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“At the beginning, Nature set up matters its own way
and, later, it constructed human intelligence in such a
way that [this intelligence] could understand it”
[Galileo Galilei, 1632 (Opere, p. 298)].

“The applicability of our science [mathematics]
seems then as a symptom of its rooting, not as a
measure of its value.  Mathematics, as a tree which
freely develops his top, draws its strength by the
thousands roots in a ground of intuitions of real
representations; it would be disastrous to cut them
off, in view of a short-sided utilitarism, or to uproot
them from the ground from which they rose” [H.
Weyl, 1910].

Summary.   Mathematics stems out from our ways of making the world intelligible by its
peculiar conceptual stability and unity ; we invented it and used it to single out key
regularities of space and language.  This is exemplified and summarised below in references
to the main foundational approaches to Mathematics, as proposed in the last 150 years.  Its
unity is also stressed: in this paper, Mathematics is viewed as a "three dimensional

                                    
1  In Geometries of Nature, Living Systems and Human Cognition, a series in "New
Interactions of Mathematics with Natural Sciences and the Humanities" (L. Boi ed.), pp. 351 –
382, World Scientific, 2005.
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manifold" grounded on logic, formalisms and invariants of space; we will appreciate by this
both its autonomous generative nature and its effectiveness.  But effectiveness is also due to
the fact that we re-construct the world by Mathematics: we organise knowledge of space and
language by Mathematics, and give meaning by it to their structuring.  But, what is
"meaning", for us living and historical beings?  What does "mathematical intuition" refer to?
We will try to propose an understanding of these crucial aspects of the mathematical praxis,
often disregarded as "magic" or as beyond any scientific analysis.  Finally, some limits of
the remarkable, but reasonable effectiveness of Mathematics will be sketched, in particular in
reference to its applications in Biology and in human cognition

Introduction  
In this century, two major foundational paradigms have been splitting man and the world
around him from one of its major conceptual constructions, Mathematics.  On one side,
formalism proposed the perfect rigor of mechanical rules as the core for certainty,
effectiveness and objectivity of Mathematics: stepwise deductions along finite strings of
symbols, perfectly independent of meaning, were meant to reconstruct completely
mathematical reasoning or even propose a method for mathematical creativity (to be
transferred, possibly, into digital computers).  The philosophical background (and the
practical aim, in the latter case - Artificial Intelligence) was based on the idea of a possible
mechanical implementation of "the Universal Laws of Thought": once these were all
formally described in a symbolic notation, without the ambiguities of meaning, we could fed
a machine with them and completely simulate reasoning, action or general human behaviour.

  On the other hand, the naive platonistic reactions to this bold program, explained the
failure of the formalist program as well as the certainty and objectivity of Mathematics by
assuming independent ontologies; usually, this perspective as well refers to absolute "laws
of thought" or to the perfect geometry of absolute "mathematical spaces", but as meaningful
structures of truth, as "essence" which underlies the world, "per se".

In either cases, Mathematics was separated from our "being in the world", from our
forms of knowledge as embedded in our living and historical beings, where "understanding"
is based on non-arbitrary proposal and descriptions constructed while interacting with that
very world.  Then, time to time, some leading colleagues came up with exclamations of
surprise: "how is it possible that this game of meaningless symbols (or, alternatively, this
perfectly independent ontologies) happens to say something, indeed a lot, about the
"concrete reality" surrounding us?  What an amazing miracle!".  So, after inventing or
accepting a schizophrenic split, some tried to recompose it by referring to magic or
metaphysical, inexplicable connections (even ... "not deserved"?!, see [Wigner, 1960]) and
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forgot that human knowledge should be analysed in a scientific perspective and not in terms
of miracles nor in search for "absolute knowledge".  

Mathematics is the result of a "knowledge process", as one of the ways we relate to the
world, while constructing our own "cognitive ego": our intelligence is an ongoing and active
organisation of phenomena while trying to make them intelligible to us, it is co-constructed
while structuring phenomena.  We cannot separate Mathematics from the understanding of
reality itself; even its autonomous, "autogenerative" parts, are grounded on key regularities
of the world, the regularities “we see” and develop by language and gestures.

In this paper we will try to hint to the unity of human conceptual constructions, as well as
to the rich way in which various forms of knowledge are articulated.  They constitute a
network of meaningful attempts to understand the world, all rooted in "acts of experience",
as active forms of interpretation and reconstruction of reality, deeply embedded in our
cognitive and historical lives.  Mathematics is one of these forms whose peculiar nature, by
its "conceptual invariance and stability" as we will stress, is not independent from the others
and, by this, it can "say something", indeed a lot - but not "everything" - about them and the
world: it is reasonably effective.

1. The logicist and formalist foundation. The role of "space".

1.1 From the Geometry of space to Logical Truth
Let's first briefly recall a story which begins with a major crisis: the loss of certainty in the
absolute of physical space, whose geometry was identified to Euclidean geometry.  For
more than two thousands years, the "pure intuition of space per se" guaranteed certainty and
foundation to the many constructions of Mathematics: the "synthetic a priori" of geometry
was behind the objectiveness and effectiveness of the drawing of the geometric sign, of the
proof carried on "more geometrico", on the perfect planes and spaces of Euclidean
geometry.  But ... what happens if the world were curved?

With this motivation, Gauss analysed another "possible world": the idea was to look at a
surface "per se", not as embedded in an Euclidean space.  That is, to analyse the surface
"without leaving it", by moving, say, along its geodetics, as lines of (relative) minimal length.
The connection to Euclid's fifth axiom was explicitly made by Lobachevskij and Bolyai.
Riemann pursued Gauss's aims and developed the (differential) geometry of curved
surfaces: he thus invented the fully general notion of "manifold" (topological, metric,
differentiable manifolds... in today's terminology).  Riemann actually considered the
curvature of the physical space as related to the presence of physical bodies (“their cohesive
forces”, as said in his Habilitation): the notion of Cartesian dimension, a "global" property



4

of space, is topological, while the curvature and the metric is a local property, which may
depend on the "cohesive forces of matter", an amazing anticipation of Einstein's relativity2.
As a matter of fact, by the analysis of the geometric structure of space (as ether), Riemann
meant to unify action at distance (heath, light ... gravitation).

Clearly, Riemann greatly contributed, by his n-dimensional differential geometry, to
demolish the absolute and certainty of Euclidean space, just a special case of his general
approach.  Yet, he tried to re-establish knowledge as related to our understanding of the
(physical) world.  For him, geometry is not "a priori" by its axioms, but it is its grounded on
certain regularities of physical space, to be singled out and which have an objective, physical,
meaning (continuity, connectivity and isotropy, for example).  In Riemann's approach, we
actively structure space, as manifold, by focusing on some key properties, which we
evidentiate by "adding hypotheses".  Thus the foundational analysis consists, for Riemann,
Klein, Clifford, Helmoltz ... in making these regularities explicit and in spelling out the
transformations which preserve them.

However, this "relativized" neo-kantian attitude turned out to be unsatisfactory for many,
since it dangerously involved an analysis of the "genesis of concepts", as apparently
originating from our more or less subjective presence in the physical world.  In fact, these
concepts, as for instance those of differential form, group and curvature are objective
because they are invariants that we actively single out of the hysical world; that is, they
become concepts as a result of the interaction, at the phenomenal level, between us and the
world.  How to re-establish then absolute certainty and objectiveness, after the shocking
revolution of non-Euclidean geometries, while avoiding this "implication of the subject" into
knowledge?  

First, avoid any reference to space and time, the very reference that had given certainty,
for so long, not only to geometry, but also to algebra and analysis.  For Descartes and
Gauss, say, algebraic equations or the imaginary numbers are "understood" in space: this is
so in analytic geometry and in Argand-Gauss interpretation, over the Cartesian plane, of √-1
(of the complex numbers, thus).  But, if our relation to space is left aside in order to avoid
the uncertainties of the "many geometries" and the shaky sands of human cognition, then
language remains, in particular the logical laws of thought that the English school of algebra
had already been putting forward, in a minimal language of signs ([Boole,1854]).
Language, considered as the locus of the manipulation of (logical) symbols, with no
reference to phenomenal space, nor, in general, to forms of experience.

Frege best represents this turning point, in the foundation of Mathematics.  His search

                                    
2 Riemann's Habilitation is of 1854, under Gauss' supervision [Riemann, 1854; it. transl.
1999]; more remarks were made in the '60s.  A broad analysis may be found in [Boi, 1995],
[Tazzioli, 2000].
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for "absolute knowledge" was meant to exclude, first, any hint to "intuition" or "empirical
evidence", any analysis of the "knowledge process" (see [Frege,1884]), in particular in
reference to phenomenal space and time.  In his work, the fight against Stuart-Mill
(empiricism) is explicit, the one against Herbart (psychologism), who had largely influenced
Riemann, and to Riemann himself is evident: empiricism and psychologism are Frege's
worst enemies.  

We must acknowledge the depth of Frege's analysis.  His scientifically plane style as
well: he established a novel standard of rigor by his "language of formulae", where universal
and existential quantification (the "for all x ..." and "there exists x ..." so relevant in
Mathematics) are finally handled in a uniform and sound way, in contrast to the
mathematical practice up to that time, or most of it  (the formal gaps in Cauchy's work, say,
are well-known).  The too elementary "laws of thought" of the British algebraists (Boole,
Babbage) are thus enriched by the so-called (first order) quantification: Mathematical Logic
is born, as the search for "unshakeable certainties" in absolute assumptions and laws of
deduction.  Absolute, but meaningful: the assumptions and the laws must have a "logical
meaning"; even arithmetical induction, a technical proof principle for number theory, has a
logical meaning for Frege.  Arithmetical computations are logically valid deductions.  The
reference is again to a platonic realm of logical and absolute truth, independent of man:
"pure concepts", without conceptor.

The search for foundation (and certainties) in the interaction between us and the world,
starting with physical space, is abandoned: Mathematics is brought back to sit in platonic
realms, detached from us and the world.  What a surprise when some will rediscover that it
is very ("unreasonably") effective, in Physics in particular, as if it where constructed to say
something about the world, in a suitable language for us.

1.2 Formalism and linguistic stratifications.
An alternative path towards grounding Mathematics away from human reasoning about
reality, was proposed by Hilbert's foundational work, once again for good reasons and by a
strong proposal.

Suppose that you have a proof of existence and, maybe, of uniqueness of the solution of
a system of (differential) equations or of a finite basis for certain algebraic systems; yet,
assume that you cannot give the solution explicitly, as an elementary function, say, nor
construct it as the limit of suitable (Fourier) series nor provide effectively the finite basis.
Where does this solution, this finite set, live?  In which platonic/logical realm?

