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Abstract—A social robot that is aware of our needs and
continuously adapts its behaviour to them has the potential of
creating a complex, personalized, human-like interaction of the
kind we are used to have with our peers in our everyday lives.
We are interested in exploring how would an adaptive architecture
function and personalize to different users when given different
initial values of its variables, i.e. when implementing the same
adaptive framework with different robot personalities. Would an
architecture that learns very quickly outperform a slower but
steadier learning profile? To further explore this, we propose a
cognitive architecture for the humanoid robot iCub supporting
adaptability and we attempt to validate its functionality and test
different robot profiles.

Index Terms—Social robots and social learning, Human-human
and human-robot interaction and communication, Architectures
for Cognitive Development and Open-Ended Learning

I. INTRODUCTION

Most people have a natural predisposition to interact in an
adaptive manner with others, by instinctively changing our
actions, tones and speech according to the perceived needs
of our peers. This means that we are not only capable of
registering the affective and cognitive state of other people,
but over a prolonged period of interaction we also learn
which behaviours are the most appropriate and well-suited for
each one of them individually. Such universal trait that we
share regardless of our different personalities is referred to
as adaptability. Humans are always capable of adapting to the
others although our personalities may influence the speed and
efficacy of the adaptation.

Bringing this trait of adaptability to human-robot interaction
(HRI) would provide user-personalized interaction ,a crucial
element in many HRI scenarios - interactions with older adults,
assistive robotics, child-robot interaction (CRI) with a learning
focus, etc [1][2][3][4][5]. In our past works, we have explored

adaptation in CRI in the context of switching between different
game-based behaviours [6]. The architecture was affect-based
[7], and the robot expressed three basic emotions (happy, sad,
and a ”neutral” state) in a simple way. These emotions were
affected by the level of engagement the child felt towards the
current robot’s behaviour. The robot aimed to keep the child
entertained for longer by learning how the child reacted to the
switch between different game modalities.

We have expanded the core concept of a robot’s internal
state guiding the adaptation, and advanced from the discrete
emotional states and one-dimensional adaptation to a more
robust framework. Starting from the work of Hiolle and
Cañamero [8][9] on affective adaptability, we have modified
our architecture to utilize as motivation the level of comfort
of the robot, which is increasing when the robot is interacting
with a person, and decreasing when it is left on its own.

In addition to exploring how would our adaptive architecture
function with different users, we are interested in how different
robot profiles would perform in the same adaptive framework.
To address this, we designed a study exploring how that
same architecture will behave and adapt if it is initialized
with different sets of parameters, i.e. with different robotic
personalities.

The robotic platform selected for our study was the humanoid
robot iCub [10], and the scenario for testing the framework’s
functionalities was inspired by the typical interaction between
a toddler and its caregiver, where the toddlers tend to seek
the attention of their caretakers after being alone for a while,
but as soon as their social need has been saturated they lose
interest and turn their attention to something else [11]. The
robot therefore acted as a young child, asking the caretaker’s
company or playing on its own and the human partners could
establish and maintain the interaction by touching the robot,



showing their face and smiling. This scenario was suitable
to study some fundamental aspects of interaction (such as
initiation and withdrawal) with a fully autonomous behaviour
from the robot and very limited constraints to human activities,
in a seemingly naturalistic context.

The rest of the paper is organized as follows: Sect. II presents
the adaptive framework for our architecture and the validation
studies on it, with Subsect. II-A presenting the architecture
design and Subsect. II-B presenting an experimental testing
and validation of the architecture. This is followed by Sect.
III which presents the simulation study in which we tested
the performance of our architecture with nine different robot
personalities. Finally, in Sect. IV and V we present the findings
from our studies and we touch on our plans for future work.

II. METHODS

A. Robot Architecture

The personalized adaptive architecture for the robot was
designed following the requirements for artificial and natural
cognitive agents as defined by Vernon in [12]. Cognitive agents
need to be able to perceive the environment, adapt to new
circumstances in the environment, learn from their experience
and ultimately act with the purpose of achieving some inner
goals.

Starting from this basis, our framework for the iCub con-
sisted of the following modules and their functionalities:

• Perception module, analysing two groups of stimuli:
– Tactile stimuli - data processed from the skin sensors

on iCub’s arms and torso, carrying information about
the size of the touched area (expressed in number of
taxels - tactile elements) and the average pressure of
the touch.

