg] 

020131I0 Commercial Combustion plants (boilers) (3260 - Gas/Diesel Oil) [Mg] 

020131M1 Commercial Combustion plants (boilers) (4100 - Natural gas) [Mm3] 

020401A0 Commercial Combustion plants (district heating) (2110 -Hard Coal) 

020401M1 Commercial Combustion plants (district heating) (4100 - Natural gas) 

020401N0 Commercial Combustion plants (district heating) (5541 - Solid biomass) [Mg] 

020220A0 Residential Combustion plants (boilers) (2110 - Hard Coal) [Mg] 

020220F0 Residential Combustion plants (boilers) (3220 - LPG) [Mg] 
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Table 7: Variable used to evaluate emissions in industrial, residential and commercial 

sector 

Code Name 

020220I0 Residential Combustion plants (boilers) (3260 - Gas/Diesel Oil) [Mg] 

020220M1 Residential Combustion plants (boilers) (4100 - Natural gas) [Mm3] 

020220N0 Residential Combustion plants (boilers) (5541 - Solid biomass) [Mg] 

020221N0 Residential Fireplaces (5541 - Solid biomass) [Mg] 

020222N0 Residential Advanced Fireplaces (5541 - Solid biomass) [Mg] 

020223N0 Residential Conventional Stoves (5541 - Solid biomass) [Mg] 

020224N0 Residential Advanced Stoves (5541 - Solid biomass) [Mg] 

020226N0 Residential Energy Efficient Fireplaces (5541 - Solid biomass) [Mg] 

020402A0 Residential Combustion plants (district heating) (2110 - Hard Coal) 

020402M1 Residential Combustion plants (district heating) (4100 - Natural gas) 

020402N0 Residential Combustion plants (district heating) (5541 - Solid biomass) 

 

4.4 Data evaluation on domains and subdomains 

Air Pollutant emissions are evaluated on defined subdomains. When data are available only in 

aggregate figures (overall domain) or at national level, they are allocated to subdomains using 

a “proxy” variable available at subdomains level. The data know at domain or national level 

are evaluated on subdomains using a lot of proxy variables known at the subdomains level to 

allocate overall values on a subdomain’s basis. Proxy variables allow obtaining information on 

a certain spatial resolution assuming that it is known for larger spatial resolutions.  

When data are available at city/region domain, data at subdomain level is evaluated using the 

following equation: 

Ai = A * Pi /iPi 

where: Ai and Pi are the values of variable A and proxy variable P in the subdomain i, and A is 

the total of variable A in the domain. 

When data are available at national level, data at subdomain level is evaluated using the 

following equation: 

Ai = (A * Qd /dQd) * Pi /iPi 
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where: Ai and Pi are the values of the variable A and proxy variable P in the subdomain i, Qd 

is the values of the proxy variable Q in domain d, and A is the national value of proxy variable 

A. 

4.5 Future emissions calculation 

Emissions projection are estimated for area and point sources. Area emissions for future 

year (k) in a single territorial unit (e. g. LSOA, Buurt, …) (u) related to a specific activity (i) are 

estimated starting from the base year (0) emissions and using specific projections factors 

(drivers) of activity level (aikn) due to activity measures n, specific drivers for emission factors 

(fijkm) due to emissions control measures m for a selected pollutant (j), specific projections 

factors (drivers) of activity level related to a selected territorial units (ad
ikun) due to activity 

measures n and specific drivers for emission factors (fd
ijkum) due to emissions control 

measures m and, if any, additional emissions foreseen for a selected new activity in a 

selected territorial units u (Enew
ijku): 

Ed
ijuk = Ed

iju0 mn aiknfijkm ad
iuknfd

ijukm+ Enew
ijku 

Point source emissions for future year (k) for a selected production unit of a selected plant 

(u), related to activity (i) are estimated starting from the base year (0) emissions and using 

specific drivers of activity level (aik) due to activity measures n, specific drivers for emission 

factors (fijkm) due to emissions control measures m for a selected pollutant (j), specific drivers 

(ap
jkun) for activities i, related to selected production unit of a selected plant u, due to activity 

measures n, specific drivers for emission factors related to a selected pollutant (j) related to a 

selected line (flijkum) due to emissions control measures m, and, if any, additional emissions 

foreseen for a new plant u (El
ijkn): 

El
ijuk = El

iju0 mn aiknfijkm al
iuknfl

ijukm+ Enew
ijku 

Drivers for activity levels and for emission factors can be related to multiple activities, plants 

and lines; for example, the “population” driver can be used to forecast emissions coming 

from glue or paint applications in household as well as drivers related to fuel consumptions in 

residential sector, and sulphur content of distillate oil can be used for the projections of 

emission factors for sulphur dioxides in the industry and service sectors. Besides, an 

abatement system for particulate matter can be applied to a single activity (e.g. power plants 

with output higher than 300 MWth) and to one or more production units related to another 

activity (e.g. aluminum production). 

New additional emissions for point, line and area sources are used to simulate planned 

plants, planned units of a plant, and planned roads and so on. It is possible to manage the 

following groups of drivers in the policy scenario assessment: 

 Drivers for activity levels related to single activities, territorial units, lines, production 
units of industrial plants. 