Hilbert has an original and robust proposal for an answer to this: provide a finite
axiomatic frame for your proof, with finitary (effective) deduction rules, then the "existence
property" in your theorem may be guaranteed by a proof of consistency (non-contradiction)
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of the axiomatic theory.  In '900, he poses, as a key open problem, the proof of consistency
of Arithmetic (and thus, by Cantor-Dedekind construction of the reals, of Analysis).  A
proof to be carried on in a "potentially mechanizable" fashion, in order to reduce certainty to
the finite manipulation of symbols, with no reference to (actual) infinite nor to (possibly
geometric) meaning.  This is Hilbert's conjecture of the finitistically provable consistency of
Arithmetic (and other key formalised theories).

The project is strong and revolutionary: two dangers are avoided at once.  Infinitesimal
analysis had introduced the infinite to analyse the finite: since the XVIII century, powerful
tools had been developed to describe physical, finite, movement around us (speed,
acceleration) by actual limits, some sort of dangerous metaphysical infinities (based on
Leibniz's monads, say).  In spite of the work of Cantor, the foundation of infinity remained
uncertain and flawed by paradoxes (contradictions).  By the formalist program, and its
developments, the situation could be reversed: in particular, once proved, by finitistic tools,
the consistency of theories that formalise the infinite, such as (Zermelo's) Set Theory, then,
by the consistency of the theory, the "existence" issue is solved, including the existence of
infinite objects (sets, functions, actual limits ...).  As a matter of fact, in Hilbert's program,
mathematical existence is provable consistency of the intended theory, and nothing else.
No need to dream of platonic realms, at least in the foundational work: once consistency is
proved by finitary tools, the working mathematician could happily live in Cantor's paradise
of infinite and ideal objects (in his practice of mathematics, Hilbert was far from being a
formalist!).  Moreover, the shaky reference to space (Euclidean, non-Euclidean? physical?)
may be avoided as well: as for foundational purposes, geometries are just finite sets of
(provably consistent) formal axioms, which may be interpreted in many ways, and the
interpretations are irrelevant to deductions and proofs.  And this is so, since deduction
rules are applied mechanically, i.e. according only to the syntactic structure of the formulae
(well-formed strings of symbols) in the assumption, with no reference to their meaning
(logical, geometric ...).

Then the bold enterprise of the formalist finitism began, grounded on one further and
crucial idea of Hilbert's.  He proposes to carry on the foundational analysis in a
mathematised "metalanguage", whose object of study is the object language of the formal
theories. Moreover, these theories, at their purely syntactical level, with no reference to
metalanguage nor meaning, should be able to describe completely Mathematics.  That is, any
formalised assertion of it should be decided by finitistic deductions from the axioms.  And
here is Hilbert's conjecture of "completeness" of the key axiomatic theories, such as formal
arithmetic.  In summary, by finitistic metamathematical tools one should be able to prove
consistency and completeness of the core of Mathematics.

Hilbert's "linguistic stratification" (language, meta-language) is a remarkable way to
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organise the "discourse of Mathematics", perhaps comparable to Euclid's proposal to
organise physical space.  Yet, as much as Euclid's, this is not an absolute.  That is, Hilbert's
proposed distinction between theory and metatheory is not the only frame within which one
may approach the foundational problems: other conceptual construction may violate this
organisation and the blend of levels (and of meanings) may require an analysis that goes
well beyond it.  Indeed, the failure of this paradigm is the very reason for the
incompleteness phenomena, as we will briefly hint below.  The fact is that the formalist
paradigm for mathematical knowledge (both foundation and praxis) marked the century and
many still beleive that a "sufficient collection of (set-theoretic?) axioms", once fully
formalised, may allow a complete deduction of Mathematics ... yet, this very same people
show a great surprise when, in spite of this assumed automatism (or "meaning
independence") of the discipline, it helps us in understanding and giving meaning to the
world.

A few soon reacted to Hilbert's program, such as the "lone wolf" among Hilbert's
students, Hermann Weyl, who conjectured in Das Kontinuum, 1918 (!), the incompleteness
of formal arithmetic (§.3 in [Weyl,1918]).  He also stressed in several places that the idea of
mechanisation of Mathematics trivialises it and misses the reference to meaning and
structures.  Unfortunately, Weyl calls this crucial reference to meaning, "the mathematician's
insight" or "intuition", with no further explanation; a reference to the "unspeakable" that we
have to overcome: below, we will try to understand what these words may mean.  Besides
Weyl (and Poincaré and a few others), Wittgenstein is another thinker who criticised
Hilbert's program.  For him “Hilbert's metamathematics will turn out to be a disguised
Mathematics” [Waismann, 1931], since “[A metamathematical proof] should be based on
entirely different principles w.r. t. those of the proof of a proposition ... in no essential way
there may exist a meta-mathematics” (see Wittgenstein, Philo. Rem., § 153; quoted in
[Shanker,1988]), and ... “I may play chess according to certain rules.  But I may also invent
a game where I play with the rules themselves.  The pieces of the game are then the rules of
chess and the rules of the game are, say, the rules of logic.  In this case, I have yet another
game, not a metagame” [Wittgenstein, 1968; p. 319].

As for arithmetic, the key theory for finitistic foundationalism, these remarks may be
understood now in the light of Gödel's Representation Lemma [Gödel, 1931]: by this very
technical result, one may encode the metatheory of arithmetic into arithmetic itself, thus the
"rules of the metagame" are just viewed as ... rules of the "arithmetical game".  Moreover,
many proofs which entail the consistency of arithmetic, such as (Tait-)Girard proof of
"normalisation" of Impredicative Type Theory ([Girard et al., 1989]), need a blend of
metalanguage and language; or even purely combinatorial statements, such as Friedman's
Finite Form of Kruskal's theorem, provably require the same entangled use of metatheory,
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theory and semantics, by the impredicative notions involved: an indirect confirmation of
Wittgenstein's philosophical insight (see  [Harrington et al., 1985] for the mathematics; a
discussion and more references are in [Longo, 1999a]).  These theorems are some of the
many recent examples of more or less "concrete" incompleteness results of formal
arithmetic; that is, they are interesting arithmetic statements whose proof requires essentially
"non formalizable" (not effective-axiomatic) tools.  They are not self-referential "tricks"
such as Gödel's independent statement of arithmetic, a simple proof-theoretic translation of
the Liar's Paradox3.

The point is that, in the arithmetic proofs of these interesting (concrete) statements,
meaning is essential; more precisely, at a certain point of the proof, in order to go "from one
line to the next", one has to refer to some variables as interpreted by sets, to others as
interpreted by their elements (use of some form of an impredicative second order
comprehension axiom), or to the well-ordering of integer numbers (second order induction),
or to similar "concepts" which provably cannot be formalised arithmetic, in a finitistic way.
Computers get stuck, but human beings, by referring to the well-ordered structure of integer
numbers in space or time, by "seeing" sets and elements, as meaningful and conceptually
distinguished notions, have no problem in understanding and carrying on the proof, even
though these are provably not formalizable in a finitistic, mechanisable fashion (or by
symbols which run independently of meaning).  Thus, meaning steps in and the formalist
analysis has been such a strong paradigm as to prove this for us, by these and the many
other unprovability results in formal theories (the independence of the "continuum
hypothesis" and of the "axiom of choice", whose analysis motivated formal Set Theory are
further examples, see any text in Set Theory or [Longo, 1999c] for more discussions and
references to this even more severe "debacle" of formalism).

It is time now to go further and stop believing in the absolute of the Hilbert(-Tarski)
foundational frame (theory, metatheory and semantics); that the finitistic formal level and the
metalinguistic, yet mathematical, analysis can say everything about Mathematics and its
foundation or that the close structuring of mathematical concepts, in this specific way,
coincides with the foundational analysis of Mathematics.  A large amount of technical work
can surely still be done along this paradigm, as reductions to least purely formal frames are
often very informative; it is the underlying philosophy that must be overcome.  Many
theorems tell us that this failed, yet the philosophical prejudice, the unscientific myth of
"absolute knowledge" or the reference to certainty as mechanical deduction only or the idea
that the foundational issues of Mathematics may be treated only mathematically, still resists,
                                    
3 Gödel's incompleteness theorem is an immense achievement as for technical inventions and
insights, essentially by the tools used in the proof of the Representation Lemma: gödelization,
recursive functions ... .  The "unprovable" statement "per se" has no mathematical interest, in
contrast to the many recent examples, as those quoted above.
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along the lines of Hilbert's relevant, but too rigid stratification, not proper to the human-
mathematical experience.  The major merit of the formalist-mechanicist approach was to set
the philosophical and mathematical basis for inventing, in the thirties, the (mathematics of)
computing machinery: Boole-Frege "laws of thought", independent of human thinking, are
finally implemented in meaningless strings of symbols, pushed by machines according to
meaningless rules.  The idea of transferring human rationality in machines, to refer to
computers as the paradigm for "logic and rigor", is probably the main fall-out (indeed, a
relevant one) of this "splitting" proposal: splitting man from one of his major form of
knowledge, Mathematics.  

Yet, as a consequence of some of the incompleteness theorems mentioned above, the
concept of infinity turns out to be essential to prove the consistency of formal arithmetic; let
alone of those theories of infinity, the theories of sets whose consistency depends, at each
infinitary level, by the use of even more infinitary constructions. Now, infinity is a robust
human conceptual construction, the object of a lively debate for centuries, which stabilised
with Cantor into a operational, mathematical notion.  As suggested in [Longo, 1999a], we
have, so far, no better "foundation" for the infinite than the reference to its historically
meaningful specification as a mathematical concept, i.e., the analysis of its "progressive
conceptualisation", to put it in F. Enriques' terms.  The set theoretic specification of this
concept, a technically remarkable clarification and "stabilisation" of the notion, is not a
"foundation", since it transfers to larger infinities, by the consistency proofs, the foundation
of each level of infinity.  The foundation of mathematical infinity lies in the analysis of its
conceptual genesis, of the knowledge process which brought it to stabilise as a mathematical
invariant (see [Longo,2001]).  The rooting of this path in our relation to the world, its
constitutive role for our (mathematical) interpretation and re-construction of it and, thus, its
meaning, are the reasons of its mathematical effectiveness, as a conceptual tool of analysis.
In particular, the use of the concept of infinity is robust and effective because it is co-
defined with our ways of organising the world by Mathematics: from the early "theological"
debates, to the structuring of trajectories and lines, by tangents and limits (Newton), rich of
physical meaning (speed, acceleration ...).  These notions organise, for us humans, the
movements of finite objects around us by actual infinity and, once distilled in a rigorous
mathematical practice (since Cantor), they are as effective as no other human construction in
describing physical reality.