– Visual stimuli - images coming from iCub’s eye
camera, detecting the presence of a face and for
extracting the facial expression of the person.

• Action module, tasked with moving iCub’s joint groups.
• Adaptation and motivation module, in charge of regula-

ting iCub’s social need and adapting its inner variables,
motivated by maintaining an optimal level of comfort.

To further elaborate, the implementation of these functionalities
in the software architecture comprised of:

a) Perception module: The perception module was reali-
zed using iCub’s middleware libraries [10] for processing the
data from the skin covers on its torso and arms, and the open-
source library OpenFace [13] for extracting the facial features
of the person. Fig. 1 shows a snapshot of the processing of the
facial features and the taxels.

The data from the OpenFace library were analyzed for
obtaining the most salient action units [14] from the detected fa-
cial features - lowering/raising eyebrows, crinkling of nose and
cheeks, and smiling/frowning. These action units were weighted
accordingly before being sent to the perception module, with
the presence of a smiling person being rated as 1.0, a neutral or
contemplating face as 0.75, a distant face as 0.5 and a frowning
or disgusted face as 0.25. This was done by assuming that in
an interaction a smile would bring higher social comfort than a

Fig. 1: Extracting facial features from iCub’s cameras
and tactile information from the skin on iCub’s torso

neutral expression, similarly seeing a neutral face would still be
more comforting than a distant presence or a displeased person.

The data from the skin sensors as well required some
further processing post-extraction; due to the heating of the
robot motors, phantom signals were registered during prolonged
interaction. The output was filtered to register as touch only
areas that were larger than 5 taxels and recorded average
pressure larger than 12.0 (signifying that the average output
of the activated taxels was registering a stable tactile contact).
This data was processed for the torso and both arms separately,
and sent to the perception module.

Fig. 2: Images from iCub’s cameras during the validation study

b) Action Module: The action module communicated with
iCub’s middleware and performed a finite set of actions by
controlling the specific body part in the joint space. These
included head and neck motions determined by where iCub
wanted to look, and arms and torso motions. If iCub wanted
to engage with the caretaker, it would straighten up and look
for the person, and then during the interaction engage in
gaze-cueing and pointing to objects, whereas when iCub was
oversaturated and wanted to disengage, it would pull away from
the person and look down to its toys, ignoring other attempts
to engage.

c) Adaptation and Motivation Module: This module
maintained iCub’s comfort and guided the adaptation process.
The motivation in our architecture was represented by iCub’s
striving to remain in an optimal level of comfort. The comfort



of iCub grew when a person was interacting with it, and the
stimuli were weighted accordingly - a multimodal interaction
(receiving both visual and tactile stimuli) or a longer, steadier
interaction was rated higher and increased the comfort faster.
Inversely, lack of any stimuli caused the comfort value to
decay. iCub’s social architecture was also equipped with a
saturation and a critical threshold, which were reached when
the interaction was getting too intense or was too sparse/non-
existent, respectively.

At the beginning of the interaction with each user, iCub
started with its comfort set at 50% of the maximum value it
could have. Then the comfort level was updated continuously
at the beginning of each cycle of the control loop of the
interaction1. This happened in the following manner:

if (F[t] || T[t])
C[t] = (F[t]+T[t]+C[t-1]*tau)/(tau+1)

else
C[t] = beta*C[t-1]

If there was a person interacting with the robot (iCub was
perceiving a face in front of it (F[t]), or registering touch with
its skin (T[t])), the comfort at the given moment in time t
(C[t]) was updated as growing, taking into consideration both
modalities in which the user could interact with iCub, as well
as the of comfort in the previous instance of time (C[t-1]);
inversely if iCub was not interacting with the user, the decay of
the comfort was calculated. tau and beta were the growth and
decay rates respectively. tau indicated how much the previous
level of comfort was taken into consideration: a smaller tau
meant a more rapid onset of the comfort when stimuli were de-
tected, whereas a larger value meant a slower, steadier growth.
beta was indicating how fast the comfort value decayed when
there were no stimuli perceived; the smaller the value of beta,
the more drastic the decay of the comfort. The initial values
for the two rates were selected in consideration of the time it
would take for an extreme user profile to reach the critical or
saturation point, which was chosen as thirty seconds.