 Drivers for emission factors related to single activities, territorial units, lines, production 
units of industrial plants. 

 Additional emissions related to single territorial units, lines, production units of industrial 
plants. 
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5 Carbon footprint  

The goal of this module is to compute the carbon footprint of the cities. 

5.1 Specifications of modelling tool set 

First of all, a complete review of existing carbon footprint methodologies was completed. 

Carbon footprint calculation methodologies usually follow the "emission inventory" or the 

"consumption-based" approaches. The review covered as the "emission inventory" 

approaches (such as WRI protocol for example17) than input-output models approaches. 

The "emission inventory" approaches usually include generating GHG emissions activities that 

occur inside the city/region boundary as well as outside the city/region boundary. To distinguish 

between these, the approaches group emissions into three categories based on where they 

occur: scope 1, scope 2 or scope 3 emissions. These approaches distinguish between 

emissions that physically occur within the city/region i.e. from sources located within the city 

boundary (scope 1), from those that occur from the use of electricity, steam, and/or 

heating/cooling supplied by grids which may or may not cross city/region boundaries (scope 

2), from those that occur outside the city/region but are driven by activities taking place within 

the city's/region's boundaries (scope 3). Scope 1 emissions may also be termed "territorial" 

emissions, because they are produced solely within the territory defined by the geographic 

boundary.  

Cities, by virtue of their size and connectivity, inevitably give rise to GHG emissions beyond 

their boundaries. Measuring these emissions allows cities to take a more holistic approach to 

tackling climate change by assessing the GHG impact of their supply chains, and identifying 

areas of shared responsibility for upstream and downstream GHG emissions.  

The usual methodologies for city (such as WRI Protocol) includes scope 3 accounting for a 

limited number of emission sources, including transmission and distribution losses associated 

with grid-supplied energy, and waste disposal and treatment outside the city boundary and 

transboundary transportation.  

Inventories may optionally report other scope 3 sources associated with activity in a city-such 

as GHG emissions embodied in fuels, water, food and construction materials.  

Consumption-based accounting is an alternative to the sector-based approach to measuring 

city/region emissions. This focuses on the consumption of all goods and services by residents 

of a city/region, and use EFs expressed as emissions for unit of good and services including 

all the processes (production, transport, disposal). 

GHG emissions are reported by consumption category rather than the emission source 

categories. The consumption-based approach allocates GHG emissions to the final 

                                                

17 WRI(2014), Global Protocol for Community-Scale Greenhouse Gas Emission Inventories. An Accounting and Reporting 
Standard for Cities 
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consumers of goods and services, rather than to the original producers of those GHG 

emissions. Consumption-based inventories typically use an input-output model, which links 

household consumption patterns and trade flows to energy use and GHG emissions, and 

their categories cut across those set out in the GPC. This approach is complementary to the 

GPC and provides a different insight into a city's/region's GHG emissions profile. At 

conclusion of review work a best methodology has been established defining the selected 

approach and the activities included in scope 3 to take into consideration. 

In the scope of the ClairCity project, the chosen approach is to evaluate in an integrated way 

emissions inventory and carbon footprint. Future scenarios are produced for simultaneous 

reduction of air pollutants emission and carbon footprint. 

Considering the general goals of the activities and to delimitate the efforts from other 

partners in data retrieval, we select the scope 2 approach considering emissions that: 

 physically occur within the city/region i.e. from sources located within the city boundary; 

 occur from the use of electricity, steam, and/or heating/cooling supplied by grids which 
may or may not cross city/region boundaries. 

As the project is finalized to produce strategies for the cities the carbon footprint evaluation 

will be conducted following an emission inventory approach similar to the approach followed 

in the Covenant of Mayors18 and using both: 

“Standard” emission factors (emissions will be evaluated using methodologies and 
emission factors from 2006 IPCC Guidelines for National Greenhouse Gas Inventories19 and 
specific activity level); the methodology cover all the CO2 emissions that occur due to energy 
consumption within the territory of the city/region, either directly due to fuel combustion within 
the city/region or indirectly via fuel combustion associated with electricity and heat/cold 
usage within their area; the standard emission factors are based on the carbon content of 
each fuel, like in national greenhouse gas inventories in the context of the UNFCCC and the 
Kyoto protocol; in the standard approach, the CO2 emissions from the sustainable use of 
biomass/biofuels, as well as emissions of certified green electricity, are considered to be 
zero; emission are reported as:  

 CO2 only emissions, the most important greenhouse gas,  

 CO2 equivalent emissions, including calculation of the emissions of CH4 and N2O with 
emission factor from 2006 IPCC Guidelines for National Greenhouse Gas 
Inventories20 and reported as CO2 using the Global Warming Potential (GWP) with 
100 years - time horizon21: 

1 Mg CO2 = 1 Mg CO2-eq 

1 t CH4 = 21 Mg CO2-eq 

1 t N2O = 310 Mg CO2-eq; 

                                                