1.3 Mathematics as a "three dimensional manifold".
In a very schematic way, I tried to summarise the main approaches to the foundations of
Mathematics by a very incomplete reference to three major scientific personalities: Riemann,
Frege and Hilbert. Each one of their intended foundational ways stresses some crucial
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aspects of the conceptual construction of Mathematics.  As a matter of fact, there is no
doubt that Mathematics is grounded in logic, those "if ... then ... else ..." and much more
that unfold along proofs (Frege).  Similarly, one uses formal computations, in an essential
way: purely algebraic reasoning pervade proofs and equations follow from equations
following abstract rules, whose meaning is irrelevant to deductions (Hilbert).  But
symmetries also or other regularities of space (connectivity, say) contribute in singling our
structures and their relations (Riemann).  These have no logical meaning, yet they appear in
theory building and in proofs (see for this the novel insight which originated in
[Girard,1987]).  

This richness of Mathematics is lost in the logicist and formalist approaches: only logic
or finitist formalism (and possibly not both!) found Mathematics.  In particular, our relation
to space is only a matter of "ad hoc extensions", largely conventional for the formalist, to be
found on the concept of "ratio as number" for the logicist [Frege,1884; pp. 56-57 and
§.14]4.

One may instead synthesise the variety of grounding components of Mathematics by
looking at it as to a "three dimensional manifold" (a generalized "three dimensional space").
Mathematics is found on, and uses in its developements:

•  logic,
•  formal computations,
•  geometric construction principles.

The generative nature of Mathematics is due exactly to the blend of these "three
dimensions".  For example, once some key regularities of space are singled out (by suitable
linguistic descriptions), one uses logical or formal principles (which belong to language) to
derive new properties of space (to be given in language); similarly, but entirely within
language, formal computations unfold consequences of logical principles.  In either case,
invariance preserving transformations are applied, as both the rule of logic and of formal
computations preserve meaning as invariant or stable conceptual structures: this is what
they have been spelled out for! (technically: they preserve "validity w.r.t. the intended
interpretation").  In particular, they preserve meaning in space.  That is, if a statement about
space, say, is realized in some structuring of it, then logic and computations preserve its
validity via deductions and lead us to new realizable statements about the world.  Thus, we
add the generative power of (logical or formal) reasoning, a key linguistic tool for
organising/understanding the world, a "meaning preserving" tool, and transform basic
invariants of space, say, into novel meaningful invariants.  Sometimes this is done by taking
                                    
4 This is essentially insufficient: only Euclidean geometry is closed under homotheties - or
only its group of automorphisms includes ratio preserving maps; even in the '20s Frege will
keep referring to Euclidean geometry only, in his attempt to broaden the logicist foundation
of Mathematics.
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major detours and, then, remote techniques for algebra turn out to be useful in Geometry or
in differential calculi or alike.

But one may also go from (formal) language to space.  For example, by symmetries and
dualities one "understands", in the Cartesian plane, the "meaningless"  i = √-1  and even  -i
(by a key generative simmetry of the Cartesian plane: the addition of the negative
coordinates).  And then the complex numbers, the result of the formal/mechanical solutions
of certain equations, suddenly become particularly relevant for Physics, that very Physics
which describes space and action in space: formal matrices, say, represent generalised
vectorial computations in multidimensional spaces ... (a crucial step in Quantum
Mechanics).  Then one derives properties of complex numbers, and of functions on them,
by a blend of spatial properties (symmetries ...) and language transformations, i.e. by
geometry, logic and algebra.

There is no miracle here, but the relevance of a conceptual construction, Mathematics,
whose aim is to focus on key invariances: of space, of reasoning and of formal deduction.
Geometry makes space intelligible by singling out some key regularities of it and turning
them into invariant properties w.r.t. to the intended transformations that action in space
suggest to us.  Similarly, logic evidentiate some invariants of language: the logical
principles "pass through proofs" or are present on all proofs and do not depend on
contextual constructions.  Some may be detached from meaning, even logical meaning, and
become purely formal computations, to be applied mechanically: the formal rules then
impose the computational invariants.

The blend of these three conceptual dimensions makes Mathematics generative and
effective.  This form of generativity is the reason of the "extraordinary" effectiveness of
mathematics.

In summary, starting with some basic regularities (invariants) of space, say, Mathematics
"generates" further invariant properties by using logical trasformations and invariants
(regularities) of language (that very language we use to "organise" space) and so on so forth
in all possible combinations of its "three dimensional" nature (in Girard's logical systems,
for example, one uses geometric principles - such as symmetries, connectivity, ... the
unfolding of knots in "proofs nets" - to carry on deductions).  This is effective, as its
strength is in the maximal (not absolute!) invariance and stability of each dimension of the
conceptual constructions and on its "interpretation preserving transformations".  It may be
surprising, because, say, the unexpected spatial interpretation of the formal symbol  i
embeds it into a novel meaningful frame, the locus for deductions grounded on very
different principles, space, yet compatible as given in another conceptual dimension.  
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2. Meaning and Intuition
The foundational project, besides the formalist analysis that can still provide relevant
information on least deductive frames (and suggest ways to implement on computers as
much Mathematics as possible, an interactive help to the proof), should now be extended to
an analysis of "meaning" and "intuition", this betrayed notion by the logicist and formalist
tradition and that many, in contrast, mentioned so often (Riemann, Poincare', Weyl ...).  The
point is that Mathematics is effective also because it is meaningful and because it is
grounded in intuition.  Mathematical knowledge is constructed by an interaction with human
intuition, a notion to be discussed below, which is dynamically modified along the genesis
of the discipline.

As for meaning, before proposing a further specification, in connection to intentionality
and life (in §. 3), let's more closely describe meaning as given by a network of (sufficiently
stable or invariant) practical and conceptual experiences, grounded on mathematical but
also on other (conceptual) praxis.  For example, meaning is added to an analytic equation of
geometry, when it is understood as a line, a plane, a n-dimensional surface ... √-1  aquires a
meaning on the cartesian plane, as a different conceptual constructions, "per se".  Thus,
meaning is first in "setting bridges", displaying metaphors, elucidating rigourously
references, by mutual explanations.  The very fact that this embedding and bridging is
made in many and different active experiences allows us to extract the meaningful
mathematical invariants, the stable "conceptual contours" common to many of them.

Then, intuition may be analysed as a direct, yet pre-conceptual, reference to a variety
of meanings, whose interconnections motivate and provide robustness to the mathematical
construction.  It is a largely pre-linguistic experience; often an "insight" or "mental seeing"
of (part of) the mathematical structures, as mental constructions, whose network is
meaningful to us.  The mathematical intuition is the ability to insert a more or less formal
expression, either a "hint" or a symbolic notation, into a "network" of meanings.  Seing is
its main organ, as the trained mathematician can (re-)construct an image from formulae,
similarly as a trained musician may "hear" music when reading a piano score (the mental
reconstructions of images from verbal descriptions is a very common experience).  Thus,
intuition precedes and follows language.  It follows it, in the sense that it is "seing" the
result of a conceptual, even formal, construction, also or entirely developped in language;  it
precedes it, as this seing, usually, needs to be later specified in language, as it may yield a
vision of a novel structure, a combination of previously inexisting ones, to be fully
determined and communicated by language.

Mathematical intuition is far from being static and "pure".  Training is an essential part
of it: it is ever changing and rich of the impurities of the subjective experience, yet it is
brought to be shared and "objective" by the common cognitive roots and by intersubjective
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exchange.  It is a crucial part of the good teaching of mathematics, it really makes the
difference w.r.t. the bad teaching, as teaching to use mechanically "compulsory",
meaningless formulae: the good, passionate mathematician teaches "to see" and to
conjecture (seing before the proof), before and jointly to teaching how to  prove.  Intuition
is mostly "local", as pointed out in [Piazza, 2000], even if it may be very broad (yet, "if
everything were intuitable, nothing would realy be so" [Piazza, 2000]).

The mathematician "understands" by using well established or original references to
meanings and structures: he then "sees" the meaning as a structure (geometric, algebraic) or
in a structure, this is his intuition.  Intuition integrates different conceptual experiences, it
allows a blend of methods without caring of the details of a formal proof: one "sees"
unrelated structures toghether, proposes unexpeted bridges, by joining, in a new meaningful
structure, long lasting work in different areas.

This constituting of meaning should not be understood in a shallow way: its analysis
must span from the earliest and deepest relation of our "being" in the world and relating to
others, even in pre-human phases, up to the human, historical and most complex endeavour
towards knowledge.

The project then is to single out the objective elements of this formation of meaning and
how it underlies intuition, since they step in the proof, as we said.  The aim is to analyse in a
scientific fashion what has been explicitly "hidden under the carpet" along the XX century:
the role of intuition and meaning, even in proofs.

Memory, for example, is one of the ways by which we constitute "meaningful" invariants,
by selecting, comparing, unifying, by providing analogies.  Forgetting is one of the major
tasks of human memory, in contrast to digital data base: a goal directed or "intentional"
choice, yet largely unconscious, of what is relatively relevant, a way to focus or single our
what is stable or what is worth considering as an invariant.  And by memory I both refer to
individual and collective memory, that one which stabilises and enriches through history or
through shared, intersubjective experiences.  Or even to phylogenetic memory, as it seems
that some pre-conceptual invariants, such as small numbers, are part of our inherited
experience (see [Dehaene,1998], [Longo, 1999])

By this cognitive and historical formation of sense, meaning, as reference to space, or
action, or to structures of language, that we later called "logical", or to other forms of
knowledge, is at the core of the certainty, objectiveness and effectiveness of Mathematics;
these are the final result of this constitutive processes towards conceptual stability.  

In other words, Mathematics is based on the constitution of conceptual invariants,
grounded of a variety of "acts of experience", distilled in praxis, by our action in the world,
from movement in space to memory and displayed by language in intersubjective
communication; these invariants are "what remains" once the "details" are erased; they are



14

the common conceptual structure which explicitly expresses our relation to the phenomenal
world.  The permanent reference, while theory building of problem solving, to the networks
of constituting meanings is the reason for their certainty, effectiveness and objectivity.  The
mathematician's intuition is the grounding of understanding into this network of meanings.
Its analysis is an integral part of a foundational project and, as such, it cannot be only a
(meta-)mathematical problem: it is a cognitive issue, which spans from Biology to History.

3. Meaning and intentionality, in space and time.
“Geometry ... is engendered in our space of humanity,
beginning with a human activity” [E. Husserl, 1936].

The first locus for meaning are space and time. Well before any explicit or conscious
representation, the first goal directed action is that of the living cell that moves in a
direction, in order to maintain or improve its metabolism.  And this a "meaningful action"
and its meaning is at the core of life: it is meaningful, at the most elementary level, as it is
part of a goal, of an intention (it is intentional5).  