iCub’s architecture allowed for adaptation on two dimensions
- the frequency of interaction initiation and the duration of the
interaction. The first one affected the decay rate of the comfort,
and the adaptation on the second dimension instead modulated
the growth rate of the comfort value. After each instance of
iCub adapting on either dimension, it entered a suspension
period where it attempted to recover and during which it was
not open to interaction with the users.2 The adaptation process
had the following pattern:

• If the comfort reached the saturation limit: increase the
value of tau (adapt with a slower comfort growth),

1Referring here to the perception-action control loop of iCub’s architecture
2Originally the architecture adapted by immediately resetting the comfort

level back to the optimal level and continuing with the interaction, which can be
seen in Figure 3. The suspension period was included as a factor only after the
validation of the original architecture with subjects, during which we realized
that a continuation of responsiveness of the robot might not have allowed
for the participants to infer that they were doing something not ideal for the
robot. E.g. in the case of saturation, after the instantaneous robot withdrawal,
it was immediately ready again to respond, which induced participants again
to continue to interact in the same manner and trigger again saturation. The
effect of different suspension periods is analysed in Sect. IV

and during the period of suspension ignore all stimuli.
The resulting lack of sensitivity to stimulation leads to a
decrease in the comfort value back to the optimal zone.

• If the comfort dropped to the critical level: increase the
value of beta (adapt with a slower comfort decay), and
during the suspension period simulate stimuli to itself so
as to recover back to the optimal comfort level.

B. Functional testing and validation

For the purpose of testing the architecture’s functionali-
ties, we defined three highly-varied user profiles - a highly-
interactive profile that constantly attempted to engage in in-
teraction with iCub, providing a very salient interaction that
oversaturated the robot; a very sparsely interactive user who
avoided mutual gaze and only engaged in tactile interaction
once; and an in-between ”mixed” profile that had periods of
salient and sparse interaction, with the tactile one being more
dispersed over the whole duration, and the mutual gaze and
visual interaction happening only on one longer occasion in
the last third of the interaction.

Fig. 3: Variations of the comfort value, with the x-axis showing
the progress of the interaction in percentage

Fig. 3 shows the behaviour of the architecture for the profile
with mixed interaction. The moments of received stimuli by the
user are shown on the lower graph. The upper graph depicts
the comfort level of iCub and how it decayed and grew during
the interaction. In this profile there was one moment when the
comfort was saturated (shown as a green dot on the peaks)
and another instance when the iCub was left without stimuli
for a while and it reached a critical value (shown as a red
dot over the lowest point of the comfort). The adaptation of
the decay rate can be seen as the decay gets slower after the
critical trigger (the red dot), a similar observation is evident also
for the growth rate before and after the saturation adaptation
(the green dot). It is also evident how the strength of the
different stimuli affect the comfort level, with it growing more
rapidly when there are multiple inputs present at the same
time. Different comfort trends were produced in response to
the different simulated user profiles, with more pronounced
growth rate changes in the highly interactive profile and more
decay rate adaptations for the sparsely interactive one, however



all showing the potentiality of the architecture to adapt and
optimize the robot’s behaviour.

After the first testing of the architecture, we additionally ran
a small validation study [15] with naive users to assess whether
the framework could successfully guide a real interaction. The
participants (3 female and 3 male, mean age 28 +/- 4.89)
interacted with iCub as its caretaker in two sessions, one
where iCub had a fixed, scripted behaviour without an adaptive
framework, and the other where iCub was behaving according
to the adaptive personalized architecture described in Sect. II-A.

The results showed that the architecture could guide the
interaction and make it pleasant for the human partner - in
most cases more pleasant than when the robot behaviour was
scripted. This study was very useful also to infer which are
the natural ways in which participants behave toward a robot
in a context like this one. Different individuals exhibited very
different behaviours, which in turn affected very differently the
evolution of the internal states of the robot derived from the
architecture.

III. SIMULATION STUDY

After testing and validating the functionalities of the architec-
ture as well as trying it out in real-world interaction with partic-
ipants, we approached our main research question - how would
our architecture adapt to different users when given different
initial values of its parameters, i.e. working with different robot
profiles? If the considered parameter is the learning rate, would
an adaptive robot who is a very fast and eager learner (i.e.
takes big steps in the adaptation process) overshoot and miss
the chance for personalization? If the considered parameter is
the initial threshold value, would a finicky/fussy robot who has
very narrow thresholds for interaction (i.e. has a very small
difference between its saturation and critical thresholds) be an
annoying interaction partner?