18 Covenant of Mayors (2010), How to develop a Sustainable Energy Action Plan (SEAP) – Guidebook Part II, Baseline emissions 
inventory 
19 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2 Energy 
20 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2 Energy 
21 IPCC, 1995. Contribution of Working Group I to the Second Assessment of the Intergovernmental Panel on Climate Change 

https://www.covenantofmayors.eu/IMG/pdf/seap_guidelines_en-2.pdf
https://www.covenantofmayors.eu/IMG/pdf/seap_guidelines_en-2.pdf
https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2.html
https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2.html
https://www.ipcc.ch/ipccreports/sar/wg_I/ipcc_sar_wg_I_full_report.pdf
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LCA (Life Cycle Assessment) emission factors, which take into consideration the overall 
life cycle of the energy carrier; this approach includes not only the emissions of the final 
combustion, but also all emissions of the supply chain; it includes emissions from 
exploitation, transport and processing (e.g. refinery) steps in addition to the final combustion; 
this hence includes also emissions that take place outside the location where the fuel is 
used; in this approach, the GHG emissions from the use of biomass/biofuels, as well as 
emissions of certified green electricity, are higher than zero; in the case of this approach, 
other greenhouse gases than CO2 may play an important role, therefore the LCA approach 
will report emissions as CO2 equivalent; as a default will be used the LCA emission factors 
given in Covenant of Mayors guidelines, based on JRC European Reference Life Cycle 
Database; specific national emission factors will be investigates. 

Eventual local electricity production is not included in the model while district heating is 

included where data are available. 

5.1.1 Carbon footprint modeling 

The Carbon Footprint tool evaluates emissions at most detailed administrative territorial 

units’ level. We use emission factors from Covenant of Mayors guidelines and consequently 

calculate emissions as:  

Ek = Aij Fik 

where:  

 Aij is the indicator of the activity i in the territorial unit j  

 Fik is the emission factor for different Carbon footprint indicators k for activity i 
(expressed in grams per unit of activity); 

 k is the carbon footprint indicator used: CO2, CO2eq, CO2eq,LCA 

 

5.1.2 Emission factors 

In Table 8 standard emission factors are reported for different energy vectors while in Table 

9 electricity consumptions national emission factors are reported to use for CO2 indirect 

emissions from electricity consumptions. EFs from JRC22 are used to have a comparable set 

of data for all the cities. 

 

Table 8 CO2 Emission Factors  

Fuel Standard Emission  Standard Emission  LCA Emission  

                                                

22 Koffi, Brigitte; Cerutti, Alessandro; Duerr, Marlene; Iancu, Andreea; Kona, Albana; Janssens-Maenhout, Greet (2017): CoM Default 
Emission Factors for the Member States of the European Union - Version 2017, European Commission, Joint Research Centre (JRC) 

http://data.europa.eu/89h/jrc-com-ef-comw-ef-2017
http://data.europa.eu/89h/jrc-com-ef-comw-ef-2017
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Factors23  

[Mg CO2/MWh] 

Factors24  

[Mg CO2eq/MWh] 

Factors25  

[Mg CO2-eq/MWh] 

Motor Gasoline 0.249 0.250 0.299 

Gas oil, diesel 0.267 0.268 0.305 

Residual Fuel Oil 0.279 0.279 0.310 

Anthracite 0.354 0.356 0.393 

Other Bituminous Coal 0.341 0.342 0.380 

Sub-Bituminous Coal 0.346 0.348 0.385 

Lignite 0.364 0.365 0.375 

Natural Gas 0.202 0.202 0.237 

LPG 0.227 0.227 0.281 

Municipal Wastes (non-biomass 
fraction) 

0.330 0.337 0.330 

Municipal Wastes (biomass fraction) 0 0.007 0.106 

Industrial Wastes 0.515 0.522 0.522 

Wood° 0 – 0.403 0.007 – 0.410 0.017 – 0.416 

Plant oil° 0 – 0.287 0.001 – 0.302 0.182 – 0.484 

Biodiesel° 0 – 0.255 0.001 – 0.256 0.156 – 0.411 

Biogas/Greengas° 0-0.197 0-0.197 0,087-0.284 

Solar°° 0 0 0.04 

Geothermal°° 0 0 0,05 

Hydroelectric°°° 0 0 0,006 

Wind°°° 0 0 0,01 

° Lower value if fuel meet carbon neutrality criteria, higher otherwise    °° Default EC/JRC Emission factors26    °°° Default EC/JRC Emission 

factors for local electricity production9 

                                                

23 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2 Energy 
24 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2 Energy 
25  ELCD (2015), European Reference Life Cycle Database (ELCD), Release 3.2. LCA data sets of key energy carriers, materials, waste and 

transport services of European scope 

26 Koffi, Brigitte; Cerutti, Alessandro; Duerr, Marlene; Iancu, Andreea; Kona, Albana; Janssens-Maenhout, Greet (2017): CoM Default 