In order to understand this approach to meaning, we need to analyse the difficult
entangling of finalism and contingency that is central to life.  In contrast to inanimate
objects, a living being needs to "interpret" the world, in order to live in it.  This may be at the
most elementary bio-chemical level of the cellular reflex or at the incredibly complex level of
our brain.  At each moment we need to interpret the environment relatively to our main aim:
survival.  It is the "finalistic contingency" of life that forces us to give meaning relatively to
an aim (finalism), our unavoidable aim, but it does not need to be there and strictly depends
on, but cannot be reduced to, the context (its contingency): each individual life or even that
of a species, life itself is contingent.  This paradigm is finalistic, but it stresses contingency,
as no species, no living being would be alive if it did not have this aim at each instant of its
life; yet, life and its specific realisations are not a necessary consequence of the "previous
state of affairs" (they are contingent).  Thus, by contingency I also mean "context
dependence"; and the two meanings are related, as "depending on the context" is entangled
with the lack of general necessity.

The relation to finalism interests us, since giving meaning to an incoming information is
"inserting/contextualising that input" into or w.r.t. an aim, a goal, this is the main thesis

                                    
5 I am broadening by this the notion of intentionality in Husserl, as the prevailing husserlian
tradition restricts intentionality to a conscious activity: intentionality is the (conscious)
"aiming at an object (of consciousness)" and this object is meaningful exactly because it is
"aimed at", consciously (see, for example, [Lanfredini, 1994] or the many papers on this in
[Petitot et al, 1999]).  In view of the remarks below, I dare to expand Husserl's clear and
robust notion, in a compatible way, I hope.



15

here (a similar idea is briefly hinted also in [Bailly, 1991], a remarkable essay in philosophy
of science).  We have at each instant both inputs and aims, at least a major one, life.  The
living being, beginning with the most elementary form of life, interprets inputs by
comparing them against its main aim: preserving or improving its metabolism.  Thus,
"meaning" is first given by how much the inputs helps or diverts from it.  In particular, this
is where begins our relation to space and time, as living beings, well before any symbolic
notation can be detached from them.  Human geometry is effective, because it begins with
the action in space of the amoeba, or with the squid choosing the shortest path to hide
behind a suitably large rock (see [Prochaintz,1997] and Longo's review, downloadable).
These are the very early steps towards an attempt to organise space, up to the human
proposal to make space intelligible: geometry.  A proposal among others: we called
"mathematical" the one focusing on invariants and conceptual stability.

Of course, these are just the very remote origin of our relation to the world: it is like a
little stone in the enormous mountain that evolution and, later, human history have been
adding on top of it.  Between the "meaning" of a chemical stimulus interfering with its
metabolism, for an amoeba, and the meaning, for us, of a ... mathematical proof, there is an
abyss, two billions years wide.  However, there is also the continuity of life, a "non
differentiable" continuum perhaps, with sudden turns, as life is necessary to meaning: this is
constructed, first of all, as interpretation w.r.t. life's implicit finalism, then as a network of
mutual references, of "explanations", up to the reflective equilibrium of our (scientific)
theories.

In summary, meaning is at the core of effectiveness, in Mathematics and in other forms
of knowledge as well.  That is, Mathematics is effective since it is meaningful, if one
understands meaning as relation to "our active presence in the world", from the simplest
action of the living cell up to our endeavour towards complex relational life and knowledge.
Or the rich blend of them, as one cannot clear cut between the "meaning" for the individual
cell and that for the human individual, made out of cells.  In our brain, neurons react as cells
to stimuli, but they do it as part of assemblies of neurones ([Edelman,1992]), which in turn
are influenced by our unity as living beings and, thus, by our "external" action and
intersubjective exchange.  These levels are not "stratified", one on top of the other, the one
below specified independently of the above, but they interact in a self supporting way (in an
"impredicative" fashion, to put it in logical terms).  Moreover, senses are far from being
"input channels", their computational parody, but they are a dynamical interactive systems,
where the "form" of the input cannot be detached from action and aims: sensorial inputs are
always actively selected and structured, according to an ongoing interpretation, for the
purposes of action.  This yields the complexity and richness of meaning for humans, as the
non additive sum of "meanings" from the living cell up to intersubjectivity in history.
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3.1 From Euclid's "aithemata" to Riemann's manifolds
I pause here to sketch again some historical and philosophical remarks at the base of the
author's contribution to a project, a scientific analysis in progress, as this analysis of human
meaning in Mathematics is a long term goal, even when "restricted" to phenomenal space
and time (see [Longo et al, 1999]).

First, we react to space as living beings: distance is measured by movement, muscular
thresholds, vestibular memory of rotations, [Berthoz,1997].  Time is related to it by action.
But how do we go from these pre-conceptual experiences to the mathematical concepts?

The interlocking of space and time contributes to give meaning to both of them: explicit
metaphors for time refer to space and conversely, or we understand one in terms of the other
and of our presence in them (see the "metaphors" in [Lackoff and Nunez,2000]).  We
perceive the symmetries of Physics (the reflections of light, crystals ...) and we give them a
major relevance: they are "meaningful" to us, as symmetries shape our bodies and our lives,
they underlie our actions and aims, towards pursuing life.  

Our geometric proposals are shaped along symmetries, as well as along lines of least
action, geodetics, a further relevant regularity of space.  This is so, say, for Euclid's
"aithemata" (requests), which are five practical constructions with least tools (ruler and
compass), grounded on least paths and symmetries: they are surely not "axioms" in the
formalist sense, as they are rich of meaning, as action or constructions in space.  

The first axiom, for example, that is "draw a straight line from any point to any point",
describes an action along a Euclidean geodetic, and so on so forth with three more.  The
fifth axiom describes the most symmetric situation when drawing a line on a plane, by a
point distinct from a given line.  More precisely, following Euclid's statement, consider, on a
plane, a straight line  d  cutting two straight lines  b  and  c.  Then  b  and  c  meet exactly on
the side where they form, with  d,  two angles of sum less than 180°.  Or, they are parallel
exactly when, on both sides of  d,  the sum of the angles is 180°.  Why this geometric
assumption should be "the most convenient" for understanding the space of every-day life,
as many claim, Poincare' in particular, but not fully general for a physico-mathematical
analysis, as we know since relativity theory (and as Riemann and Poincare' himself had
conjectured, see [Boi,1995]) ?

There are here two phenomenal levels, which stress the internal generativity of
Mathematics, once its conceptual tools are well established: the local and the global analysis
of space.  First, the local analysis of neighbouring distances, as the space of movement and
local perception, and its extension to the Euclidean plane.  At this level, Euclid's fifth axiom
describes the most symmetric situation: if one assumes convergence of the two lines on
both sides (Riemann), or many lines that would not converge on either side, even when the
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internal angles are different form 180° (Lobachevskij), then many symmetries, on the
Euclidean plane, are lost.  That is, for the local-Euclidean analysis, the two non-Euclidean
cases lose all symmetry axes orthogonal to the two lines, except one, as well as the parallel
(central) axis of symmetry.  In equivalent terms, if one draws, in a point, exactly one parallel
to a given line on a Euclidean plane, then one obtains more symmetries than when following
the two "possible negations" of the Euclid's fifth axiom, naively represented in the Euclidean
plane.  Euclid's geometry constructively proposes an organisation of physical space
grounded on (planar) symmetries (and straight lines understood as light rays, according to
[Heath, 1908])

Yet, there is another phenomenal level.  This one focuses on the locality of the Euclidean
manifold and suggests also a global look to space.  This understanding of the world is
constructed in a difficult intersubjective practice, through history: it is the passage from the
Greek geometry of figures to geometry as a science of space, from Descartes to Gauss and
Riemann.  Along this path, man had to get used to manipulate actual infinity, a difficult
historical achievement, far away from Euclid's understanding (see the fuzzy use of
"apeiron", indefinite, in the fifth axiom and in the definition of parallel: "eis apeiron", "in
apeiron" ..., a truly indefinite concept, in contrast to the perfect rigor of the other notions).  

One major step towards this achievement, consisted in conceiving the convergence point
of two parallel lines, "out there", into actual infinity, a necessarily global look to space.  This
is projective geometry: it provided an early, implicit, distinction between the local level of the
figures of Euclidean geometries and a global level of a geometric space, which includes the
point at infinity.  Projective geometry is still compatible with the Euclidean approach, yet it
is a relevant extension of the latter, largely due to the pictorial experience of the prospective
in the Italian renaissance (this is when projective geometry was actually invented).  The
mathematical proposal grew out from the interaction with painting, a remarkable example of
this singling out of mathematical concepts from our attempts to describe the world, even for
very different purposes.  By this, also, it became possible to conceive the phenomenal level
of actually infinite planes, where one may have that remote convergence point of parallel
lines.  In summary, the geometrical experience is enriched by the proposal of a second
phenomenal level, the global level of actual infinite spaces, beyond, but compatible with the
local level of Greek geometry of figures.  The infinite and absolute of Newton's spaces is a
further development of this new conception.

Gauss and Riemann's analysis of curved surfaces is a dramatic change of view point.
The idea is that the global geometric properties could differ from the local ones: ratio of
distances could vary when enlarging figures.  As a matter of fact, Euclidean geometry is the
only one whose transformation groups (whose automorphisms) contain the homotheties
(i.e., its local properties, such as ratio of distances or angles, are invariant w.r.t. arbitrary
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enlargements and their inverse): homotheties are not automorphisms in non-Euclidean
geometries.  In Gauss and Riemann's differential geometry, distance can be defined locally
in an Euclidean fashion, by generalizing Pythagora's theorem to differentials (in a bi-
dimensional manifold one may set  ds2 = ∑gijdxidyj  and this determines the local structure

- the metric and curvature).  As for the global structure, it is topology that matters, as the
Cartesian dimension is a topological invariant (dimension is preserved exactly under
topological isomorphisms), while (relative) distance is a local property (the metric structure
is a local property).  

As already mentioned, Riemann, in 1854, conjectured that the presence of physical
bodies could be related to the local properties of distance, the metric: a remarkable insight
towards relativity theory, as acknowledged by H. Weyl in 1921 (see [Boi, 1995]).  Riemann
(but Gauss and Lobachevskij as well) was explicitly working at a geometry of physical
spaces.  This stresses the relevance of his revolutionary proposal towards a way by which
we organise space and understand the world (see [Bottazzini, Tazzioli, 1995]).  A proposal
grounded on "acts of experience", as Weyl would say, i.e. on a progressive formation of
sense, through history (see [Weyl, 1927]) .