As we wanted to test multiple sets of parameters across
multiple user profiles, we opted for designing five simulated
user profiles and running a simulation study (before ultimately
proceeding to full user studies), so that we would obtain the
exact user behaviour across all conditions. For this we leveraged
on the data obtained from the validation study in II-B to study
how different users interacted with the robot [15].

TABLE I: Features of the five user profiles

Visual Tactile Answer call

Complete (c) 1.0 1.0 always
Frequent (f) [0.75-1.0],20 sec. [0.0-1.0],15 sec. always
Average (a) [0.5-0.75],60 sec. [0.0-1.0],10 sec. always
Sparse (s) [0.0-0.5],20 sec. [0.0-1.0],15 sec. only once
Void (v) 0.0 0.0 never

Table I showcases the modalities of the profiles. The visual
stimuli were designed to be alternated between two values on
a fixed time intervals, and the value in seconds shows at which
frequency they alternated; the tactile stimuli instead were given
depending on the state of the robot, the average and sparse
profiles only provided tactile stimuli as a response to a call for
engagement, whereas the frequent profile also provided stimuli

while the robot was in an interactive state, and the value in
seconds shows how long the tactile contact was. The complete
and void profiles had either constant or non-existent input.

A. Implementing the suspension period

As we mentioned in II-A, the current version of the adaptive
module leveraged on the functionality of a suspension period in
which iCub could ”recover” from the failed interaction. Before
proceeding with the full simulation study, we ran a preliminary
investigation across the user profiles to determine the optimal
length of the suspension period. We selected as potential values
the durations of 5, 20 and 35 seconds, and we tracked the
effect the suspension period had on two metrics - the amount of
time (expressed as a percentage from the whole duration of the
interaction) in which iCub was in an optimal zone of comfort
(i.e. the comfort value was within a maximum of 5% distance of
the saturation and critical thresholds), and the number of times
it reached a critical or saturation threshold and went into the
adaptive module. In our framework we wanted to maximize the
former and minimize the latter. The minimization of the number
of adaptation signified a smaller amount of interruptions in
the interaction flow by iCub disengaging, whereas maximizing
the time iCub was in the optimal zone of comfort ensured an
interaction where iCub would be neither too annoying to the
person by constantly asking for attention, nor too isolated by
not tolerating a sparsely interactive user.

TABLE II: Result per different suspension period lengths.
Lighter grey highlights the best results per profile, and in darker
grey is shown the optimal length.

Suspend period (sec)
metric profile 5 20 35

Comf. %

c 47.54 83.24 71.94
f 61.12 81.35 74.51
a 60.13 69.97 59.18
s 91.56 82.11 73.26
v 40.55 68.32 65.87

Adapt #

c 8 4 5
f 6 4 5
a 7 7 7
s 1 1 5
v 8 5 6

Note: Comf % - percentage of total interaction time in which
the robot is in the optimal comfort level. Adapt # - number of
triggered adaptations during the interaction.

B. Testing different robot profiles

After running the suspension optimization study, we im-
plemented the suspension interval that gave the best results
in our adaptation module and proceeded to design the set of
robot profiles for the simulation study, i.e. select the sets of
parameters we would want to explore.

We experimented on two dimensions - the speed of adap-
tation, which was the step of modification for the growth and
decay rate in the adaptation module; and the width of the band
between the two thresholds. In terms of robot personalities,
this could be translated to experimenting between a slow and



TABLE III: Results for different step sizes for adaptation and different thresholds distance (band width). The best results for
each user profile are shown in light grey and the best results over all profiles are highlighted in dark grey

step size slow medium fast

band width 25% 50% 75% 25% 50% 75% 25% 50% 75%

Comf %

c 72.46 83.25 77.88 73.48 84.64 78.86 70.79 82.13 85.76
f 71.06 81.96 80.08 71.70 82.34 84.86 69.65 79.81 82.27
a 22.83 75.49 83.81 16.76 82.57 84.58 20.04 68.37 77.67
s 28.19 81.83 85.34 39.14 81.44 84.90 51.75 81.14 77.21
v 57.32 68.34 64.23 15.47 75.56 64.88 66.96 77.99 61.84