Emission Factors for the Member States of the European Union - Version 2017, European Commission, Joint Research Centre (JRC) 

https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2.html
https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2.html
http://eplca.jrc.ec.europa.eu/ELCD3/index.xhtml
http://eplca.jrc.ec.europa.eu/ELCD3/index.xhtml
http://data.europa.eu/89h/jrc-com-ef-comw-ef-2017
http://data.europa.eu/89h/jrc-com-ef-comw-ef-2017
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Table 9 CO2 National Electricity Emission Factors  

Fuel Standard Emission  

Factors  

[Mg CO2/MWh] 

Standard Emission  

Factors 

[Mg CO2eq/MWh] 

LCA Emission  

Factors  

[Mg CO2-eq/MWh] 

Bristol (UK) 0,515 0,517 0,589 

Amsterdam (NL) 0,429 0,430 0,486 

Ljubljana (SL) 0,399 0,401 0,424 

Sosnowiec (PL) 1,013 1,017 1,09 

Genoa (IT) 0,343 0,344 0,424 

Aveiro (PT) 0,314 0,316 0,368 

5.2 Territorial domains and subdomains 

The Carbon footprint is evaluated in the city domains defined in Table 10. Inside the city 

domains a lower level subdivision has been introduced as reported in Table 10.  

Table 10 Territorial domains 

City/region partner Territory selected Lower level subdivision 

Bristol MSOA LSOA 

Amsterdam  Geemente Buurt 

Genoa Comune Census Sections 

Aveiro Região Freguesia 

Ljubljana Obcine Naselje 

Sosnowiec Gminas Gminas 
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5.3 Classification of activities and fuels for carbon footprint 

estimates 

The module needs in input data for fuel consumptions in industrial, traffic, residential, 

commercial and institutional sector, detailed by subsector and, where defined, fuel as in the 

following Table 11.  

Table 11 Variable used to evaluate carbon footprint 

Code Name 

CF1010A0 Final Consumptions in Industry - Hard Coal 

CF1010F0 Final Consumptions in Industry – LPG 

CF1010I0 Final Consumptions in Industry - Gas/ Diesel Oil 

CF1010M1 Final Consumptions in Industry - Natural gas 

CF1010Q0 Final Consumptions in Industry – Electricity 

CF1010J0 Final Consumptions in Industry – Biogas 

CF1010N0 Final Consumptions in Industry - Solid biomass 

CF1010P0 Final Consumptions in Industry - Motor Gasoline 

CF3040A0 Final Consumptions in Other Sectors: Residential - Hard Coal 

CF3040F0 Final Consumptions in Other Sectors: Residential – LPG 

CF3040I0 Final Consumptions in Other Sectors: Residential - Gas/ Diesel Oil 

CF3040M1 Final Consumptions in Other Sectors: Residential - Natural gas 

CF3040N0 Final Consumptions in Other Sectors: Residential – Biomass 

CF3040Q0 Final Consumptions in Other Sectors: Residential – Electricity 

CF3040M2 Final Consumptions in Other Sectors: Residential - Green gas 

CF3040M3 Final Consumptions in Other Sectors: Residential – Biogas 

CF3010A0 Final Consumptions in Services - Hard Coal 

CF3010F0 Final Consumptions in Services – LPG 

CF3010I0 Final Consumptions in Services - Gas/ Diesel Oil 

CF3010M1 Final Consumptions in Services - Natural gas 

CF3010Q0 Final Consumptions in Services – Electricity 

CF3020N0 Final Consumptions in Services – Biomass 

CF3010G0 Final Consumptions in Services - Motor Gasoline 
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Table 11 Variable used to evaluate carbon footprint 

Code Name 

CF3010J0 Final Consumptions in Services – Biogas 

CF3010M2 Final Consumptions in Services - Green gas 

CF2010I0 Final Consumptions in Transport: Road - private car - Gas/ Diesel Oil 

CF2010P0 Final Consumptions in Transport: Road - private car - Motor Gasoline 

CF2010Q0 Final Consumptions in Transport: Road - private car – Electricity 

CF2010R0 Final Consumptions in Transport: Road - private car – Hydrogen 

CF2020P0 Final Consumptions in Transport: Road - motorcycles - Motor Gasoline 

CF2030I0 Final Consumptions in Transport: Road - buses - Gas/ Diesel Oil 

CF2030M1 Final Consumptions in Transport: Road - buses – CNG 

CF2030Q0 Final Consumptions in Transport: Road - buses – Electricity 

CF2040I0 Final Consumptions in Transport: Road - light duty vehicles - Gas/ Diesel Oil 

CF2040P0 Final Consumptions in Transport: Road - light duty vehicles - Motor Gasoline 

CF2050I0 Final Consumptions in Transport: Road - trucks - Gas/ Diesel Oil 

CF2010M1 Final Consumptions in Transport: Road - private car - Natural Gas 

CF5002N0 Final Consumptions in Other Sectors: Residential (district heating) - Solid biomass 

CF5001A0 Final Consumptions in Services (district heating) - Hard Coal 

CF5001M1 Final Consumptions in Services (district heating) - Natural gas 

CF5001N0 Final Consumptions in Services (district heating) - Solid biomass 

CF5002A0 Final Consumptions in Other Sectors: Residential (district heating) - Hard Coal 

CF5002M1 Final Consumptions in Other Sectors: Residential (district heating) - Natural gas 

5.4 Data evaluation at domains and subdomains 

Carbon footprint is evaluated at defined subdomains. When data are available only in 

aggregate figures (overall domain) or at national level, it is allocated to subdomains using a 

“proxy” variable available at subdomains.  