This change of perspective largely influenced our understanding of Physics, as we all
know, since it modified the key "phenomenal veil", in the sense of Husserl, as the interface
between us and physical space, and thus it modified the geometric intelligibility of it.  Non-
Euclidean geometries, or, more generally, the treatment of space as a (riemannian) manifold,
proposed a novel phenomenal level, as locus of the interaction between us and space.  A new
Physics is constructed over it: the effectiveness of the proposal is due to the fact that it is the
very (mathematical) language for a new conception of space and time.  It organises the
world and generates the new objects of the physical reality; by this, it defines an
understanding and helps to predict.  There is no pre-organised reality that we perfectly
describe, by miracle, by our independent tools (either formal or platonic Mathematics): these
very tools are proposed while organising reality, in space and time, and trying to make sense
of it, from Euclid to Riemann.

3.2 More on symmetries and meaning
As already mentioned, in Euclidean geometry, the local properties are extended for free, by
homotheties, to the entire space; in particular, the local notion of parallelism is extended
"indefinitely", by the (apparently) more symmetric situation (i.e., w.r.t. the naive Euclidean
interpretation of the two negations of the fifth axiom).  And symmetries are meaningful for
us, as living beings: our own body is organised according to symmetries; we detect them
very easily and use them regularly in action and pattern recognition ([Berthoz,1997],
[Ninio,1991] and many others, for example in gestaltist approaches to vision).
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But how could physicists give up, in this century, such a meaningful and relevant
physico-mathematical property as symmetry and prefer, in some contexts, non-Euclidean
geometries?  The point is that the newly constructed phenomenal level, the one which allows
to conceive different "global" geometries, has still enough symmetries, from an algebraic
point of view.  Yet, how to count symmetries, as they are infinitely many?  A sound way is
to analyse the group of isometries.  Now, this group, on the plane, is generated by the
symmetries (as reflections) and it can be proved that there are isomorphisms (of different
sorts: algebraic, topological) between these groups in the various geometries.  Thus, from
the new, subsequently generated mathematical point of view, that of algebraic geometry, one
has that symmetries, in the different geometries, have a "similar" algebraic expressiveness.
And then, physicists, when working at the abstract level of formal representations of space,
may indifferently find more suitable, in order to describe space, one geometry or the other,
according to empirical evidence, when possible.  That is, as far as symmetries are concerned,
there are no general-algebraic reasons to prefer one geometry to the other, at least not
grounded on symmetries, while there may be empirical ones (the curvature of light in
astrophysics, typically); yet, the Euclidean approach is the most obvious (convenient?)
extension, by homotheties, of our local space of senses, with all its symmetries.  These are
the "evidences" behind Euclid's axioms.  

Note instead that the mathematical descriptions of space in microphysics and in
astrophysics are not closed under homotheties, so far: the geometry of quantum mechanics,
the Euclidean geometry of "medium sized objects" and the spaces of relativity have
properties that cannot be transferred one from the other by homotheties.  There is no unified
geometry for these three phenomenal spaces, a geometry invariant under homotheties; but
there are good reasons, there are evidences which underlie each geometric proposals.  As a
matter of fact, the evidences for the non-Euclidean negations of Euclid's fifth axiom, are
based on a peculiar "path through history", which we sketched above and which enriched
our mathematical constructions: by this we could propose new physical experiences and
describe a different understanding of geodetics, say (the light rays of Relativity).  As a
matter of fact, the concept of infinity, symmetries and their interplay in the distinction
between local and global phenomenal levels, in the analysis of space, gave us a language by
which could propose a new understanding of (the notion of) rigid body and light ray.  

As for the notion of "evidence" above, the point we are trying to develop is beautifully
hinted by Husserl: “the primary evidence should not be interchanged with the evidence of
the "axioms"; since the axioms are mostly the result already of an original formation of
meaning (Sinnbildung) and they already have this formation itself always behind them”
[Husserl, 1936; p. 193].  Axioms, then, even the "meaningful constructions" by Euclid's, are
not the bottom line of the foundational analysis: geodetics or symmetries, as meaningful
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aspect of our manifolded relation to the world, are "behind them", in Husserl's sense.  And
these properties of space and of our relation to space, do not depend on the specific
geometry, but, in different forms, they are also "behind" the axioms of non Euclidean
geometries, jointly to the other properties that Riemann, Poincare', Weyl and a few others
begun to analyse: isotropy, continuity, connectivity (see [Boi, 1995]).  

Thus, the formal, unintepreted axioms, Hilbert's style, are far away from founding
Mathematics.  Instead, they, in turn, are grounded on meaning, often to be made explicit,
often necessary to the proof, as mentioned in the section 1.2, even for the most
mechanisable of our mathematical theories, the arithmetic of integer numbers.  These
meanings relate Mathematics to the world, ground its constructions in it and, by this, turn
Mathematics into a certain, objective, effective science.  Intuition is the bridge that provides
foundation, by "understanding", that is by embedding formal notations in a network of
meanings; these are "behind" the constituting of conceptual invariants, as intentional
selection of common elements, of bridges and analogies, interpreted for the purposes of
aims, such as life, actions and human search for knowledge.  

4. Contours and stability.
There is no split between mathematical constructions and the world, as we draw
Mathematics, its "geometric or conceptual contours", on the "phenomenal veil", that is on
the interface between us and the world.  We ground it by this in regularities of the world,
while singling out these very regularities and defining our own "self".  The construction of
objects, our singling them out, and of concepts, derives and gives meaning from and to the
world.  By these reasons, by this rooting of knowledge in the meaningful presence of our
biological and historical life, by this cognitive presence of ours in the world, Mathematics is
so effective for its purposes.  Mathematics is, by definition, the collection of the maximally
stable concepts that we can draw on the phenomenal veil, the invariants that we may transfer
in many other forms of description of phenomena, exactly because of their stability and
invariance or strong contextual independence.  And we always need to single-out an
invariant in order to constitute a (physical) object.  Moreover, we simultaneously design and
force a formalism from and onto reality: Mathematics is normative and generative, as it
proposes rules and methods for deriving new concepts, new structures.  These may then
suggest a new understanding of the world, a new tool for "reading" it.   Mathematics, thus,
is effectively applicable to different contexts of knowledge: it forms the underlying texture
of our representations of the world, by its very construction.

The point is that we actively single out objects and propose concepts.  And we extend this
"action" into autonomous mathematical constructions: the (more or less formal)
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mathematical developments are a purely mental extension, made in language and
intersubjectivity, of the human praxis of generating stable (geometric or conceptual)
contours.  Of course, Mathematics also departs, by its internal methods, from its direct
rooting in our understanding of the world, but these very methods derive their sense and are
made possible exactly by our active and creative intuition, in the husserlian sense (see [Boi,
1998] for a clear understanding of Husserl vs Kant on intuition).

In other words, while determining our "spaces of humanity", we simultaneously draw the
borders of "objects", we single out relevant contours, we understand while interpreting and
naming.  Our ego is constructed at the same time as the world of phenomena around us.  Of
course, there is a reality "outside there", which oppose "resistance and frictions" to our
action, but phenomena are constituted in the interface between us and this unorganised
"reality".

Mathematics plays a major role in this process, at least in Physics, or as soon as our
action tends towards scientific or sufficiently general knowledge.  Mathematics "singles
out" contours of objects, by the drawings of geometry and, more generally, by conceptual
shaping of images and ideas.  Mathematics is the drawing of contours which do not need
to be there.  

Human vision is a good paradigm for this, as we do not "swallow" images passively, but
they are (re-)constructed by active interpretations.  In vision, some areas of our primary
cortex reacts only to contours.  But contours are not objects, they are singularities, in the
mathematical sense, at the edge of bunches of wave length.  We perceive these singularities
and use them to isolate one object from the other, by deciding where and how to "cut" or
delimit those inexisting lines.  This is done in a continual interplay between incoming
messages and interpretation: visual illusions tell us the permanent role of interpretation in
vision, on the grounds of memory, interpolation, tridimensional reconstructions.  

Consider, say, the names of colours, so history dependent, yet not arbitrary.  It is a
completely human and historical choice that of categorising colours, like separating blue
from green, by giving, with a name first of all, "individuality" to this or that colour, marking
borders in the "continuum" of wavelengths, between say "burnt siena" and "red amaranth"
or even "blue" and "green" (Euclid, as all Greeks, had the same name for blue and green).
Yet wavelengths are there, as well as our retinal receptors, which have "pigments" sensitive
to three primary colours (they have excitement peaks corresponding to the wavelengths of
red, blue and green): these colours, as parameters in a three-dimensional space (an example
of a three dimensional manifold, mentioned by Riemann), allow the reconstruction of all
possible wavelengths, but many other triples would do as well.  

It would be interesting to know more about the role played, in the history of language,
by those three primary colours that evolution has given us to reconstruct the others.  They
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are like "pivots" upon which we build our mental categorisations and that probably drive
our choices favouring some lengths over others, thus making non-arbitrary our
categorisations.  Because this is the point: scientific (and mathematical) reconstructions of
the world are possible proposals and yet they are not arbitrary.  Thus, the foundational
issue is in singling out the phenomenal "pivots" on which, along history, we built up our
forms of knowledge.  As for geometry, and following Riemann, Poincare', Weyl, we
referred to symmetries, isotropy, continuity and connectivity of space, regularities of action
and movement, as "meaningful" properties.  They are meaningful as they are embedded in
our main intentional experience, as hinted above: life.

In Mathematics, then, we have been singling out conceptual contours, grounded on these
"pivots" and regularities in the world, comparable to the three primary colours in the
pigments of our retina.  Then, we stabilised them in "abstract" (contextual independent, yet
meaningful) geometric and linguistic invariants.  More precisely, the core of the
mathematical work is in turning the relations between invariants into norms and, then,
using these norms to carry on further constructions (and proofs of further relations
between constructions).  This is the normative character of Mathematics: by Mathematics,
we structure scattered phenomena by norms.  Then, further mathematical structures extend
the conceptual construction to more complex forms, built one on top of the other,
interrelated by morphisms, which preserve the intended invariant (continuity say, for
topological morphisms, operations for algebraic ones) ... and this gives "categories of
objects and morphisms"; then categories are related by "functors", which transform objects
into objects and morphisms into morphisms.  By continuing the category-theoretic
metaphor, "natural transformations" relate functors and categories and so on so forth.
Mathematics acquires then that typical autonomy from the world which singles it out from
other forms of knowledge: it is grounded on a few cognitive and historical pivots and, once
some invariants are stabilised by drawing and language, we use a variety of conceptual
tools, a blend of many experiences (logical, formal, spatio-temporal ...), to constitute norms
and derive new invariants, often far away from the ones we originally derived by our active,
interpretative presence in the world.

