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 The slender structures of a medical robot may have a tendency to buckling 

when a force equal to the critical Euler force and an additional disturbance 

will work on their structures. In this work, eigenvalue problem that describes 
the linear buckling is under consideration. The main goal of the article is to 

check when linear buckling phenomenon appears in construction of  

a medical robot with serial chain due to the fact that for safety reasons of  

a robot’s work, it is necessary to answer the question, whether the buckling 
may occur in the robot’s structure. For this purpose, a numerical calculation 

model was defined by using the finite element method. The values of load 

factor coefficients that are eigenvalue are determinated and also  

the eigenvectors that have shapes of deformation for the next eigenvalues are 
presented. The multi-criteria optimization model was determined to aim for 

the minimum mass of the effector and the buckling coefficient, from which 

the Euler force results, for the maximum. The solution was obtained on  

the basis of Pareto fronts and the MOGA genetic algorithm. 
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1. INTRODUCTION 

Constructions of medical robots are being increasingly considered scientifically for operations of  

the human body and for servicing the artificial organs having an open kinematic chain. In this way, there is  

a progressive search to those currently existing in clinical practice. This paper aims to answer the question of 

whether the buckling can appear in the construction of a medial robot with an open kinematic chain.  

The examination of buckling is a very important experience in the construction of a robot due to the fact that 

the safety criterion of the usage of a medical robot during surgery is very restrictive. Having no answer to this 

question about buckling, makes it impossible to use a medical robot for surgeries on the human body due to 

the safety of a patient and the operating team which is an overriding validity.  

This mini robot is attached to the main mechanism of the maxi robot that is called a constant point 

mechanism. The constant point mechanism is shown in the Figure 1(a). This mechanism has three degrees  

of freedom for regional movement. The mini robot with six degrees of freedom is to manipulate the soft 

tissue. The main working space, which results from the first three degrees of freedom, has a shape which  

is shown in Figure 1(b). Inside this volume, the kinematic chain of a mini robot with the RRRS configuration 

is moving.  

The mathematical formula that describes working space is described as: 

 

https://creativecommons.org/licenses/by-sa/4.0/
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where:      ,   – joints variables in the next degrees of freedom. From the volume of the working space 

results the length of the mini robot’s arm, shown in Figure 2. Due to the slim shape after the stretch and thin 

walls of the subsequent links of the robot, it may be suspected that the buckling may appear in the structure, 

e.g. during the servicing of an artificial organ. 

Model of a vector optimization using MOGA genetic algorithm, where three criteria were important: 

the first natural frequency in order to increase stiffness of the tool, mass that may minimize inertial forces 

and equivalent stress in transient states was described in work [1, 2]. Important information about elastic 

buckling problems is announced in work [3-5]. The usage of Pareto fronts for the optimization of a medical 

robot is illustrated in work [6-9]. There is also a work, where the Lanchos method is used for solving 

eigenvalue problems and is described in [10]. The mathematical basis of the finite element method is 

explained in work [11]. The finite element method is used for calculating the elastic buckling problem 

because it gives the correct solution and the time of computations is not so long when the geometrical model 

of the object is actually simplified. 
 

 

 
(a) 

 
(b) 

 

Figure 1. (a) Constant point mechanism and (b) shape of the working space 
 

 

 
 

Figure 2. Model of mini medical robot with serial chain 

 

 

2. RESEARCH METHOD 

The differential equation describing the own buckling problem is formulated as: 
 

  
   

   
      (2) 

 

where: 

E- Young's modulus, 

J - moment of inertia,  

F - external force. 

By converting (2) and substituting (3) to (2): 
 

 

  
    (3) 
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an equation is obtained: 
 

   

   
       (4) 

 

The general solution of (4) has a trigonometric form: 
 

                    (5) 
 

If we take (3), and we know that: 
 

             (6) 
 

where   is a natural number, we can obtain Euler's critical force: 
 

         
    

  
 (7) 

 

The force that is given by (7) is the force which causes elastic buckling in thin rod of length l, when 

to the rod will be applied any disturbance. If to a thin rod is applied any force, it is important to define 

lambda coefficient of load. The value of critical Euler’s load can be determined as:  
 

        (8) 
 

The load coefficient   is written as: 
 

  
   

 
 (9) 

 

The linear buckling, which scheme is shown by Figure 3, is determined by following conditions: 
 