When data are available at city/region domain, data at subdomain level is evaluated using 

the following equation: 

Ai = A * Pi /iPi 
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where: Ai and Pi are the values of variable A and proxy variable P in the subdomain i, and A 

is the total of variable A in the domain. 

When data are available at national level, data at subdomain level is evaluated using the 

following equation: 

Ai = (N * Qd /dQd) * Pi /iPi 

where: Ai and Pi are the values of the variable A and proxy variable P in the subdomain i, Qd 

is the values of the proxy variable Q in domain d, and N is the national value of proxy 

variable Q. 

 

Carbon footprint for future year (k) related to a specific activity (i), in a single territorial unit (e. 

g. LSOA, Buurt, …) (u), is estimated starting from the base year (0) carbon footprint and 

using specific projections factors (drivers) of activity level (aikn), due to activity measures n, 

specific drivers for emission factors (fikm) due to emissions control measures m, specific 

projections factors (drivers) of activity level related to a selected territorial unit (ad
ikun) due to 

activity measures n and specific drivers for emission factor (fd
ikum) due to emissions control 

measures m in the territorial unit u: 

Cd
iku = Cd

iu0 mn aiknfikm ad
ikunfd

ikum 
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6 Air quality 

6.1 Air quality and source apportionment modelling at mesoscale 

The CAMx - Comprehensive Air Quality Model with Extensions27, forced by the WRF - Weather 

Research and Forecasting28 meteorological fields, was applied over the urban areas of the 6 

ClairCity pilot case studies, for the year of 2010. Since air quality is strongly dependent on 

meteorological conditions, for this study it is necessary to choose a meteorological year that 

represents the typical weather conditions of the various case studies in the period between 

2010 and 2015. Thus, the 2010 meteorological year was chosen because it presents low 

values of temperature and precipitation anomalies, when compared to average values. 

The WRF model, from the National Center for Atmospheric Research (NCAR), version 3.7., is 

a next generation mesoscale numerical weather prediction system designed to serve both 

operational forecasting and atmospheric research needs. CAMx is a 3D chemistry-transport 

model suited for the simulations of the emission, dispersion, chemical reactions, and removal 

of pollutants in the troposphere based on the integration of the continuity equation for each 

chemical species on a system of nested three-dimensional grids. The gas-phase 

photochemistry is resolved through the Carbon Bond (CB05 or CB6) or the SAPRC99 chemical 

mechanism. CAMx includes a source apportionment (SA) or attribution capability, the 

Particulate Source Apportionment Technology (PSAT), which chemically apportions specific 

pollutants to boundary conditions and emissions. It uses multiple tracer families to track the 

fate of primary and secondary PM and gaseous precursors to secondary PM. This approach 

estimates the contributions from multiple source areas and categories to the spatial and 

temporal distribution of PM and NO2 in a single model run29. 

CAMx version 6.30, with its PSAT tool, was applied using a two-nesting approach based on a 

European domain with 0.25 degrees’ horizontal resolution and 6 domains of interest centred 

in each case study, with 0.05 degrees’ horizontal resolution (Table 12). Meteorological inputs 

to the chemical simulations were driven by the meteorological model WRF, forced by 

ERA-Interim reanalysis data from ECMWF (European Centre for Medium Range Weather 

Forecast) at 6 hours and 0.75 degrees temporal and spatial resolution respectively. Initial and 

boundary conditions for the first domain provided by the global chemical model MOZART 

(Emmons et al. 2010) with a time resolution of 6 hours. Anthropogenic emissions for both 

                                                

27 ENVIRON. 2016. CAMx User Guide, Comprehensive Air Quality Model with Extensions, Version 6.30. Novato, California: 
Ramboll Environ. 

28 Skamarock, William C, Joseph B Klemp, Jimy Dudhia, David O Gill, Dale M Barker, Michael G Duda, Xiang-Yu Huang, Wei 
Wang, and Jordan G Powers. 2008. “A Description of the Advanced Research WRF Version 3 NCAR/TN-475+STR.” 
Boulder, Colorado, USA. 

29 Yarwood, Greg, Ralph E Morris, and Gary M Wilson. 2007. “Particulate Matter Source Apportionment Technology (PSAT) in 
the CAMx Photochemical Grid Model.” In Air Pollution Modeling and Its Application XVII, edited by Carlos Borrego and 
Ann-Lise Norman, 478–92. Boston: Springer. 
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domains were taken from the TNO-MACC_II European emission inventory30 available at a 

resolution of 0.125 by 0.0625 degrees, and were speciated into the CB6 chemical mechanism 

species considered in the CAMx simulation31 

Figure 28: Map of the WRF-CAMx European domain (within green rectangle) and 6 

domains of interest (within blue rectangles) for each cases study location (in red). 