5. Microphysics and dynamics
Physics has always been the privileged discipline of application for Mathematics.  Indeed,
Mathematics itself owes most of its own constructions to attempted descriptions of the
physical world, beginning with Greek geometry, a dialogue with the world and with Gods at
the same time.  By this, geometry was detached by them from the "measure of the ground",
an early process of "singling out" perfectly stable and invariant figures.  Up to the
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infinitesimal calculus and Gauss-Riemann differential geometry, explicit attempts to
describe movement and physical space.  And further on, till the Mathematics of Quantum
Mechanics, where the audacity in singling out inexisting but non-arbitrary contours reaches
its highest level.  “Each element ... must be prepared; it must be sorted; it must be offered
by the mathematician.  We then see to appear, in physical sciences, the opposition between
descriptive and normative.  The attributing of a quality to a substance was once of a
descriptive nature.  Reality had just to be shown.  It was known as soon as it was
recognised.  In the new philosophy of science, we must understand that the attributing of a
quality to a substance is always of a normative nature.  Reality is always the object of a
proof.” [Bachelard, 1940; p.89].

As a matter of fact, in microphysics, we see nothing but some "crick-crack" or spots on
measure instruments, which are far away from "phenomena".  Then a mathematical theory
is proposed, which gives unity to these "symptoms" by drawing a mathematical
interpretation and, by this, by turning them into elements of a phenomenal description.
Actually, even the physical measure instruments are constructed on the grounds of a theory,
as they are just a practical explicitation of a theoretical hypothesis: we should measure this
and that, in this way.  Atoms, electrons, photons, gravitons ... are not there, they are
"mathematical contours" which we single out by unifying a few signals.  They are a way to
propose non-arbitrary physical or conceptually stable borders.  They are not "objects", yet
they are as objective as our most robust theories of the world, since the physical world does
"make resistance" and forces some signals towards us and the measure instruments we
constructed.  Physicists are ready to update them continually, even if, at each stage, the
proposed invariants may be at the core of a relevant mathematized theory, often rich in
applications.  

This drawings of contours, these constructions of invariants and of perfectly stable
conceptual entities are at the core of the applicability of Mathematics to inanimate matter,
they actually are at the origin of Mathematics itself.  Or, following Boi's interpretation of
Weyl, “physics is but geometry in act” ... “so that the mathematical understanding of this
world cannot be separated from the understanding of reality itself”, [Boi,1998] (see
[Connes,1990] for a geometric insight into Quantum Mechanics).  Or, to put it otherwise,
we understand Physics (movement, gravitation, non-locality, say) or we have it as
"phenomena", by the very act of proposing a mathematical theory of space-time.

Of course, the effectiveness of the mathematical tool is relative to the interaction of an
ongoing proposal and the various phenomenal levels: unifying phenomena is a major
criteria for effectiveness.  This proposal is an integral part of phenomena, but gaps are
possible as we make "choices" while setting conceptual contours.  These choices are not
arbitrary, as they are grounded on incoming signals, on meanings, on accumulated,
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historical knowledge.  The selection is made with reference, often, to other forms of
knowledge, by implicit analogies and metaphors (such as the metaphor of the planetary
system, say, to understand the atom).  Thus, they may yield incomplete descriptions.  

An example is given by the dynamical systems which are sensitive to initial conditions:
we cannot predict completely they quantitative evolution by our mathematical tools.  Their
effectiveness then is limited, as predictability is a component of effectiveness, even if they
give a better understanding of phenomena, by unification or explanation.

 Of course, impredictability is not a matter of the world: there is no way to know whether
the "physical reality" is "chaotic per se".  The question only makes sense at the
phenomenal level, the only accessible one, the actual interface between us, or our non-
arbitrary proposals to organize the world, and "reality".  As a matter of fact, God may know
very well where the Earth will be in more than 100 millions year (see [Laskar,1990] for
impredictability results on the solar system).  In deterministic, chaotic systems, the only
"fact" is given by an increase of "complexity" of some phenomena; but this understanding
is already a theoretical proposal, an organized understanding.  That is, impredictability
shows up when something is said (dicere), or concepts are displayed, or they are proposed
by a (living and thinking) conceptor: it is not a metaphysical truth.  Impredictability
requires an attempted prediction, while interacting with "physical reality" (or signals
coming out of it); it concerns our mathematical attempts to organise these signals and it
says that our attempts are "provably incomplete".

6. Incompleteness in Mathematics and Physics
One may draw then an analogy between the incompleteness results in formal theories (see
sect. 2) and the one mentioned above, concerning dynamical systems.  Let us first recall that
the incompleteness results in mathematical logic, in formal arithmetic in particular,
evidentiate a "gap" between the formal, theoretical level and meaningful mathematical
structures: one cannot "remove the machinery" from proofs, a machinery which refers to
transfinite ordinals or well-orderings, as constructions in mental space and time.  In these
cases, the normative structuring of Mathematics extends iteration and order, beyond
phenomenal time and space, towards and by the concept of infinity.  This is the nature of
purely mental constructions, well beyond the finite, such as transfinite orders or infinite
well-ordering.  In a sense then, infinitary constructions in mental space and time may be
understood as the subjective traces of intersubjective extensions of the objectivity of the
phenomenal world, i. e. the are the "mental marks" of the objectivity we constructed in
intersubjective, historical praxis, over basic regularities.  The concept of actual infinity is the
result of many historical conceptual constructions (theological, based on the projective
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geometry of renaissance painters ...).  Its objectivity is obtained as an integration of
"metaphores" (see [Lakoff&Nunes, 2000]; but they are not just linguistic metaphores) and
by the normative structuring of Mathematics, well beyond phenomena and leaves traces in
our minds; it is extended by a blend of manifolded experiences (the metaphysics of infinity,
say, played a major role in the constituting  of the mathematical concept, from St. Thomas to
Leibniz, see [Zellini,1980].)  

The finitary formal approach, which does not include these meaningful structures, such
as infinitary mental constructions (the well-ordering of the set of all numbers, say), cannot
completely describe their properties, as it has been proved.  In the case of arithmetic, the
incompleteness is due to the fact that the well-ordering of standard numbers cannot be
axiomatized in a finitistic-effective way, yet it is an absolutely clear and robust structural
property of integer numbers, seen as actual infinity in mental spaces: when used in (human)
proofs it yields formally unprovable results (see, for example, the proof of Friedman's Finite
Form of Kruskal's theorem, quoted in §. 1.2).  

One century before Hilbert's wrong conjecture of the completeness (and decidability) of
formal theories, Laplace had formulated a similar one, in mathematical Physics: in his
opinion, the systems of (differential) equations could completely describe the physical
world.  More precisely, if one wanted to know the state of the world in a future moment,
with a given approximation, than it could suffice to know the current state of affairs up to an
approximation of a comparable order of magnitude.  By formally computing a solution of
the intended equations, or by suitable approximations by Fourier series, one could deduce
(or predict or decide) the future status, up to the expected level of approximation.

Poincare', as a consequence of his famous theorem on the three bodies problem, proved
that minor variations of the initial conditions could give enormous changes in the final
result or, even, that the solutions could depend discontinuously on the initial conditions.
Then, predictability, as "completeness w.r.t. the world" of a suitable set of formal equations,
failed.  These results, thus, and the subsequent work in dynamical systems, are the
mathematico-physical predecessors and analogues of the many proof-theoretic
incompleteness theorems, since Gödel.  They set a limit to the effectiveness of mathematical
tools in Physics, but they are also at the origin of beautiful and new mathematical theories,
where qualitative predictions replace quantitative ones and where the "mathematical
understanding" does not need to coincide with predictability (see [Thom, 1972]).  Moreover,
these theories, by forcing more geometry and topology into the prevailing analytical
approaches to Physics, gave further richness and unity to Mathematics (see [Devaney,
1989] for a survey of the geometric approach to dynamical systems).

In conclusion, there is no absolute effectiveness of the mathematical tools, in Physics, but
the constructed objectivity of Mathematics is grounded on an interaction with the world
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around us (and in us) that guaranties a relative effectiveness, though remaining often
incomplete.  No choice of a specific level of description, such as the mathematical one, given
by some linguistic constructions and some geometric contours, may yield a complete
representation of the richness of the universe we are embedded in as we have several and
interacting forms of representation.  Moreover, language and drawings are rich of our
internal finalism and interpretation and cannot perfectly coincide with any "independent"
physical reality.  Their are reasonably effective because meaningful, i.e. because they are
grounded in our cognitive being, as an ongoing process that constructs "reality" while living
and interpreting it.  Yet they are incomplete, by this very same reason: their objectivity is
constructed by us, with our changing limitations.

Impredictability and incompleteness results are there to remind this to us, and to
encourage the permanent invention of new methods and the construction of new
"phenomenal levels".  We have been able to do so throughout history by dramatic
expansions of our tools or changes of paradigms: the birth of infinitesimal calculus and of
non-Euclidean geometries are two of the most fantastic examples of this open-ended
process, in Mathematics.  The believe in "perfect completeness" or "absolute effectiveness"
of the current mathematical tools  (even of "formal" tools w.r.t. to specific mathematical
structures, say), instead of the understanding of their relative completeness and reasonable
effectiveness, may be misleading and may made us blind w.r.t. the growth of other form of
knowledge, which may stimulate the change.

7. Some limits to effectiveness: the phenomenology of life.
The extension of the mathematical method to other sciences, where conceptual stability and
invariance are not the main concern, is even less straightforward and sets further limits to its
successes.

As a matter of fact, the richness of Mathematics is grounded on its unique invariance and
stability: one may even define Mathematics as the locus of the maximally invariant and
stable concepts that humans could propose, in their endeavour towards knowledge.
Mathematics is normative in that this invariance and stability provide the norm, they are
not (passively) descriptive.  Its effectiveness, in Physics, is due to the essentially constructed
(and mathematical) nature of "physical objects", as this is how we "single them out" (by
mathematics).  But, are mathematical invariance and stability, its (fully general) norms, at the
core of Biology?

Consider, for example, the notion of neural synapses.  Of course the biologist has to
"define" it, as he has to communicate knowledge, propose a description.  Yet, the notion of
synapses does not need to be as stable as a mathematical concept, for many reasons.
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Synapses change in evolution and ontogenesis; they are dynamical; their behaviour is
largely contextual and no fully general norm describe it, as the causal relation w.r.t. the
context is less relevant that the finalistic organisation of the system of which it is part.
Norms are very effective in explaining causes, much less in understanding the contingent
finalisms of life.  The ecosystems of life change continually the rules of the game.  The
underlying physico-chemical invariants are part of the phenomenon, but are not sufficient to
describe it.  Their analysis contributes to the explanation, but the phenomenal level of our
relation to living beings is a different one.  By this, Physics and Chemistry, and their
invariant laws, are necessary to understand life, but they are not sufficient to derive its
properties.