avg 50.37 78.17 78.27 43.31 81.31 79.62 55.84 77.89 76.95

Adapt #

c 5 4 4 4 3 3 4 3 2
f 5 4 3 4 3 2 4 3 2
a 5 5 7 2 3 6 2 3 6
s 5 1 3 2 1 3 4 1 4
v 3 5 8 2 3 7 1 2 7

avg 4.60 3.80 5.00 2.80 2.60 4.20 3.00 2.40 4.20

Idle %

c 3.06 3.18 2.96 3.19 3.29 3.45 3.16 3.33 3.47
f 3.06 3.10 3.33 3.20 3.17 3.47 2.89 3.62 3.15
a 33.26 30.82 33.10 61.30 39.60 38.59 45.81 55.99 48.02
s 11.27 10.14 7.77 18.67 10.04 8.36 20.67 10.14 8.32
v 44.00 38.20 24.06 21.09 40.63 26.92 41.96 39.49 28.82

avg 18.93 17.09 14.24 21.49 19.35 16.16 22.90 22.51 18.36

Int %

c 55.71 62.07 68.34 61.62 68.45 75.69 62.11 68.69 75.75
f 55.99 62.69 68.57 61.80 69.17 76.31 62.81 68.43 76.42
a 63.19 65.66 62.85 36.10 57.56 57.80 51.41 41.46 48.69
s 48.46 73.45 58.09 47.67 73.61 58.00 40.61 73.60 56.17
v 9.29 11.39 10.70 3.40 8.90 11.02 7.73 8.86 9.42

avg 46.53 55.05 53.71 42.12 55.54 55.76 44.93 52.21 53.29

Sus %

c 37.95 31.38 25.54 31.81 24.82 17.25 31.39 24.49 17.18
f 37.66 31.15 24.61 31.62 24.50 16.94 31.24 24.47 17.18
a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
s 27.97 8.83 23.52 23.33 8.80 23.44 21.56 8.78 22.93
v 29.03 32.77 43.12 9.82 25.20 42.83 25.09 25.00 42.70

avg 26.52 20.83 23.36 19.32 16.66 20.09 21.86 16.55 20.00

Note: Comf % - percentage of total interaction time in which the robot is in the optimal comfort level. Adapt # - number of
triggered adaptations during the interaction. Idle %, Int % and Suspend % - percentage of total interaction time during which
the robot is in one of these three states.

steady vs. a fast and eager learner (depending on the size of
the adaptation step for the growth/decay rates); and between a
very tolerant vs. a very fussy robot (depending on how wide the
threshold band was, i.e. how close the saturation and critical
points were to each other).

For both dimensions we chose three values to test, giving us a
total of nine combinations of profiles. We explored three speeds
of adaptation (slow, medium and fast) and three band widths
(measuring in size as 25%, 50% or 75% of the total range of
the comfort value of the robot, which could fall between 0.0
and 2.0). The length of the interaction sessions was set to ten
minutes.

IV. RESULTS

As it can be seen in Table II, the most optimal suspension
period length was shown to be the one of 20 seconds, which
nearly uniformly maximized the comfort of the robot (except
for the sparse profile) and had the minimal amount of adapta-
tions across all user profiles.

The simulation study was run on nine robot profiles and
five simulated user profiles, giving us a total of 45 sessions,
which were performed using a 20-second suspension interval,
as derived from the previous simulation. The collected data was
analysed for five metrics: the amount of time in which iCub
was in an optimal zone of comfort (Comf %), the number of
times iCub reached a critical or saturation threshold (Adapt #),
and additionally the amounts of time during the interaction that
iCub spent in an interactive, idle or suspended state (Idle %,
Int % and Sus % respectively).

The results are shown in Table III. Unlike the simulation
study for the suspension period, in this study there was not a
single dominant ”optimal” set of parameters. Depending on the
metric we were interested in, there were different robot profiles
which showed the best results.

On general, the slowly-learning robot did not outperform the
other personalities in most of the metric categories, except for
the % of time spent in an idle state. However, although with this
robotic profile of a slowly-learning and highly-tolerant robot



there was the least average amount of time spent in the Idle
state, this was not due to increased interaction time, but an
increased amount of adaptation hits. The robot being slowly
learning meant that it hit a threshold limit more often since it
adapted only by a small amount each time.