 

 

Table 12 – WRF-CAMX domain characteristics. 

Case study 
name 

Case study 
abbreviation 

European domain 

(0.25º resolution) 

Case study domain 

(0.05º resolution) 

Lon (º) Lat (º) Lon (º) Lat (º) 

Bristol BRS 

-19.00 to 
21.00 

30.50 to 
55.50 

-3.50 to -1.75 50.75 to 52.25 

Amsterdam AMS 4.25 to 5.50 51.75 to 53.00 

Ljubljana LJB 13.75 to 15.50 45.25 to 46.75 

                                                

30 Kuenen, J. J. P., A. J. H. Visschedijk, M. Jozwicka, and H. A. C. Denier van der Gon. 2014. “TNO-MACC_II Emission 
Inventory; a Multi-Year (2003-2009) Consistent High-Resolution European Emission Inventory for Air Quality Modelling.” 
Atmospheric Chemistry and Physics 14 (October): 10963–76. https://doi.org/10.5194/acp-14-10963-2014. 

31 Yarwood, Greg, Jaegun Jung, Gary Z Whitten, Gookyoung Heo, Jocelyn Mellberg, and Mark Estes. 2010. “Updates to the 
Carbon Bond Mechanism for Version 6 (CB6).” In 9th Annual CMAS Conference. Chapel Hill, NC. 
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Sosnowiec SOS 18.25 to 20.00 49.50 to 51.00 

Liguria LIG 7.25 to 10.50 43.50 to 45.50 

Aveiro CIRA -10.75 to -6.00 36.25 to 42.50 

 

The PSAT application requires the definition of source groups to be tracked and thus the input 

of extra emission files for each of the groups to be considered. Based on the national emission 

inventories of each case study32,33,34,35,36,37 and on the emission sources, the main sectors 

contributing to PM and NO2 emissions in the year under study (2010), that are common to all 

case studies, are: (i) residential and commercial combustion; (ii) road transport; and (iii) 

industry. In this sense, emissions were splitted into these activity sectors in order to evaluate 

the individual contribution of each source sector to the air quality in the selected urban areas 

through the PSAT application, defined as receptor areas. 

6.2 Air quality modelling at urban scale 

The second-generation Gaussian model URBAIR was setup and run at urban scale for the 
computational domains over the urban areas of the six case studies. The baseline 
simulations were performed for the full-year using the meteorological vertical profiles from 
the WRF-CAMx system and the emissions available on the ClairCity emissions database 
including i) point sources with the large industry emissions, as well as the point sources from 
ships in the case study of Amsterdam and Liguria, ii) line sources with the road-traffic 
emissions, and iii) area sources covering the residential, commercial and industrial emissions 

                                                

32 Dębski, Bogusław, Anna Olecka, Katarzyna Bebkiewicz, Zdzisław Chłopek, Iwona Kargulewicz, Janusz Rutkowski, Damian 

Zasina, Magdalena Zimakowska - Laskowska, Marcin Żaczek, and Sylwia Waśniewska. 2018. “POLAND’S 
INFORMATIVE INVENTORY REPORT 2018.” Warszawa, Poland: National Centre for Emission Management (KOBiZE) 
at the Institute of Environmental Protection – National Research Institute. 

33 Logar, Martina, Jože Verbič, and Tajda Mekinda Majaron. 2018. “Informative Inventory Report Slovenia 2018.” Ljubljana, 
Slovenia: Slovenian Environment Agency. 

34 Pereira, Teresa Costa, Tiago Seabra, Ana Pina, Paulo Canaveira, André Amaro, and Mónica Borges. 2018. “Portuguese 
Informative Inventory Report 1990-2016.” Amadora, Portugal: Portuguese Environmental Agency. 

35 Taurino, Ernesto, Antonella Bernetti, Riccardo De Lauretis, Ilaria D’Elia, Eleonora Di Cristofaro, Marco Cordella, Andrea 
Gagna, et al. 2018. “Italian Emission Inventory 1990-2016 - Informative Inventory Report 2018.” ISPRA-Italian National 
Institute for Environmental Protection and Research. 

36 Wakeling, D, NR Passant, TP Murrells, A Misra, Y Pang, G Thistlethwaite, C Walker, et al. 2018. “UK Informative Inventory 
Report (1990 to 2016).” London, IK: Ricardo Energy & Environment. 

37 Wever, D., P.W.H.G. Coenen, R. Dröge, G.P. Geilenkirchen, M. ’t Hoen, B.A. Jimmink, W.W.R. Koch, et al. 2018. “Informative 
Inventory Report 2018 - Emissions of Transboundary Air Pollutants in the Netherlands 1990-2016.” Bilthoven, The 
Netherlands: National Institute for Public Health and the Environment. 

 



70 

from the IRCI module, as well as the shipping emissions for the case study of Amsterdam 
and Liguria.  