    - conditions of buckling (instability) (10) 
 

    - conditions of stability (11) 
 

If (10) occurs and any disturbance is added, a buckling will appear. If (11) occurs, the medical robot will be  

a stable mechanical system. 
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Figure 3. Scheme of linear buckling 

 

 

2.1. Eigenvalue problem of linear buckling using the finite element method 

The buckling coefficient   can be calculated using the finite element method but taking into  

the account the equation of static equilibrium, having in mind small displacements. The relationship between 

external force and displacement can be recorded as: 
 

[ ]  { }  { } (12) 
 

where: 
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[ ] : stiffness matrix, 
{ } : vector of nodal displacement, 
{ } : vector of nodal forces. 

The stiffness matrix [ ] is determined by: 
 

[ ]  ∫[ ] 

 

[ ][ ]   (13) 

 

where: 

[ ]  : linear strain - displacement matrix { }=[B]{ } (matrix of shape function), 

[D]  : constitutive matrix, 
{ } : vector of strain, 
{ } : vector of displacement. 

 

[  ]  ∫[ ] 

 

[ ][ ]    (14) 

 

where:  

[  ] : stress-stiffness matrix, 

[G]  : obtained from shape functions by appropriate differentiation, 

[S]  : initial stresses. 
 

([ ]  [  ]  { }  { } (15) 
 

During the loss of stability for equal loads, other states of equilibrium are possible. 
 

([ ]   [  ]  { }  { } (16) 
  

([ ]   [  ]  {    }  { } (17) 
 

After subtracting the equations, the symmetrical problem that defines the stability of the substitution system 

is obtained to solve: 
 

 [ ]   [  ]  {  }  { } (18) 
 

  : eigenvalues which are load coefficients, 

   : eigenvector which is shape of buckling. 

Lanchos method for large symmetrical systems was used in order to solve the problem described 

above. 

 

2.2. Model of the tool 

To reduce the time of numerical calculations, the clearing geometry was used and the time of 

numerical calculations was significantly reduced. The formulated numerical model has 454534 degrees of 

freedom. Ten nodal tetrahedral elements were used to discretize the model. The model was supported on  

the plane A (fixed support). In point B, a force of 30 [N] was applied as a load. This force will cause  

the compression of mechanical system of a mini robot. Figure 4 shows the discrete model of the effector, 

while Figure 5 shows the boundary conditions of the model. 
 

 

 
 

Figure 4. Discrete model of the effector 
 

 

 
 

Figure 5. Boundary conditions of the model 
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2.3. Multi-objective optimization 

The optimization model shown in this work contains two criteria, one of which is the buckling 

coefficient   and the other is the effector’s mass. The aim is to make the buckling coefficient as high as 

possible while achieving the minimum weight of the mini robot. Such an aspiration will allow to obtain 

positive static properties of the effector as well as the inertial effects in motion (resulting from the mass) will 

reach a lower value, which will cause less deformation of the effector, i.e. its greater accuracy of positioning 

at the tissue.  

A multi-criteria objective function was adopted: 
 

  { }  {  { }   { }} (19) 
 

where: 

   { }  : mass vector, 

   { }  : vector of the first buckling form, 

  ,   ,  : dimensions, from which result the thickness of walls of the first and second.  

The restrictions of the model can be specified as: 
 

  [  ]         [  ], 
  [  ]         [  ]. 

 

Also an additional assumption was made that: 
 

    (20) 
 

where:    coefficient of load. The mesh model solutions were made by using the response surface method 

and the MOGA genetic algorithm.  

 

 

3. RESULTS AND ANALYSIS  

Numerical calculations were carried out, using the mesh finite element method, assuming three 

lengths of a straightened mini robot resulting from its working space. The first length of the mini robot is 

equal to 175.52 mm and six shapes of deformation are illustrated in the Figures 6-11. For the   equals to 5.24 

the mini robot is deformed in plane XZ. For the second eigenvalue, the mini robot is deformed in orthogonal 

direction to YZ plane. Third shape is similar to the deformation in first direction and fourth is similar to  

the second shape of deformation. The fifth shape shows the deformation of the mini robot in the XZ plane 

and the sixth in the YZ plane. 