Clearly, we may change mind, in history, as for the description of an electron, as well:
experiences may bring in new facts and suggest novel interpretations.  But, in Biology, it is
not just knowledge that may be revised, as in Physics and all empirical sciences, but
stability, full generality of the "formal" description, repeatability of the experience, are less
central than in Physics.  What really matters are variation, non-isotropy, diversity,
behaviours in an ever changing ecosystems.  Again, one needs to write about and, then, to
define the synapses, but, by the reasons above, a mathematical definition of it would not
have the same interest nor relevance as the unavoidable and crucial or fully explanatory,
mathematical description of a particle, in microphysics (see [Jacob,1970], [Bailly,1991],
[Longo,1998], among others).  For example, one may mathematically define a quark and
derive (some) of its properties as theorems, to be later checked by experiences; a
mathematical definition of a neural synapses in no way (or in minor, very specific ways)
could give properties of the biological entity as "theorems", to be formally derived from the
definition.

However, although "biological objects" may be hardly captured by the normative nature
of the physico-mathematical description, one may consider another element of the biological
phenomenon, which has no counterpart in Physics: functionality.  It is possible, that the
"function" of a living component, organ or being (in an ecosystem or in a compound form
of life), may be more effectively described, by mathematical tools, than the "object".

The problem of effectiveness then is transferred to the analysis of the "right level" of
invariance to attribute to functionalities, i.e. to propose an informative and effective level at
which the function can be actually abstracted form contextual dependencies, or may be given
the right level of dependence on them and, thus, stabilised in a mathematical description.
The point is to find "what depends on what", or how much a specific function of life may be
independent, say, from the "hardware" that realises it.  

Indeed, this kind of problem is typical of Mathematics, in its own context.  Category
Theory, in Mathematics, beautifully centres it: one has to find the right category to work in,
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i.e. the structural properties that morphisms or isomorphisms are exactly meant to preserve.
A category spells out the invariants that matter: this is the main reason for its conceptual
superiority in the foundation of Mathematics w.r.t. Set Theory.  Moreover functors relate
categories to other categories, tell what must be added or forgotten to embed one into the
other.  Natural transformations relate functors and unify the various notions stabilised in
and by functors and categories.  But proofs as well, in Mathematics, require a close analysis
of invariance.  When proving a theorem for all real numbers, say, or an arbitrary algebraic
structure, one may "use", in the proof, a generic real or a generic example.  Then, at the end
of the proof, the mathematician has to observe: "look, my proof only depends on the fact
that this is a real or that is this kind of structure, no more no less is used".  The task may be
non obvious: it may happen that the proof "proves more" the statement, i.e. that less
properties where required or that, under those hypothesis, more may be actually proved.  Or,
conversely, some implicit assumptions have been used.  In both cases, the level of invariance
proposed is the wrong one, too narrow or too large.

The research problem then, w.r.t. the uncertain effectiveness of Mathematics outside
Physics, is to single-out some truly stable invariants, in Biology, say.  Or, otherwise, to
"adjust" Mathematics to more plastic conceptual constructions: instead of using well
established methods and structures, with their usual conceptual stability, and work on the
data provided by biologists, we should perhaps reconstruct concepts by interacting also
with their methods, which are very different form those in Physics (see [Longo, 2001] for
more on the distinction between concepts and structures in Mathematics).

As a matter of fact, it is very hard to transfer outside Mathematics the crucial theoretical
praxis of the discipline, grounded on invariance.  It is already very hard to apply it on the
borderline of the mathematical activity, e.g. with reference to its applications, as we so often
slipped into metaphysics: the relevance and stability of a proposal was confused with an
absolute.  So, for two thousands years, we were told that Euclidean geometry was
"absolute", that it perfectly coincided with physical spaces, independently of any context or
assumption, to physical space "per se".   Similarly, Cantor-Dedekind's construction has
been seen as "the continuum" of space and time.  Closer to our times and to the problem we
are discussing here, Turing Machines have been presented as the mathematically invariant
definition of (human) reasoning, as discussed next.

7. Thought as a function
In 1935-36 the many formal approaches to computability (Herbrand-Gödel, Church,
Kleene, Turing ...) were shown to be equivalent.  The everybody exclaimed: we have an
absolute.  We coherently defined deductions as computations, independently of the
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formalism, machine or ... whatever implements it.  May it be a Turing Machine, a
mechanical (or, later, digital) computer, a set of formal rules ... provided that they contain
certain features (as described by the partly informal notion of "algorithm"), then they all
compute the same class of functions, the general recursive ones (this is the so called Church
Thesis).  And there comes the metaphysical slip: since these functions, as deductions,
describe the "act of effective reasoning" (the "human computor in the act of deducing", to
put it in the words of Gandy, a student of Turing) we have got the universal notion, the
invariant defining human intelligence, in a complete and effective fashion.  This is the so
called "functionalist" approach to human mind.  

We all know, since then, the many failures of Strong Artificial Intelligence, and the
successes of many of its more modest "sub-programs" (the interactive expert systems and
theorem provers and much more, which did not assume the full generality of the strong
claim).  As well as the successes of Computer Science, which is a "science" exactly because
the "art of programming" is independent from the machine.  Programs must be portable,
this is the key motto of programmers.  Programming languages must be "universal", i.e.
compute all recursive functions and being transferable from a machine to another.  Both key
points are grounded on Turing's remarkable idea of distinguishing software from hardware.
But even operating systems, as implementation of Universal Turing Machines, are
transferable: so, when a machine dies (a new technology is born) one may take its operating
system, its programs and date base and transfer it on another.  This practice of
"metempsychosis" is a remarkable technology and is at the core of Computer Science.  Yet,
some proposed for decades this model of computing, its perfect mind/body dualism, as a
model for human intelligence (without necessarily being Indus).  

The mistake again was to believe that "intelligence" may be grounded on formalised
"laws of thought", as rules independent of meaning.  Meaning as reference first to the
"hardware" that implements it, our living and historical brain, and which is rich of the
finalistic contingency of life we mentioned above.  By this, the proposed level of invariance
was the wrong one.   The objectivity and generality of reasoning is instead grounded on that
very peculiar hardware which is our brain through history, i.e. our human brains interacting
by language and action with the world and among them.  Its invariance is due to the
common biological and cognitive roots and, later, to intersubjective exchange, which allows
to focus on what is "stable" as shared with other humans, in an enlarging communicating
community.  Stability of (mathematical) reasoning, though very high (indeed maximal,
among our forms of knowledge), is not an absolute and it is the result of a process towards
invariance.  It is very hard to spell out, in mathematical terms, which are the constitutive
invariants, underlying this very "function", human thought, which produces invariants.

The irony is that even machines now do different things than that "absolute" proposed in
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the '30s.  Distributed, concurrent, asynchronous computing uses open systems, working
with evolving operating systems and data base, with no absolute time (a crucial physical
difference w.r.t. Turing Machine).  They perform very different tasks, in some cases, not
even vaguely comparable with those of sequential computing with an absolute clock (see
[Monist, 1999]).  And we still do not have a sufficiently good mathematical description of
these novel computer systems, which Physics and engineering have been giving us.

 Yet, the "functionalist" approach to human thought still presents that wrong level of
invariance (the "laws of thought" do not depend on life, are formal and, thus, they may be
implemented on a Turing Machine) as the core of cognitive analyses.

This shows the difficulties in transferring the normative analysis of Mathematics from
"objects" to "functions", when dealing with the phenomena of life and history.  It is hard, if
ever suitable, to single-out living individuals, mathematically; it is a non-obvious scientific
challenge to extend the reasonable effectiveness of Mathematics to "functions", from the
simplest living structure (e.g. the internal and external topology of a cell) to those which
span life and history, such as human intelligence.

8. Brain plasticity and neural nets.
A more recent mathematical approach to mental functions has been grounded on the idea of
"interactive net of formal neurones".  These theories are beautiful physical-mathematical
models, a qualitative change w.r.t. those that rely on mathematical-logic descriptions, such
as Turing Machines or alike, based on the assumption of a universal "computational logic".
Following McCullogh, Pitts and Hebb, neural nets on the contrary are inspired by the
plasticity of the brain and aim at modelling this crucial aspect of it.  In contrast with the
functionalist theories, rather than asserting that the "hardware" which realises the thinking
is irrelevant (Turing machines, systems of balls and marbles, computers or brains "are all
the same" for the functionalist), the mathematical theory of neural nets assumes as essential
a biological property of that specific hardware which is "the (human) brain", plasticity.  In
other words, instead of starting with a logical analysis of (mathematical) deduction and
defining it to be an analysis of thinking, the connectionist hypothesis (such is the name for
the theoretical proposal of neural nets) stresses a fundamental property of the brain, the
plasticity of its electrical connections, and turns it into Mathematics.  And this is a
Mathematics very rich in powerful tools: "spin-glasses" and methods from statistical
Physics, based on the Mathematics of dynamical systems, one of the most modern and
powerful instruments of analysis in contemporary Physics.  

But, at this point  ...  one forgets the original anti-functionalist project, the one which
tries to develop and is prompted by the biological reality of the brain.  One forgets that
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neurones are alive and have behaviours which are not always independent of their individual
unity, let alone of their context.  Indeed the brain plasticity itself depends on a number of
causes.  The first set of such causes is the spatio-temporal nature of the electrical message,
its geometry.  The second is the ability to prime "cascades of chemical reactions", which
induce changes in synaptic structure.  Third, the huge number of elements which regulate
the chemical reactions within cellular and extra-cellular liquids.  And still more causes, not
yet well understood, including the tridimensional geometric structure of the proteins
exchanged by the synapses.

The connectionist proposal seems to mutate into the following: it does not matter how
brain plasticity is achieved so long as it is plasticity; the formal nets will simulate it by their
very refined Mathematics of electrical connections of continuous weight.  But then as soon
as we start drifting away from functionalism, have we immediately gone back to it?  We end
up simulating with electrical circuits only one function, the one implemented by neural
plasticity as variation of electrical conductivity, even if the real communication, along
synapses, is also bio-chemical, it uses the convection of liquids etc..  At a certain point then
one does not refer any longer to the structural characteristics of the brain, or forgets many
of them which might be crucial but are not considered as such (fluids, bio-chemistry, ...  );
again, we are back to thinking that "machines" are interchangeable.  The subject then
develops, driven by its internal methodology which again bears the physical-mathematical
imprint.