For the transport sector, the ClairCity database provides hourly emissions for weekdays and 

weekends for each road link. Using a GIS software the links were matched to URBAIR model 

grid cells. From the typical weekday and weekend we were able to rebuild hourly, every day 

of the year. The emissions are used as input in URBAIR model, in g.m-2.s-1. For the 

commercial and residential sector the total annual emissions were disaggregated by applying 

a temporal profile. The temporal profile consists of hourly shares which differ from weekdays 

and weekends but also differs from summer and winter months. By applying this profile, the 

emissions were disaggregated into g.m-2.s-1 that will be used as an input to the URBAIR 

model. For the industrial sector, the annual emission rates were evenly distributed over all 

days of the year and hours of each day. For industrial sources (area) and industrial sources 

(point), respectively, into g.m-2.s-1 and g.s-1. As established by ClairCity, if the annual 

industrial emission rate is over 100 Mg.year-1 it’s assumed as an Industrial point sources and 

if lower as area sources. 

The air quality simulations were performed for the entire year in an hourly basis considering 

the meteorological conditions for each hour. We have performed a source apportionment 

analysis for the baseline year, for the cells where the maximum value occurs, for the entire 

domain through a spatial average of the total concentrations and the concentrations from 

each sector. In addition, we have also performed the SA analysis for the cells corresponding 

to the location of the measurement points. For the SA the background was not accounted. 

The simulations were performed separately for each emission sector, allowing the application 

of a source apportionment analysis. The final air quality maps result from the simulated 

concentrations with URBAIR model, together with added background concentrations, and a 

calibration of those against the measurements through an adjustment procedure. Each case 

study had different data availability but also presented some methodological particularities 

which will be mentioned later for each city. As example, for the background, for Bristol and 

Amsterdam a more detailed background data was available and for the other cities the 

background was obtained from CAMx. 
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7 Health 

The burden of disease associated with ambient air pollution is estimated by relating air 

concentrations to health outcomes. Hence, the relative risk (RR) at a given exposure level 

can be specified as follows: 

𝑅𝑅 = exp [ 𝛽 ∗  (𝐶𝑖 − 𝐶0) ]                         [2.7.1] 

where, 𝐶𝑖 is the concentration level the population is exposed to in grid cell i, 𝐶0 is the 

baseline concentration, and 𝛽 is the coefficient of the concentration response functions 

(CRF). CRF): the estimated effect of a pollutant on the health outcome based on health 

studies and is typically described as change in incidence per unit concentration (UC) for 

those at risk. Table 2.7.1 shows the recommended CRFs for mortality with 95% confidence 

interval (CI), including the baseline concentration taken into consideration when calculating 

the health outcomes for each air pollutant. The baseline concentration is a concentration 

below which no health effects are expected. 

Table 2.7.1: concentration-response coefficients for mortality with 95% confidence 

interval (CI) 

Pollutant Risk ratios for mortality  

 Value [per 10 µg/m3] Type Reference 

PM2.5  1.062 (95 % CI 1.040-

1.083) 

No threshold 

All-cause (natural) mortality 

in ages above 30 (ICD-10 

codes A00-R99). 

WHO (2013) 

PM10 1.04 (95% CI, 1-1.09)  

No threshold 

All-cause (natural) mortality 

in ages above 30 (ICD-10 

codes A00-R99). 

Beelen et al. (2014)  

NO2 1.055 (95 % CI 

1.031-1.08%) 

Threshold 10 μg/m3  

All-cause (natural) mortality 

in ages above 30 (ICD-10 

codes A00-R99). 

WHO (2013) 

 

Assuming an exponential behaviour, 𝛽 can be estimated based on the CRF: 

𝐶𝑅𝐹 𝑝𝑒𝑟 𝑈𝐶 = exp( 𝛽 ∗ 𝑈𝐶)  [2.7.2] 

where CRFs applied are described in Table 2.7.1 and UC = 10 ug/m3.  
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The contribution of a risk factor to a disease or a death can be estimated by means of 

population attributable fraction (PAF). PAF is defined as the proportional reduction in 

population disease or mortality that would occur if exposure to a risk factor were reduced to 

an alternative ideal exposure scenario (e.g. concentrations equal to C0). If the population is 

exposed to a single concentration level over the assessed period, PAF can be calculated 

from the relative risk, for every grid cell i, as follows:  

𝑃𝐴𝐹𝑖 =  
𝑅𝑅−1

𝑅𝑅
  [2.7.3] 

The health impact assessment focuses on estimating premature deaths (PD) and years of life 

lost (YLL) as mortality-related health outcomes. PD are deaths that occur before a person 

reaches an expected age, thus considered to be preventable if their cause is eliminated. The 

so-called expected age is usually the life expectancy for a country typically stratified by sex 

and age. the PD metric is estimated assuming the baseline incidence as the crude death rates 

by sex (s) and age (a) 𝐶𝐷𝑅𝑎,𝑠: 

𝑃𝐷 = ∑ 𝐶𝐷𝑅𝑎,𝑠𝑎,𝑠 ∗ 𝑃𝐴𝐹 ∗  𝑃𝑜𝑝 𝑖 [2.7.4] 

Where 𝑃𝑜𝑝 𝑖 is the concentration at grid cell i. 