In Figures 12-15, there are shown deformations of 270.52 mm effector long. The qualitatively 

obtained deformations of shapes are similar to those obtained for the suitable mini robot forms with a length 

of 175.52 mm. In Figures 16-19, there are shown deformations of 350.52 mm effector long for the next  

load factors. 
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Figure 6. First shape of deformation for   equals 5.24 
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Figure 7. Second shape of deformation for   equals 5.58 
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Figure 8. Third shape of deformation for   equals 47.37 
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Figure 9. Fourth shape of deformation for   equals 47.74 
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Figure 10. Fifth shape of deformation for   equals 120.47 
 

 

 
 

Figure 11. Sixth shape of deformation for   equals 125.98 
 

 

 
 

Figure 12. First shape of deformation for   equals 2.87 
 

 

 
 

Figure 13. Second shape of deformation for   equals 2.97 
 

 

 
 

Figure 14. Third shape of deformation for   equals 26.17 
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Figure 15. Fourth shape of deformation for   equals 26.38 
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Figure 16. First shape of deformation for   equals 1.83 
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Figure 17. Second shape of deformation for   equals 1.88 
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Figure 18. Third shape of deformation for   equals 16.64 
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Figure 19. Fourth shape of deformation for   equals 16.78 
 

 

On the basis of results obtained in three experiments for three lengths of the effector, it can be found 

that the load factor increases its value when the length increases, which is coherent with the prediction.  

The obtained results are important from superior importance point of view, which is the safety criterion  

of using a medical robot. The lowest values of the load factor were obtained for the longest effector with  

a length of 350.52 mm. The   equals 1.83. 

 

3.1. Optimization results 

The response surface for the criterion of mass is shown in Figure 20. This figure makes it possible  

to determine the value of the mini robot’s mass, depending from the dimensions of    and   , from  

which depend the thickness of robot’s wall. The metamodel (response surface) served also as a continuous 

multidimensional function (obtained on the basis of numerical experiments of FEM) from which  

the MOGA genetic algorithm found the optimal solution. The solution was generated on the basis of Pareto 

fronts. The Pareto fronts for the criterion of mass are shown in Figure 21. Convergence to the result was 
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obtained after the 23 iterations. On the basis of Pareto’s fronts optimal shape of mini robot was obtained  

for two criterions. 
 

 

d
1  [mm]

d2 [mm]

M
a

s
s
 [
k
g
]

 
 

Figure 20. Response surface for mass 

 
 

Figure 21. The Pareto fronts for the criterion of mass 

 

 

4. DISCUSSION 

The medical robot is currently one of the most significant devices for operating the human body. 

Medical robots with a serial chain are innovative structures, for example: in contrast to the American 

structure of the da Vinci or the Polish prototype of Robin Heart. It is expected that in the near future, many 

modern medical robots will be created, which will operate in oncology, heart surgery, abdominal surgery, etc. 

Restrictive safety criteria require many structural analyzes. These can include: analysis of natural frequency, 

fatigue, transient states, to protect it against the possibility of a robot’s failure during the surgery on human 

tissue. An effective method of examining a medical robot system is a numerical method based on the finite 

element method. While using a mesh model with a small finite element, exact results can be obtained.  

This method can be checked, if a medical robot with a serial chain will be prone to buckling during  

the contact with the tissue (e.g. hard bone tissue). FEM has been successfully used in medical robot analyzes 

many times. The discussed issues are calculated relatively quickly with the usage of modern computers 

currently available in numerical labs. The optimization calculations take the most time. The MOGA genetic 

algorithm makes it possible to find the optimum of a global multi-criterion function. 

 

 

5. CONCLUSIONS 

The work presents an innovative model of a medical robot with an open kinematic chain. Due to  

the criterion with superior importance, which is safety, numerical examinations of the robot for the buckling 

with the use of the finite element method was performed in order to check if it can occur during the robot’s 

work, for example during the servicing of an artificial organ. For discretization of the geometric model, 

tetrahedral elements with ten nodes were used. Based on numerical examinations, it was found that  

the buckling phenomenon will not occur in the structure of a medical robot with a serial chain.  

The numerical Multi-criteria optimization model was also solved with the usage of MOGA genetic 

algorithm and the minimum mass of the effector and the maximum value of the buckling coefficient were 

obtained. The plane response method was used in the optimization researches. Whereas the optimal solution 

was generated on the basis of designated Pareto fronts. A mechanically proper calculation was obtained due 

to the accepted criteria and limitations. 
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