Overall, the best averaged results across profiles were found
in the moderate or fast-learning profiles. The moderate learner
had the best averaged result for the amount of time the robot
was in its optimal comfort zone (81.31% of the interaction,
medium step with 50% band width), as well as the second-
smallest amount of adaptations, 2.6. The smallest average
number of adaptations instead was for the fast-learning robot
in the 50% band, 2.4.

The moderate learner also had the two highest % of Inter-
action times, 55.76% and 55.54% for the 50% and 75% bands
respectively. Finally, having a very ”fussy” robot with a very
narrow threshold band did not produce optimal averaged results
even at the fastest learning speed.

All robot profiles were initialized with parameters that made
them call out to the user for contact if left alone (or withdraw
from interaction if too stimulated) after approximately 30
seconds. After the experiment this changed in various directions
as a function of the (simulated) user needs - the complete user
profile influenced the adaptation exclusively in the saturation
attitudes of the robot and slowing down considerably the growth
rate, the void user profile affected only the decay rate, and
the remaining profiles triggered adaptation events depending on
their individual frequency and length of interaction. While at
the beginning the complete and void profiles reached the first
adaptation point in all robot profiles after approximately 30
seconds, at the end of the interaction these values had changed
to range between 170-260 seconds for the complete profiles
and 110-140 seconds for the void profiles. Apart from being a
validation of the adaptation framework, these results also stress
the additional benefit of having a two-dimensional adaptation
and how it can contribute to the personalization of the robot’s
behaviour on more than one modality

V. DISCUSSION AND FUTURE WORK

Different individuals have different inclinations to interact
with others and this applies also to their approach to interaction
with robots. At the same time different tasks might require
different level of human intervention (or robot request for help).
Creating a unique robot behaviour (or personality) able to fit
with task constraints and at the same time with individual
desires is an impossible challenge. Endowing the robot with
possibility to adapt to its partners’ preferences is therefore im-
portant to grant a certain degree of compliance with individual
inclinations. On the other hand, also the initial ”personality” of
the robot - i.e. the parameters at the beginning of the interaction
- have a strong influence on the dynamics of the adaptation and
on the appropriateness of robot resulting behaviour with respect
to task constraints.

In this paper we have presented our personalized adaptive
robot architecture, and the results from the simulation studies
aimed at testing different sets of the architecture’s parameters
corresponding to the different robot profiles. We described how

our architecture enables the robot to adjust its behaviour to suit
different interaction profiles, using internal motivation which
guides the robot to engage and disengage from interaction
accordingly, while also taking in account the behaviour of
the person interacting with it. We wanted to investigate how
initializing the architecture with different values for its internal
variables at the beginning (i.e. endowing the robot with different
personalities) will affect the flow of the interaction and the
extent of the adaptation. From the simulation study we noted
that there was not one universally optimal set of parameters, i.e.
robot profile that exceeded in performance across all evaluation
metrics and all user profiles. However, at least in simulation,
a medium-to-fast adaptation pace lead to a better interaction
across almost all user profiles. Also, even with a very demand-
ing robot (smaller band width) and slow paced adaptation it
is possible to observe a change in robot behaviour over time,
suggesting that even in case of not optimal selection of initial
parameters, the adaptive process was able to progressively tune
the interaction to the needs of the individual.

Continuing from the results of the simulation studies, we are
interested in seeing how real users would respond to interac-
tions with different robot personalities. We have already seen
that when faced with an adaptive and static robot profile, users
expressed preference for the adaptive robot [15]. A follow-
up question will be to see how the different adaptive traits of
the architecture would be received by the users, and whether
the emergent behaviour we found in the simulation study will
also carry to the one with users. Our hope is that our adaptive
framework will provide for a more individualized, long-term,
generalized interaction between humans and robots.
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[5] Cañamero L, Blanchard AJ, Nadel J (2006) Attachment
bonds for human-like robots. International Journal of
Humanoid Robotics 3(03):301–320

[6] Tanevska A (2016) Evaluation with emotions in a self-
learning robot for interaction with children. Master’s
thesis, Faculty of Computer Science and Engineering,
Skopje, Macedonia

[7] Tanevska A, Rea F, Sandini G, Sciutti A (2018) Designing
an affective cognitive architecture for human-humanoid
interaction. In: Companion of the 2018 ACM/IEEE Inter-
national Conference on Human-Robot Interaction, ACM,
pp 253–254
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