To estimate the CDR for the population aged above 30, the following steps were taken: 

1) Population pyramids data is published by the United Nations (UN) and is accessible via 

https://population.un.org/wpp/Download/Standard/Population/, Tables F15-2 and F15-3. 

Population pyramids data is available for 5-year age intervals from 0-4 to 100+ years old. 

Total population (𝑇𝑝𝑜𝑝) for a country is calculated by summing population pyramids data 

for females and males. 

2) All-cause mortality data is published by the World Health Organisations (WHO) and is 

accessible via http://apps.who.int/healthinfo/statistics/mortality/causeofdeath_query/start.php. 

All-cause mortality data is available for each country and sex in 5-year age interval, from 

0-4 to 95+, for different years. For the calculations, choose the data for the current year 

and the country where the city is located at. The data should be collected between age 

interval 30-34 to 95+ interval for each sex. Because only natural causes are taken into 

consideration, only ICD codes A00-R99 should be included in the data. The CDR for 

each age interval a and sex s will be then re-calculated by: 

𝐶𝐷𝑅𝑎,𝑠 =
𝐶𝐷𝑅𝑎,𝑠

𝑇𝑝𝑜𝑝/1000
         [2.7.5] 

YLL is defined as the years of potential life loss due to premature death. It is an estimate of 

the average number of years that a person would have lived if the person would not have 

died prematurely. YLL considers the age at which death occurs and is greater for deaths at a 

younger age and lower for deaths at an older age (Murray, 1996). It gives, therefore, more 

nuanced information than the number of PD alone. YLL is determined by relating PD with life 

expectancy (LE) by sex and age, for every grid cell i: 

𝑌𝐿𝐿 = ∑ 𝑃𝐷 ∙ 𝐿𝐸𝑎,𝑠𝑎,𝑠,𝑖   [2.7.6] 

http://apps.who.int/healthinfo/statistics/mortality/causeofdeath_query/start.php
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𝐿𝐸𝑎,𝑠 is the average time a person is expected to live, based on the year of their birth, their 

current age and sex. This statistical measure is typically available from demographic 

datasets. 

Life expectancy data is required for estimating YLL (Equation 2.7.6). Life expectancy by age 

and sex must be calculated based on ‘Life expectancy at exact age’ and ‘Average number of 

years lived’ for the population over 30 years old. The following steps were taken: 

1) Extract life expectancy at exact age data is published by the UN and is accessible via 

https://population.un.org/wpp/Download/Standard/Mortality/, Tables F16-2 and  F16-3. Life 

expectancy at exact age data is available every 5 years from age 5 up to 100+ per country; 

each table contains sex-specific data. The data for the country should be collected between 

age 30 and 100 for each sex.  

2) Average number of years lived, broken down by age cohort and sex, and country is 

published by the UN and is accessible via 

https://population.un.org/wpp/Download/Standard/Mortality/, Tables F17-2 and F17-3. 

Average number of years lived data is available for 5-years interval from interval 5-9 to 80-

84, and an 85-100 interval per country; each table contains sex-specific data. The data for 

the country should be collected between age interval 30-34 to 85-100 interval for each sex.  

3) Average age at death data for 5-years interval is then calculated by summing the lower 

limit of the age interval (𝑎𝑔𝑒𝑀𝑖𝑛𝑎,𝑠,𝑐) and UN estimate for the average number of years 

lived (𝐴𝑣𝑔𝑌𝑎,𝑠,𝑐) at the correspondent age interval a, sex s and country c by applying the 

following WHO recommendations (WHO, 2020) : 

𝑎𝑔𝑒𝐷𝑎,𝑠,𝑐 = 𝐴𝑣𝑔𝑌𝑎,𝑠,𝑐 + 𝑎𝑔𝑒𝑀𝑖𝑛𝑎,𝑠,𝑐    [2.7.7] 

4) Average life expectancy corresponding to the average age of death for age interval a, for 

sex s and country c (𝐿𝐸𝑐𝑎𝑙𝑖,𝑠,𝑐), is determined by the following formulation: 

 

𝐿𝐸𝑐𝑎𝑙𝑎,𝑠,𝑐 = 𝐿𝐸𝑎 +  
 (𝑎𝑔𝑒𝑀𝑎𝑥𝑎,𝑠,𝑐−𝑎𝑔𝑒𝐷𝑎,𝑠,𝑐 ) ∗ (𝐿𝐸𝑎,𝑠,𝑐−𝐿𝐸𝑎+1,𝑠,𝑐 )

 𝑎𝑔𝑒𝐷𝑀𝑎𝑥𝑎+1,𝑠,𝑐−𝑎𝑔𝑒𝐷𝑀𝑎𝑥𝑎,𝑠,𝑐
    [2.7.8] 

where higher limit of the age interval (𝑎𝑔𝑒𝑀𝑎𝑥𝑎,𝑠,𝑐), 𝐿𝐸𝑎,𝑠,𝑐 is the Life expectancy at exact age 

a, sex s and country c. 

https://population.un.org/wpp/Download/Standard/Mortality/
https://population.un.org/wpp/Download/Standard/Mortality/