All this is very interesting, since new questions can be asked to the biologist, and some
specific situations simulated.  But, mostly, formal neural nets suggest an original way of
building extraordinary new machines, very different from digital computers.  Still I think
that physicists and mathematicians working with neural nets should not present their theory
as a cut and dried "Theory of Brain": as we have said, the electrical signal along the axon is
very important for understanding brain functions, but there are other factors which play a
relevant role and "boundary phenomena" between membranes, Chemistry and liquids have
their relevance too: the synaptic connection is far from transferring only electrical
information, as it was once believed.  Moreover, everything is coherently managed by that
living cell, the neurone, which has its own well defined and aggressive individuality.  This is
killed if it is "conceptually dissected", if one focuses on a single physical phenomenon, the
threshold electrical calculus. Moreover, this cell is immersed in contexts which are
themselves alive and full of connections, which have their own unity and intentions (as aims
of life), that are killed off by the "cutting plane" of the mathematical formalisation of the
electric signal.

 As I already stressed, this is the main reason why modelling in Physics differs
qualitatively from that in Biology.  Today, for instance, to shape a new kind of wing for an
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aeroplane one can often avoid experimenting in a wind-tunnel.  Computer simulation of
fluid dynamics has now reached a very high degree of precision and reliability.  It is, in fact,
an important element for cost-cutting in aeroplane construction.  The mathematical
description of that physical reality, namely the découpage of the "physical outlines", of the
key parameters of the phenomenon and their electronic elaborations, are a good enough
approximation for this practical issue.  In this case the mathematical theory, even if at a level
of approximation and formally incomplete, is an effective "theory" of the physical
phenomenon.

On the contrary, there is a qualitative difference when trying to give a theory made of
physical and mathematical invariants, which should capture the dynamics of living brains,
say; or to propose a "theory" of the biological phenomenon, an effective one for simulating
and forecasting the activity of the brain, beyond some very restricted aspects (mostly related
to very small numbers of neurones).  This is because the few mathematisable aspects will
be conceptually isolated from the living whole, and one would work on them using one's
own methods of conceptual stability; yet, it is that whole that contains an interconnected
network of individual and global aims and intentions.  As said in §. 3, intelligent behaviour
is meaningful for this.  

Certainly one must continue working at the mathematical modelling of biological
phenomena, but keeping clearly in mind the limits of this approach.  And the same to be
able to talk productively to biologists (I have seen biologists and physicists with great
difficulties in understanding each others on the theme of modelling and neural nets).  In
particular, in order to progress one must always remember that there is a qualitative
difference between mathematical simulation in Physics and in Biology; a difference which I
have tried to single out with these observations on "découpage", as a mathematical practice
to isolate invariance, so crucial and effective in Physics, but rather unsuitable when
transferred on the unity of living beings and their ecosystem.

Moreover, I wish to add that prudent researchers in this area, such as Hertz, Krogh and
Palmer [Hertz,1991], admit that these theories have taken only one or two ideas from
neurobiology, and do not make any pretence of giving a "mathematical model" of the brain.
It is instead possible that these studies, with their autonomous practical and mathematical
developments, might one day provide us with formal "neural" machines that can be even
more revolutionary than those which have already changed our life: digital computers.  As
already mentioned, also Turing Machines were considered by many as the "ultimate" model
for human reason, an absolute: they served to a, perhaps, more significant purpose, as they
gave us brand new forms of elaborating and exchanging information.  Computers are used
for some fast numerical computations, impossible to man, or, mostly, for word-processing
and world-nets of data, fantastic achievements, that do not even vaguely resemble our
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mental activities, but enrich them enormously.  Good science is worth pursuing, when
technically deep, even if the early philosophical project is basically wrong: the indirect fall-
out may be as amazing as unexpected.  Subsequent philosophical reflections may help to
revise it, or in inventing new research directions or, at least, in further understanding the
world or our descriptions of it.

Conclusion
In this essay, I tried to delineate the "cognitive" reasons for the successes of Mathematics in
Physics: Mathematics is drawn, simultaneously to Physics, on the phenomenal veil, i.e. on
the very locus where we apprehend and (re-)construct physical phenomena, as living and
historical beings.  Its internal generative character, by norms and invariants, goes often
further and independently of the relation to Physics; or, even, it may give, sometimes,
indirect or unexpected new tools for drawings contours to novel physical phenomena.
Thus, its effectiveness is contingent, as much as life itself, since it is first grounded in our
active relation, as living beings, to space and time, by language and by all forms of
intersubjective communication (gestures are not irrelevant in communicating Mathematics).
Mathematics then may be described as a three dimensional space, as hinted in §. 1.3, since
invariants of space, of language and of formal computations interfere in a synergetic way
while generating mathematical concepts and proofs.  

Mathematics grows along with the reasonableness of History, which made us construct
models of the physical world, since Greek figures of space, while creating the key structures
of Mathematics or its very language.  Yet, the effectiveness of extensions of Mathematics'
fruitful paradigm to Biology is largely reduced, let alone to other disciplines where relational
human activity is grounded in but go well beyond biological life.

When departing from the analysis of the causal and local or elementary  interactions in
Physics, the developments of mathematical tools must be done with a similar simultaneous
attention not only to the facts and data of Biology but also to its own methodology, so
indebted to finalism and global phenomena.  As a matter of fact, in a two-ways interaction,
the phenomenal level on which we draw Mathematics may change dramatically and it may
require great changes in the mathematical methods, as least as relevant as the invention and
use of actual infinity or of non-Euclidean geometries.

Of course, the switch from the analysis of "objects", in Biology, to that of "functions"
has been at the core of a remarkable revolution.  Morphogenesis is in part a consequence of
this change of perspective: the analysis of singularities and fractals provided original tools
for it (see [Thom,1972] and the many writings on Mathematics in Biology), yet the
underlying physico-mathematical paradigm, upon which these ideas were born, still leave
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many biologist unsatisfied.
 I have been choosing above the most complex of the "biological activities", human

thinking, as an example of a "function".  This is probably not fair, as the reasons for its
complexity go well beyond Biology, in view of the role in it of human intersubjectivity,
through history.  Yet, at all levels of complexity, as soon as we examine functions of life, it
seems particularly hard to isolate mathematical invariants, to find the right "category" and
mathematical structures.  This is largely due to the systemic unity, contingency and finalism
in biological phenomena.

For these reasons, in [Longo,2001], it is suggested that, in order to gain in effectiveness,
the interaction with Biology should begin by the analysis of the conceptual and even pre-
conceptual constructions of Mathematics, which precede or underlie the explicit
mathematical proposal for a structural invariant.  We shouldn't only try to use well
established or autonomous mathematical tools in order to contribute to Biology, but we
should rediscuss foundational issues in Mathematics with reference to biological
experiences (see [Longo,1998], [Longo et al., 1999]).

In conclusion, Mathematics does not capture "the essence of the world", even not in
Physics, as we only interact with physical reality at the phenomenal level, where we "draw"
the structures of phenomena exactly as mathematical objects, with no pretence to understand
essences.  Let alone in Biology where the unity of individuals, the interactions with the
ecosystem and their contingent finalism appear instead as an "essence", well independent of
us.  The kantian paradigm shows here how linked it was to the peculiar relation between
Physics and Mathematics.  

In any case, though, Mathematics is as effective as it may be human language, as a tool
for communicating.  Human language is very effective, as we understand each other very
well, but it is not unreasonably effective, nor "complete" in any sense.  We need gestures,
smiles, caresses, we need to hit or touch each other and make love to communicate more
fully what language, in many situations, cannot express.  Moreover, each human historical
language is incomplete relatively to the others (and thus, it is "essentially" incomplete), as
the following example may suggest.

A friend of mine, a French sinologue, had to translate a classic Chinese poem.  This
poem described a river running through a forest.  In each ideogram there was a fragment of
the ideogram that evocates the notion of fluidity, of running water ... .  The visual, pictorial,
impression was (reportedly) fantastic and it was an essential part of the poetic
communication.  This was clearly lost in the oral communication and, a fortiori, by the
translation in an phonetic writing.  Dually, it is almost impossible to translate in Chinese our
complex temporal constructions, such as the past of the future or the future of the past; yet,
both Chinese and our languages are very "effective" in describing the world.  The universal



35

and complete language of all possible expressions is a wrong dream as much as the
universal (and complete) system of (mathematical) signs for all sciences.  And this is
fortunate, as it confirms the richness of the world and of our tools to understand/organise it.

This is why we invented autonomous conceptual (and linguistic) tools, w.r.t.
Mathematics, for the analysis in Biology or, say, in History.  Indeed, each method has some
mathematical aspects, the mathematizable fragments.  For example the morphology of a
jelly-fish, which is shaped like a drop of milk falling into water (an old example recalled by
R. Thom), or the spots on some fours whose distribution is optimal, according to some
geometric criteria (more work in morphogenesis, since Turing), are beautifully
mathematisable fragments of live; indeed, they are "physical aspects" of life.  Similarly the
physical structure or the "geometry" of the visual cortex may require some relevant
Mathematics in order to be analysed closely.  Yet, the biological phenomenon is also
elsewhere: how comes, say, that this forms are genetically stabilised and are reproduced in
offsprings?   Or, how to analyse the crucial redundancies in evolution and even in
ontogenesis, which are so unrelated to the optimal path or geodetics of mathematical
Physics?  By which path through evolution the "double jaw" of some reptiles of 200
millions years ago is potentially the hears of birds and mammals (the "latent potentials" in
Gould's analysis)?  The intended structures and concepts are so dynamical in evolution, that
any mathematized focus on their conceptual stability and invariance would not be the most
relevant aspect, as it necessarily is in Mathematics.

On one hand, then, it is possible that some fragments of life may be (increasingly)
understood by Mathematics, but dually Mathematics owes greatly also to the other forms of
description and knowledge, which do not need to be reducible to it.  It contains some
elements of these forms, which actually contribute to its foundation, as it is rooted also in
them or, better, it possesses some common roots, the cognitive ones.  And this is one of the
reasons for the effectiveness of Mathematics.  

Once more, this is not a vicious circle, but the virtuous spiral of the open and
dynamical system of our forms of knowledge, if we reconstruct its unity as a network, not
as a fake ultimate system of axioms which explains or "covers completely" everything, by
formal derivations (the "fake wooden frame" to which refers Weyl in the introduction to
Das Kontinuum, see the English translation; Weyl's anti-formalist stand is even more
strongly presented in his posthumous [Weyl, 1985]).

The project then is in acknowledging first the differences in languages and
methodologies, as well as their internal limitations, as for effectiveness, and then try to
enrich them by interaction and, possibly, by singling out the common cognitive roots of our
different conceptual constructions.  Fortunately, these constructions, including Mathematics,
are not God given, nor perfect and static platonic realms, but human and "plastic", as much
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as our interacting brains: thus we may invent better ones, as we did very often along history,
and then unify them by cross explanations and mutual influences or translations.  We may
follow new meaningful aims, which may lead us to propose entirely novel concepts and
ideal structures.
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